Biochemia: Ćw. Kwasy nukleinowe

Podobne dokumenty
Otrzymany w pkt. 8 osad, zawieszony w 2 ml wody destylowanej rozpipetować do 4 szklanych probówek po ok. 0.5 ml do każdej.

Badanie składników kwasów nukleinowych

WPŁYW SUBSTANCJI TOWARZYSZĄCYCH NA ROZPUSZCZALNOŚĆ OSADÓW

Identyfikacja wybranych kationów i anionów

ĆWICZENIE 1. Aminokwasy

Protokół: Reakcje charakterystyczne cukrowców

ĆWICZENIE L12 KWASY NUKLEINOWE - IZOLACJA DNA, HYDROLIZA ATP ORAZ ANALIZA SKŁADU DNA I RNA

Ćwiczenie 4. Identyfikacja wybranych cukrów w oparciu o niektóre reakcje charakterystyczne

WŁASNOŚCI I SKŁAD KWASÓW NUKLEINOWYCH. 1. Preparatyka kwasów nukleinowych z droŝdŝy

WPŁYW SUBSTANCJI TOWARZYSZĄCYCH NA ROZPUSZCZALNOŚĆ OSADÓW

Ćwiczenia laboratoryjne 2

ĆWICZENIE 3. Cukry mono i disacharydy

ĆWICZENIE I - BIAŁKA. Celem ćwiczenia jest zapoznanie się z właściwościami fizykochemicznymi białek i ich reakcjami charakterystycznymi.

Reakcje charakterystyczne aminokwasów

ĆWICZENIA LABORATORYJNE WYKRYWANIE WYBRANYCH ANIONÓW I KATIONÓW.

ĆWICZENIE 1. Aminokwasy

Piotr Chojnacki 1. Cel: Celem ćwiczenia jest wykrycie jonu Cl -- za pomocą reakcji charakterystycznych.

HYDROLIZA SOLI. 1. Hydroliza soli mocnej zasady i słabego kwasu. Przykładem jest octan sodu, dla którego reakcja hydrolizy przebiega następująco:

BADANIE WŁAŚCIWOŚCI FIZYKOCHEMICZNYCH AMINOKWASÓW

HYDROLIZA SOLI. Przykładem jest octan sodu, dla którego reakcja hydrolizy przebiega następująco:

Oznaczanie zasad purynowych i pirymidynowych z zastosowaniem spektrofotometrii UV/VIS oraz spektroskopii magnetycznego rezonansu jądrowego

HYDROLIZA SOLI. ROZTWORY BUFOROWE

KINETYKA HYDROLIZY SACHAROZY

Ćwiczenie II Roztwory Buforowe

KWASY I WODOROTLENKI. 1. Poprawne nazwy kwasów H 2 S, H 2 SO 4, HNO 3, to:

Laboratorium 3 Toksykologia żywności

Oznaczanie żelaza i miedzi metodą miareczkowania spektrofotometrycznego

data ĆWICZENIE 12 BIOCHEMIA MOCZU Doświadczenie 1

KINETYKA HYDROLIZY SACHAROZY (REAKCJA ENZYMATYCZNA I CHEMICZNA)

Spektrofotometryczne wyznaczanie stałej dysocjacji czerwieni fenolowej

data ĆWICZENIE 11 KWASY NUKLEINOWE

Zakład Biologii Molekularnej Materiały do ćwiczeń z przedmiotu: BIOLOGIA MOLEKULARNA

data ĆWICZENIE 7 DYSTRYBUCJA TKANKOWA AMIDOHYDROLAZ

DNA - niezwykła cząsteczka. Tuesday, 21 May 2013

Reakcje charakterystyczne aminokwasów

Związki nieorganiczne

MECHANIZMY REAKCJI CHEMICZNYCH. REAKCJE CHARAKTERYSTYCZNE GRUP FUNKCYJNYCH ZWIĄZKÓW ORGANICZNYCH

Scenariusz lekcji chemii w klasie III gimnazjum. Temat lekcji: Białka skład pierwiastkowy, budowa, właściwości i reakcje charakterystyczne

Oznaczanie RNA w materiale roślinnym

BADANIE WŁASNOŚCI KOENZYMÓW OKSYDOREDUKTAZ

Ćwiczenie 50: Określanie tożsamości jonów (Farmakopea VII-IX ( )).

