Projekt Nr Temat Cel Sprzęt Prace terenowe Prace laboratoryjne Opracowanie wyników Stawonogi glebowe (skoczogonki) zagęszczenie, biomasa, grupy funkcjonalne Określenie składu i zagęszczenia skoczogonków i roztoczy glebowych na podstawie materiału zebranego w terenie, a następnie na podstawie danych literaturowych oszacowanie biomasy i udziału stawonogów glebowych w przepływie energii i węgla w ekosystemie leśnym Taśma miernicza, próbnik do gleby, woreczki foliowe, etykiety, ołówek 1. wyznaczyć transekt o długości 20m; 2. na transekcie co 1m przy pomocy próbnika pobrać próbkę gleby o powierzchni 16,6cm 2 i głębokości 10 cm (na tym samym transekcie powinny być pobrane próby glebowe do badania wazonkowców). 3. każdą pobraną próbkę opisać i zapakować do woreczka foliowego (nie zawiązywać!) 1. Ekstrakcja zwierząt z gleby: Próby włożyć na sita suchych lejków (met. Tullgrena) i pozostawić na okres 10 14 dni (co 2 dni należy sprawdzać, czy jest jeszcze alkohol w pojemnikach) 2. Oszacowanie zagęszczenia: Wyekstrahowane próby przenieść do pracowni mikroskopowej i przeglądnąć pod lupą binokularną, zaklasyfikować znalezione bezkręgowce do grup taksonomicznych (skoczogonki, roztocze saprofagiczne, roztocze drapieżne) i policzyć (w każdej próbce gleby), tj. na powierzchnię 16,6 cm 2. 3. Oszacowania biomasy 3.1. Jeżeli wielkość próby jest wystarczająca, można oszacować średnią masę ciała stawonogów w każdej grupie. W tym celu wybrane stawonogi z każdej próby umieścić w suszarce (50 C, 48 h), po wysuszeniu zważyć na wadze precyzyjnej, znając liczbę osobników w próbie obliczyć średnia masę jednego osobnika. 3.2. Alternatywnie, należy oszacować średnią długość ciała stawonogów z każdej grupy, używając okularu pomiarowego w mikroskopie stereoskopowym (lupie binokularnej). 1. Oszacowanie biomas osobników. Jeżeli pomiar średniej masy ciała nie był możliwy, należy oszacować masę na podstawie wymiarów liniowych, w oparciu o literaturowe dane o allometrycznej zależności między długością a masą ciała (Tab. 1): Tabela 1. Parametry równania W = al b, gdzie W sucha masa ciała [mg], L długość ciała [mm] Grupa a b Źródło Collembola 0,1533 2,300 Ganihar 1997 Arachnida 0,0403 2,468 Ganihar 1997 Enchytraeidae 0,2692 1,1 Greiner et al, 2010 Mokrą (przyżyciową) masę ciała należy obliczyć zakładając 75% zawartość wody w ciele. 2. Oszacowanie zagęszczenia i biomasy populacji Na podstawie oznaczonej liczebności stawonogów w próbach, należy obliczyć zagęszczenie, stan biomasy (suchej), zawartość energii i węgla w poszczególnych grupach na jednostkę powierzchni (m 2 ). 3. Oszacowanie budżetu energii i węgla
Wyjaśnienie - podstawowe pojęcia i teoria Ilość pokarmu skonsumowana przez zwierzę w jednostce czasu (konsumpcja, C) może być tylko częściowo strawiona i przyswojona (asymilacja, A) niestrawione resztki i wydaliny opuszczają organizm jako odchody (kał i mocz, FU): C = A + FU (1) Część zasymilowanego pokarmu może być wbudowana w nowa biomasę rosnącego konsumenta, albo w inne produkty związane z reprodukcją (np. jaja) ta część nosi nazwe produkcji (P), znaczna część skonsumowanej biomasy podlega metabolizmowi (spaleniu), dostarczając energii użytecznej, ciepła i CO 2, przy zużyciu odpowiedniej ilości tlenu (ta część budżetu nosi nazwę respiracji, R). Zatem: C = R + P + FU (2) Metabolizm (respiracja) zawiera koszty energetyczne aktywności, w tym pracy mechanicznej, przemian