Test kompetencji z chemii do liceum. Grupa A.

Dysocjacja elektrolityczna, przewodność elektryczna roztworów

Sporządzanie roztworów buforowych i badanie ich właściwości

Wodorotlenki. n to liczba grup wodorotlenowych w cząsteczce wodorotlenku (równa wartościowości M)

RÓWNOWAGI W ROZTWORACH ELEKTROLITÓW.

Kuratorium Oświaty w Lublinie ZESTAW ZADAŃ KONKURSOWYCH Z CHEMII DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2016/2017 ETAP TRZECI

Zadanie 2. (0 1) Uzupełnij schemat reakcji estryfikacji. Wybierz spośród podanych wzór kwasu karboksylowego A albo B oraz wzór alkoholu 1 albo 2.

Ilościowe oznaczenie glikogenu oraz badanie niektórych jego właściwości

BADANIE WŁASCIWOSCI FIZYKOCHEMICZNYCH KWASÓW NUKLEINOWYCH

Czy żywność GMO jest bezpieczna?

1. Właściwości białek

Oznaczanie SO 2 w powietrzu atmosferycznym

Kwasy Nukleinowe. Rys. 1 Struktura typowego dinukleotydu

WĘGLOWODANÓW HO H H O H C H C O H O H HC C H O H C H O C C 3 H 2 O. H furfural. H pentoza C H 2 O H O H H C O H HC C C C H.

ALDEHYDY, KETONY. I. Wprowadzenie teoretyczne

Analiza anionów nieorganicznych (Cl, Br, I, F, S 2 O 3, PO 4,CO 3

Reakcje utleniania i redukcji Reakcje metali z wodorotlenkiem sodu (6 mol/dm 3 )

Ćwiczenie 1. Technika ważenia oraz wyznaczanie błędów pomiarowych. Ćwiczenie 2. Sprawdzanie pojemności pipety

CORAZ BLIŻEJ ISTOTY ŻYCIA WERSJA A. imię i nazwisko :. klasa :.. ilość punktów :.

ANALIZA MOCZU FIZJOLOGICZNEGO I PATOLOGICZNEGO I. WYKRYWANIE NAJWAŻNIEJSZYCH SKŁADNIKÓW NIEORGANICZNYCH I ORGANICZNYCH MOCZU PRAWIDŁOWEGO.

WŁAŚCIWOŚCI KOLIGATYWNE ROZTWORÓW

Ćwiczenie 6 Aminokwasy

Wykład 12 Kwasy nukleinowe: budowa, synteza i ich rola w syntezie białek

REAKCJE CHARAKTERYSTYCZNE WYBRANYCH KATIONÓW

Węglowodany (Cukry) Część 3. Związki wielofunkcyjne

Instrukcja do ćwiczeń laboratoryjnych

ETAP II heksacyjanożelazian(iii) potasu, siarczan(vi) glinu i amonu (tzw. ałun glinowo-amonowy).

XIV Konkurs Chemiczny dla uczniów gimnazjum województwa świętokrzyskiego. II Etap - 18 stycznia 2016

OZNACZANIE STĘŻENIA GLUKOZY WE KRWI METODĄ ENZYMATYCZNĄ-OXY

Ćwiczenia nr 2: Stężenia

ROZPORZĄDZENIE MINISTRA ŚRODOWISKA 1)

Ćwiczenie 2. Analiza jakościowa związków organicznych zawierających azot, siarkę oraz fluorowcopochodne.

Ćwiczenie 3. Otrzymywanie i badanie właściwości chemicznych alkanów, alkenów, alkinów i arenów.

Główne zagadnienia: - mol, stechiometria reakcji, pisanie równań reakcji w sposób jonowy - stężenia, przygotowywanie roztworów - ph - reakcje redoks

PRZYKŁADOWE ZADANIA ORGANICZNE ZWIĄZKI ZAWIERAJĄCE AZOT

Spis treści. Wstęp... 9

Odpowiedź:. Oblicz stężenie procentowe tlenu w wodzie deszczowej, wiedząc, że 1 dm 3 tej wody zawiera 0,055g tlenu. (d wody = 1 g/cm 3 )

WŁAŚCIWOŚCI NIEKTÓRYCH PIERWIASTKÓW I ICH ZWIĄZKÓW NIEORGANICZNYCH

OZNACZANIE ŻELAZA METODĄ SPEKTROFOTOMETRII UV/VIS

STRUKTURA A WŁAŚCIWOŚCI CHEMICZNE I FIZYCZNE PIERWIASTKÓW I ZWIĄZKÓW CHEMICZNYCH

Zagadnienia z chemii na egzamin wstępny kierunek Technik Farmaceutyczny Szkoła Policealna im. J. Romanowskiej

Chemiczne składniki komórek

Scenariusz lekcji przyrody/biologii (2 jednostki lekcyjne)

Oznaczanie mocznika w płynach ustrojowych metodą hydrolizy enzymatycznej

SPRAWOZDANIE 2. Data:... Kierunek studiów i nr grupy...

WYMAGANIA EDUKACYJNE

4. Równowagi w układach heterogenicznych.

Ćwiczenie 1. Zależność szybkości reakcji chemicznych od stężenia reagujących substancji.

W rozdziale tym omówione będą reakcje związków nieorganicznych w których pierwiastki nie zmieniają stopni utlenienia. Do reakcji tego typu należą:

SZCZEGÓŁOWE KRYTERIA OCENIANIA Z CHEMII DLA KLASY II GIMNAZJUM Nauczyciel Katarzyna Kurczab

SPIS TREŚCI OD AUTORÓW... 5

Zadanie 2. [2 pkt.] Podaj symbole dwóch kationów i dwóch anionów, dobierając wszystkie jony tak, aby zawierały taką samą liczbę elektronów.

Scenariusz lekcji w technikum zakres podstawowy 2 godziny

Fragmenty Działu 5 z Tomu 1 REAKCJE W ROZTWORACH WODNYCH

Węglowodany (Cukry) Część 2. Związki wielofunkcyjne

RÓWNOWAGA I SZYBKOŚĆ REAKCJI CHEMICZNEJ

Szanowne koleżanki i koledzy nauczyciele chemii!

ĆWICZENIE 1: BUFORY 1. Zapoznanie z Regulaminem BHP 2. Oznaczanie ph 2.1. metoda z zastosowaniem papierków wskaźnikowych

Chemia Nowej Ery Wymagania programowe na poszczególne oceny dla klasy II

Transkrypt:

pirymidyny puryny Biochemia: Ćw. Kwasy nukleinowe KWASY NUKLEINOWE Wyciąg z kart charakterystyki substancji niebezpiecznych: amoniak C, N azotan srebra C, N błękit metylenowy Xn chlorek żelaza Xn difenyloamina T etanol, 96%, 70% F kwas azotowy(v),65% C kwas ortofosforowy C kwas octowy, 96% C kwas siarkowy, 95% C kwas solny C wodorotlenek sodu C siarczan dodecylu sodu Xn W komórkach organizmów eukariotycznych obecne są dwa typy kwasów nukleinowych: - DNA (kwas deoksyrybonukleinowy, ang. deoxyribonucleic acid) zawiera cukier deoksyrybozę; przechowuje informację genetyczną, występuje głównie w jądrze komórkowym, ponadto w mitochondriach i chloroplastach, - RNA (kwas rybonukleinowy, ang. ribonucleic acid), w skład którego wchodzi ryboza; bierze udział w translacji białek; obecny w cytoplazmie (rrna rybosomalny kwas rybonukleinowy, ang. ribosomal RNA i trna transportujący kwas rybonukleinowy, ang. transfer RNA) oraz mrna (matrycowy/informacyjny kwas rybonukleinowy, ang. messenger RNA) przenoszący informację o budowie białek z jądra do cytoplazmy. Kwasy nukleinowe są biopolimerami nukleotydów połączonych wiązaniami fosfodiestrowymi w łańcuch polinukleotydowy. Nukleotyd, stanowiący jednostkę monomeryczną DNA i RNA, składa się z cząsteczki cukru, zasady azotowej (purynowej: adeniny, guaniny lub pirymidynowej: cytozyny, tyminy, uracylu) oraz reszty fosforanowej (Rys. 1). ortofosforan zasada azotowa cukier Rys. 1. Struktura rybonukleotydu. Nukleotydy to monofosforany nukleozydów. W tabeli 1 zebrano nazwy nukleozydów i nukleotydów. W organizmie człowieka nukleotydy są składnikami kwasów nukleinowych, jak również występują w postaci wolnej, pełniąc szereg ważnych funkcji w przemianach metabolicznych. Tab. 1. Nomenklatura nukleozydów i nukleotydów kwasów nukleinowych. * tymidyna występuje wyłącznie w DNA, więc zwyczajowo nie dodaje się przedrostka deoksy zasady azotowe nukleotydy nazwy nukleozydów nazwa symbol nazwa symbol adenina A (deoksy)adenozyna (deoksy)adenozynomonofosforan (d)amp guanina G (deoksy)guanozyna (deoksy)guanozynomonofosforan (d)gmp cytozyna C (deoksy)cytydyna (deoksy)cytydynomonofosforan (d)cmp tymina T tymidyna * tymidynomonofosforan * TMP * uracyl U urydyna urydynomonofosforan UMP 1