chemicznych, a także koszty żerowania, trawienia itd., dlatego intensywnośc metabolizmu jest proporcjonalna do całego budżetu energetycznego. Znajomość indywidualnych budżetów energetycznych wraz z informacją o zagęszczeniu populacji umożliwia oszacowanie przepływu energii i węgla przez ekosystem. Tempo metabolizmu zależy przede wszystkim od masy ciała organizmu i od temperatury. Zależnośc metabolizmu od masy ciała przy stałej temperaturze najlepiej opisuje funkcja potęgowa (allometryczna): b M = aw (3) gdzie M tempo metabolizmu, W masa ciała, a,b parametry specyficzne dla danego taksonu. U organizmów zmiennocieplnych tempo metabolizmu silnie (wykładniczo) zależy od kt temperatury ( M = ce, gdzie T temperature, c, k parametry). Tradycyjnie, w ekologii tę zależność przedstawia się jako współczynnik Q 10, który określa ile razy wzrasta tempo procesu przy podniesieniu temperatury o 10 C. Ten współczynnik można doświadczalnie oszacować, mierząc tempo procesu (metabolizmu) w dwóch temperaturach, stosując wzór: 10 ( t2 t1 ) R 1 Q10 = (4) R2 gdzie: t 1, t 2 niższa i wyższa temperature, odpowiednio, R 1, R 2 tempa procesu zmierzone w temperaturach t 1 i t 2, odpowiednio. [Oczywiście, Q 10 = e 10k, albo k = ln(q 10 )/10]. Znając Q 10, (M T ) można oszacowac tempo metabolizmy w dowolnej temperaturze T: T T0 10 T0 10 MT = M Q (5) gdzie M T0 to metabolizm mierzony w danej temperaturze T O. Składając równania 3 i 5 otrzymujemy wzór do obliczenia metabolizmu bezkręgowca na podstawie znanej masy ciała i temperatury otoczenia: T T0 b 10 WT, 10 M = aw Q (6) Tabela 2 zawiera współczynniki tego równania dla wybranych taksonów glebowych i ściółkowych bezkręgowców. Te wartości są dostosowane do tempa metabolizmu wyrażanego jako tempo konsumpcji tlenu (mm 3 O 2 osbnik- 1 h -1 ), masa ciała w gramach [g], przy standardowej temperaturze T 0 = 10 C. Aby móc wyrazić tempo metabolizmu w jednostkach energii, wynik obliczenia ze wzoru (6) należy pomnożyć przez ekwiwalent energetyczny konsumpcji tlenu, który zależnie od metabolizowanego substratu waha się pomiędzy 19,4 i 20,9 J cm 3 O 2 (Elliot i Davison
1975); dla mieszanego pokarmu można przyjąć przybliżoną wartość 20,0 J cm 3 O 2 albo 0,02 J mm 3 O 2 ). Dobowy metabolizm otrzymamy mnożąc uzyskany wynik przez 24. Dla uwzględnienia innych składowych budżetu biomasy i energii (P, C) potrzebna jest znajomość wielu szczegółów historii życiowych, specyficznych dla poszczególnych gatunków (tempo reprodukcji, ilość produkowanej biomasy, strawność konsumowanego pokarmu); zebranie takiej informacji jest trudne (o ile w ogóle możliwe). Zamiast tego można dokonać zgrubnego oszacowania w oparciu o ogólne ustalenia z literatury. Produkcję (P) i respirację (P) zmierzono u wielu populacji bezkręgowców i na tej podstawie wyprowadzono empiryczne równanie allometryczne wiążące te dwie zmienne: P = 0,80 R 0.83. (7) Pozwala ono oszacować w przybliżeniu roczną produkcję (P) populacji w oparciu o znaną respirację (R) w tym samym czasie (Duncan i Klerkowski 1975). Współczynnik asymilacji (A/C) u detrytusojadów (Collembola, Acari-Oribatei) wynosi 22-35%, a u drapieżników (np. Acari-Mesostigmata Gamasina) sięga 50-66% (Duncan and Klekowski, 1975). Dla uproszczenia można przyjąć stałe wartości współczynnika asymilacji 30% dla detrytusojadów i 60% dla drapieżników. Tabela 2. Parametry równań do obliczania indywidualnych metabolizmów (M, mm 3 O 2 osobnik -1 h -1 ) na podstawie mokrej masy ciała osobników (W, g) przy temperaturze 10 o C (na podstawie Hoste-Danyłow et al. 2013). Grupa a b Q 10 Collembola 64,77 0,85 2,6 Mesostigmata Gamasina 102,33 0,869 3,0 Mesostigmata Uropodina 5,035 0,671 3 Enchytraeidae 18,67 0,67 1,6 Uogólnienie wyników 1. Obliczyć biomasę stawonogów glebowych na poziomie ekosystemu (g suchej masy m -2 ; g C m -2 ), oraz na 1 ha. 2. Wg wzoru (6) obliczyć indywidualny metabolizm dla przedstawicieli wszystkich grup, podstawiając odpowiednie średnie masy ciała (mokre) i średnie temperatury miesięczne gleby (Tab. 3), dla 6 miesięcy (kwiecień wrzesień), zakładając dla uproszczenia, że w pozostałych miesiącach fauna glebowa nie jest aktywna metabolicznie. Tabela 3. Oszacowane średnie temperatury gleby na głęb. 5 cm w Puszczy Niepołomickiej, dla 6 miesięcy roku (dane wg. Rocznika Statystycznego Rolnictwa 2014, wg Kleina; sposób szacowania temperatury gleby p. instrukcja dot. pomiaru respiracji gleby). miesiąc IV V VI VII VIII IX 2013 5,6 9,7 13,9 16,0 17,9 2,2 3. Na podstawie indywidualnych budżetów energetycznych obliczyć budżety energii i węgla na poziomie ekosystemu. W celu przeliczenia jednostek metabolizmu z konsumpcji tlenu na przepływ węgla, przyjmij ekwiwalent 1 cm 3 O 2 = 0,4286 mg C. Wyjaśnienie: aby przeliczyć konsumpcją tlenu (w jednostkach objętości) na produkcję CO 2 (w jednostkach objętości) przyjmujemy współczynnik oddechowy RQ = CO 2 /O 2 = 0,8. Zatem objętość CO 2 = obj. O 2 0,8. Mol CO 2 = 12+32=44g 22.4 l; zatem 1 cm 3 CO 2 = 0,5357 mg C, czyli: 1 cm 3 O 2 = 0.4286 mg C.
Uwzględniając liczebność każdej grupy stawonogów, dla każdego miesiąca oblicz sumaryczny metabolizm (w jednostkach energii [kj m -2 miesiąc -1 ] i masy węgla [g C m -2 miesiąc -1 ]), oraz odpowiednie sumy dla całego roku dla każdej grupy. Następnie wg wzoru (6) na podstawie sumarycznej rocznej respiracji oblicz roczną produkcję P, asymilację (A = R+P) i konsumpcję C (przyjmując odpowiedni dla każdej grupy współczynnik asymilacji), z założeniem, że współczynniki wydajności produkcji i asymilacji są jednakowe dla energii i dla węgla. Zawartość węgla C w zwierzętach (% suchej masy) % Nematoda 52,5 Oligochaeta Enchytraeidae 48,4 Lumbricidae 38,5 Mollusca 42,0 Arthropoda Isopoda 29,2 Diplopoda 26,3 Acarina 42,6 Gamasina 52,2 Aranea 53,3 Insecta Coleoptera 44,6 Carabidae 40,6 Staphylinidae 39,8 Cerambycidae 53,4 Lepidoptera 52,9 Hymenoptera 53,2 Diptera 43,3 LARWY 49,1 Literatura Górny, M. 1975. Zooekologia Gleb Leśnych. PWRiL, Warszawa, str. 87-111 Duncan A., Klekowski R.Z., 1975. Parameters of an energy budget. In: W. Grodziński, R.Z. Klekowski. A. Duncan: Methods for Ecological Bioenergetics. Blackwell, Oxford. 97-147. Elliot J.M., Davison W., 1975: Energy equivalents of oxygen consumption in animal energetics. Oecologia 19: 195-201. Hoste-Danyłow A., Ilieva-Makulec K., Olejniczak I., Hajdamowicz I., Stańska M., Marczak D., Wytwer J., Faleńczyk-Koziróg K., Ulrich W., 2013: The shape of the intraspecific metabolic-rate-body-size relationship affects interspecific biomass and abundance distributions of soil animals within a forest ecosystem. Ann. Zool. Fennici 50: 289-302.
Formularz wyników Uwaga: stosuj zapis naukowy (wykładniczy), zwróć uwagę na poprawny zapis liczb (liczba cyfr znaczących) Zmienna Jednostka Wartość Jednostka Wartość Collembola Acarina - Uropodina Acarina Gamasina Razem stawonogi