1. BADANIE WŁAŚCIWOŚCI KWASÓW NUKLEINOWYCH 1.1. ROZPUSZCZALNOŚĆ KWASÓW NUKLEINOWYCH Kwasy nukleinowe, dzięki zawartości reszt kwasu fosforowego, wykazują odczyn kwasowy. Rozpuszczają się dobrze w środowisku zasadowym, trudniej w wodzie i rozcieńczonych kwasach. W roztworach wodnych tworzą układy koloidalne, z których można je wytrącić za pomocą czynników odwadniających, np. etanolu, izopropanolu. Wykonanie: Przygotować dwie szklane, krótkie probówki. Do pierwszej dodać 1 ml 0.5% roztworu RNA a następnie 2-3 krople 2 M HCl. Wytraca się biały osad RNA. Po dodaniu 200-300 l 10% roztworu NaOH osad ulega rozpuszczeniu. Do drugiej probówki dodać 1 ml 1% RNA, 200 l 3M CH 3COONa oraz 1 ml 96% etanolu (temp. -20 C) roztwór mętnieje, ponieważ wytrąca się osad RNA. 1.2. TWORZENIE KOMPLEKSÓW KWASÓW NUKLEINOWYCH Z BARWNIKAMI W środowisku kwaśnym kwasy nukleinowe wiążą barwniki zasadowe, tworząc połączenia typu soli, co wykorzystuje się m.in. do wizualizacji jąder komórkowych w metodach histochemicznych. Wykonanie: Do szklanej krótkiej probówki dodać 0.5 ml 0.5% RNA a następnie 150 µl 1 M CH 3COOH oraz 2-3 kropli 0.1% błękitu metylenowego (używając pipety do 100 l). Zawartość szklanej probówki przenieść do probówki o pojemności 1.5 ml i zwirować. Po wirowaniu widoczny jest niebieski osad kompleksów RNA z błękitem metylenowym. 1.3. TWORZENIE KOMPLEKSÓW KWASÓW NUKLEINOWYCH Z BIAŁKAMI Kwasy nukleinowe tworzą z białkami zasadowymi oraz niektórymi białkami obojętnymi połączenia kompleksowe. Do oddzielenia białka od kwasu nukleinowego stosuje się nasycone roztwory NaCl. Wykonanie: Do szklanej krótkiej probówki dodać 1 ml 0.5% RNA oraz 300 l 1 M CH 3COOH a następnie 100 l 3% BSA. Wytrąca się osad kompleksowego połączenia białka z RNA. W celu rozpuszczenia osadu dodać 1 ml nasyconego roztworu NaCl. 2. IZOLACJA I HYDROLIZA KWASÓW NUKLEINOWYCH Każda ze znanych metod izolacji kwasów nukleinowych wymaga zniszczenia błon lipidowych, prowadzącego do lizy komórki oraz oddzielania izolowanej cząsteczki kwasu od pozostałych składników komórki. Ważnym elementem preparatyki jest inaktywacja nukleaz enzymów odpowiedzialnych za degradację kwasów nukleinowych. W celu rozbicia błon biologicznych oraz jednocześnie denaturacji białek (w tym nukleaz) stosuje się detergenty, np. silny anionowy detergent siarczan dodecylu sodu (SDS). Inaktywująco na nukleazy działa również wersenian dwusodowy (EDTA), cytrynian sodu oraz fluorek sodu. Pozostałości komórek i wytrącone białka usuwa się przez wirowanie. W kolejnym etapie uwolniony do roztworu kwas nukleinowy zagęszcza się przez precypitację schłodzonym etanolem lub izopropanolem. Kolejne wirowanie pozwala na pozbycie się dużej objętości rozpuszczalnika i zwiększenia stężenia izolowanego kwasu nukleinowego przez rozpuszczenie w mniejszej objętości. Analiza poszczególnych komponentów cząsteczki kwasu nukleinowego wymaga jego hydrolizy, czyli rozerwania wszystkich wiązań obecnych w tej makrocząsteczce. W przypadku DNA pierwszym etapem jest zniszczenie wiązań wodorowych łączących komplementarne zasady. Zniszczeniu podczas hydrolizy ulegają również wiązania fosfodiestrowe łączące nukleotydy oraz glikozydowe pomiędzy zasadą azotową a cukrem. Kwasy nukleinowe podczas gotowania (100ºC) z kwasami mineralnymi (np. 1 M HCl, 10% H 2SO 4, 60% HClO 4) ulegają stopniowej hydrolizie do nukleotydów a przy wystarczająco długo prowadzonym ogrzewaniu w hydrolizacie uzyskujemy wolne zasady azotowe, pentozy i kwas fosforowy. 2

2.1. IZOLACJA RNA Z DROŻDŻY Opisana poniżej metoda izolowania RNA polega na rozbiciu komórek drożdży, usunięciu z roztworu białek i DNA za pomocą detergentu SDS a następnie zagęszczeniu RNA przez wytrącenie z użyciem etanolu. Wykonanie: W probówce wirowniczej o poj. 15 ml ogrzać do wrzenia w łaźni wodnej 5 ml 5% roztworu SDS. Dodać 1 g dokładnie rozdrobnionych drożdży piekarskich i ogrzewać przez 10 min mieszając bagietką. Probówkę ochłodzić w lodzie a następnie zwirować (3000 RCF*, 10 min). Nadsącz zebrać do schłodzonej w lodzie probówki wirowniczej o poj. 15 ml i dodać 96% etanolu (temp. -20ºC) w stosunku 1:1. Po piętnastominutowej precypitacji w lodzie roztwór zwirować (3000 RCF, 10 min). A następnie usunąć dokładnie supernatant (do pojemnika do utylizacji), natomiast osad wytraconego RNA rozpuścić w 5 ml wody destylowanej. *RCF (ang. relative centrifugal force) względna siła odśrodkowa wyrażająca wartość przyśpieszenia stosowaną do wirowania próbek 2.2. HYDROLIZA KWASOWA RNA Wykonanie: Do roztworu RNA wyizolowanego z drożdży dodać 10% H 2SO 4 w stosunku 1:1. Po wymieszaniu podzielić roztwór do dwóch szklanych probówek (tak, by podczas hydrolizy poziom roztworów był na wysokości wody w łaźni) i ogrzewać we wrzącej łaźni wodnej przez 30 min. Po ostudzeniu w zlewce z zimną wodą hydrolizat RNA przefiltrować a następnie przeprowadzić na nim reakcje pozwalające na identyfikację poszczególnych składników (pkt. 2.3). 2.3. WYKRYWANIE SKŁADNIKÓW HYDROLIZATU RNA 2.3.1. WYKRYWANIE PENTOZY W obecności stężonych kwasów mineralnych z pentozy powstaje z furfural (patrz: instrukcja do ćw. "Cukry proste i złożone"), który kondensując z floroglucyną (fenol) tworzy związek barwiący roztwór na czerwono. Reakcja z floroglucyną, podobnie jak próba Taubera, wykorzystywana jest do odróżniania pentoz od heksoz. Wykonanie: Przygotować dwie długie szklane probówki. Do pierwszej dodać 1 ml hydrolizatu RNA a do drugiej 1 ml 1% roztworu glukozy. Następnie do obydwu po 1 ml stężonego HCl i kilka kryształków floroglucyny. Roztwory ogrzać do wrzenia w łaźni wodnej. Hydrolizat RNA zawierający pentozy zabarwia się na czerwono a roztwór glukozy na żółtobrunatno. 2.3.2. WYKRYWANIE RESZTY FOSFORANOWEJ Obecny w hydrolizacie RNA kwas fosforowy reaguje z molibdenianem amonu w obecności HNO 3, co prowadzi do powstania żółtego osadu fosfomolibdenianu amonu. Wykonanie: Przygotować dwie krótkie szklane probówki. Do pierwszej dodać 0.5 ml hydrolizatu RNA i zobojętnić go dodając 200 l amoniaku. Następnie dodać 0.5 ml stężonego HNO 3 oraz 2 ml 2.5% molibdenianu amonowego. Zawartość probówki ogrzać do wrzenia w łaźni wodnej. Powstający fosfomolibdenian amonowy wytrąca się przy większym stężeniu w postaci żółtego osadu. Równocześnie wykonać kontrolę z 5% kwasem ortofosforowym. 2.3.3. WYKRYWANIE ZASAD AZOTOWYCH Zasady obecne w kwasach nukleinowych są heterocyklicznymi związkami pierścieniowymi zawierającymi atomy azotu. Reagują z jonami srebra i miedzi tworząc nierozpuszczalne sole kompleksowe. Wykonanie: Przygotować dwie krótkie szklane probówki. Do pierwszej dodać 1 ml hydrolizatu RNA oraz 400 ul stężonego amoniaku (do uzyskania słabo alkalicznego odczynu). Następnie dodać 0.5 ml 1% AgNO 3. Wytrąca 3

się delikatny osad nierozpuszczalnych soli srebrowych puryn (oglądać w świetle lampki). Równocześnie wykonać kontrolę z 0.1% roztworem adeniny (z pominięciem alkalizacji roztworu). Identyfikację składników hydrolizatu RNA wykonujemy na gotowych hydrolizatach. Po przygotowaniu własnego hydrolizatu należy wykonać jedną z powyższych reakcji weryfikującą skuteczność preparatyki i hydrolizy RNA. 3. ODRÓŻNIANIE RNA OD DNA Opisane poniżej reakcje pozwalające zidentyfikować i odróżnić roztwór RNA od DNA bazują na obecności różnych cukrów w cząsteczkach tych kwasów nukleinowych. Ryboza obecna w cząsteczce RNA w odróżnieniu od deoksyrybozy, występującej w DNA, zawiera grupę hydroksylową przy węglu C2. 3.1. METODA ORCYNOWA PRÓBA BIALA Próba Biala jest reakcją kondensacyjną, w której pentozy (wolne oraz związane w nukleozydach purynowych) ogrzewane ze stężonym HCl ulegają cyklizacji do furfuralu (patrz: instrukcja do ćw. "Cukry proste i złożone"). Furfural w obecności jonów Fe 3+ kondensuje z orcyną, tworząc związek barwy zielonej. Deoksyryboza również reaguje z oryną, ale 10-krotnie słabiej, dlatego przyjmuje się, że DNA w próbie Biala daje wynik ujemny. Wykonanie: Bezpośrednio przed użyciem zmieszać: 0.4 ml roztworu A (6% orcyna w 96% etanolu) oraz 5.6 ml roztworu B (10% FeCl 3 w stężonym HCl) w celu przygotowania odczynnika orcynowego. Uzyskujemy objętość wystarczającą do przeprowadzenia 6 reakcji (dla 3 podgrup). Następnie przygotować dwie, długie szklane probówki. Do pierwszej dodać 1 ml 0.1% RNA, do drugiej 1 ml 0.1% DNA oraz po 1 ml odczynnika orcynowego do każdej. Probówki umieścić we wrzącej łaźni wodnej na 10 minut. Roztwór RNA barwi się na oliwkowozielono. 3.2. METODA Z DIFENYLOAMINĄ PRÓBA DISCHEGO Deoksyryboza (wolna i związana w nukleotydach purynowych) w środowisku kwaśnym tworzy z difenyloaminą związek barwny. RNA zawierający rybozę oraz deoksyryboza związana w nukleotydach pirymidynowych dają wynik ujemny w tej reakcji. Wykonanie: Przygotować dwie długie szklane probówki. Do pierwszej dodać 1 ml 0.1% RNA, do drugiej 1 ml 0.1 % DNA, a następnie do każdej po 1 ml 1% odczynnika difenyloaminowego (1% difenyloamina w roztworze lodowatego CH 3COOH zawierającym stężony H 2SO 4) i umieścić probówki we wrzącej łaźni wodnej na 10 minut. Roztwór DNA barwi się na niebiesko. 4. WIDMA ABSORPCYJNE ZASAD AZOTOWYCH I NUKLEOTYDÓW Kwasy nukleinowe absorbują światło z zakresu ultrafioletu dzięki obecności w ich cząsteczkach heterocyklicznych zasad azotowych zawierających sprzężone wiązania podwójne. Każda z zasad posiada charakterystyczne dla siebie widmo z maksimum absorbancji przypadającym przy danej długości fali. Długość fali, przy której dana zasada absorbuje najmocniej UV zmienia się w zależności od ph roztworu. Maksimum absorbancji dla kwasów nukleinowych (260 nm) jest wypadkową absorbancji budujących go zasad azotowych. Zdolność absorpcji ultrafioletu przez kwasy nukleinowe wykorzystywana jest do wyznaczania ich stężenia oraz czystości metodą spektrofotometryczną. Wykonanie: Dokonać pomiarów absorbancji roztworów adeniny, tyminy oraz adenozyno-5'-trifosforanu (ATP) w 0.1 M HCl względem rozpuszczalnika w zakresie widma 230-290 nm zmieniając długość fali co 5 nm. Następnie zmierzyć OD roztworu adeniny w 0.1 M NaOH względem rozpuszczalnika. Pomiary wykonać w spektrofotometrze przeznaczonym do mikroobjętości Thermo Scientific Nano-Drop 2000 umieszczając 2 l 4

roztworów na statywie pomiarowym pomiędzy dwoma włóknami światłowodowymi. Wyniki wprowadzić do tabeli 2. Tab. 2. Dane pomiarowe do wykreślenia widm absorpcyjnych zasad azotowych i nukleotydu. LP [nm] adenina w 0.1 M HCl 0.1 M NaOH tymina w 0.1 M HCl ATP w 0.1 M HCl 1. 230 2. 235 3. 240 4. 245 5. 250 6. 255 7. 260 8. 265 9. 270 10. 275 11. 280 12. 285 13. 290 Na wspólnym wykresie narysować krzywe absorbancji adeniny (w różnym ph roztworu), tyminy i ATP. Porównać kształt wykreślonych widm, intensywność pochłaniania UV oraz maksima absorbancji między: - zasadą purynową i pirymidynową, - zasadą azotową wolną i w postaci nukleotydu, - adeniną w roztworze kwaśnym i zasadowym. Zalecana literatura: "Biochemia" J.M. Berg, J.L.Tymoczko, L. Stryer, PWN, W-wa 2005; rozdział pt. "DNA, RNA i przepływ informacji genetycznej" "Biochemia Harpera" R.J. Murray, D.K. Granner, V.W. Rodwell, PZWL, W-wa 2008; rozdział dot. nukleotydów oraz struktury i funkcji kwasów nukleinowych "Wybrane zagadnienia z biochemii ogólnej" T. Kędryna, M. Gałka-Walczak, B. Ostrowska, Wydawnictwo UJ, K-ów 2001; rozdział pt. Chemiczne właściwości DNA i RNA 5