Właściwości białek oraz rozdział barwników roślinnych.

Podobne dokumenty
Rozdział barwników roślinnych techniką cienkowarstwowej chromatografii adsorpcyjnej

Czynniki wpływające na szybkość reakcji enzymatycznych. Rozdział barwników roślinnych.

etyloamina Aminy mają właściwości zasadowe i w roztworach kwaśnych tworzą jon alkinowy

Materiały pochodzą z Platformy Edukacyjnej Portalu

ĆWICZENIE 1. Aminokwasy

Aminokwasy, peptydy i białka. Związki wielofunkcyjne

Scenariusz lekcji chemii w klasie III gimnazjum. Temat lekcji: Białka skład pierwiastkowy, budowa, właściwości i reakcje charakterystyczne

ĆWICZENIE 3: CHROMATOGRAFIA PLANARNA

ĆWICZENIE 1. Aminokwasy

CHROMATOGRAFIA BARWNIKÓW ROŚLINNYCH

1. Właściwości białek

ĆWICZENIE I - BIAŁKA. Celem ćwiczenia jest zapoznanie się z właściwościami fizykochemicznymi białek i ich reakcjami charakterystycznymi.

Substancje o Znaczeniu Biologicznym

Reakcje charakterystyczne aminokwasów

CHROMATOGRAFIA ADSORPCYJNA I PODZIAŁOWA. 1. Rozdział barwników roślinnych metodą chromatografii adsorpcyjnej (techniką kolumnową)

Przegląd budowy i funkcji białek

Analiza jakościowa wybranych aminokwasów

PRZYKŁADOWE ZADANIA ORGANICZNE ZWIĄZKI ZAWIERAJĄCE AZOT

Repetytorium z wybranych zagadnień z chemii

3b 2. przedstawione na poniższych schematach. Uzupełnij obserwacje i wnioski z nich wynikające oraz równanie zachodzącej reakcji.

Chemiczne składniki komórek

Właściwości aminokwasów i białek

a) proces denaturacji białka następuje w probówce: b) proces zachodzący w probówce nr 1 nazywa się:

ALDEHYDY, KETONY. I. Wprowadzenie teoretyczne

prowadzonego w ramach projektu Uczeń OnLine

2. Produkty żywnościowe zawierające białka Mięso, nabiał (mleko, twarogi, sery), jaja, fasola, bób (rośliny strączkowe)

ĆWICZENIE 5 Barwniki roślinne. Ekstrakcja barwników asymilacyjnych. Rozpuszczalność chlorofilu

Ćwiczenie 6 Aminokwasy

Slajd 1. Slajd 2. Proteiny. Peptydy i białka są polimerami aminokwasów połączonych wiązaniem amidowym (peptydowym) Kwas α-aminokarboksylowy aminokwas

Reakcje charakterystyczne aminokwasów

Informacje. W sprawach organizacyjnych Slajdy z wykładów

Cel ćwiczenia: Zapoznanie się z metodą analizy jakościowej oraz własnościami fizykochemicznymi barwników fotosyntetycznych.

Protokół: Reakcje charakterystyczne cukrowców

WOJEWÓDZKI KONKURS PRZEDMIOTOWY Z CHEMII DLA UCZNIÓW GIMNAZJÓW - rok szkolny 2016/2017 eliminacje rejonowe

Ćwiczenie 4. Identyfikacja wybranych cukrów w oparciu o niektóre reakcje charakterystyczne

WPŁYW SUBSTANCJI TOWARZYSZĄCYCH NA ROZPUSZCZALNOŚĆ OSADÓW

WĘGLOWODORY. Uczeń: Przykłady wymagań nadobowiązkowych Uczeń:

Jolanta Jaroszewska-Manaj 1. i identyfikacji związków organicznych. Jolanta Jaroszewska-Manaj 2

BADANIE WŁAŚCIWOŚCI FIZYKOCHEMICZNYCH AMINOKWASÓW

Instrukcja do ćwiczeń laboratoryjnych

MODEL ODPOWIEDZI I SCHEMAT PUNKTOWANIA

PORÓWNANIE FAZ STACJONARNYCH STOSOWANYCH W HPLC

R = CH 3. COOMe O CH 3 CH 3 CH3 CH 3. β-karoten. Rys. 1. Wzory strukturalne chlorofilu a, chlorofilu b oraz β-karotenu.

Spis treści. Właściwości fizyczne. Wodorki berylowców. Berylowce

a) Ćwiczenie praktycze: Sublimacja kofeiny z kawy (teofiliny z herbaty i teobrominy z kakao)

WPŁYW SUBSTANCJI TOWARZYSZĄCYCH NA ROZPUSZCZALNOŚĆ OSADÓW

Właściwości białek. 1. Cele lekcji. 2. Metoda i forma pracy. a) Wiadomości. b) Umiejętności. c) Postawy

Zapisz za pomocą symboli i wzorów następujące ilości substancji :

WŁAŚCIWOŚCI KOLIGATYWNE ROZTWORÓW

Zagadnienia z chemii na egzamin wstępny kierunek Technik Farmaceutyczny Szkoła Policealna im. J. Romanowskiej

MECHANIZMY REAKCJI CHEMICZNYCH. REAKCJE CHARAKTERYSTYCZNE GRUP FUNKCYJNYCH ZWIĄZKÓW ORGANICZNYCH

-- w części przypomnienie - Gdańsk 2010

RÓWNOWAGI W ROZTWORACH ELEKTROLITÓW.

Instrukcja do ćwiczeń laboratoryjnych

UKŁAD OKRESOWY PIERWIASTKÓW, WŁAŚCIWOŚCI CHEMICZNE PIERWIASTKÓW 3 OKRESU

HYDROLIZA SOLI. 1. Hydroliza soli mocnej zasady i słabego kwasu. Przykładem jest octan sodu, dla którego reakcja hydrolizy przebiega następująco:

ĆWICZENIE NR 4 OTRZYMYWANIE PREPARATÓW RADIOCHEMICZNIE CZYSTYCH.

FESTIWAL NAUKI PYTANIA Z CHEMII ORGANICZNEJ

Konkurs przedmiotowy z chemii dla uczniów gimnazjów 6 marca 2015 r. zawody III stopnia (wojewódzkie)

Wymagania edukacyjne z chemii dla klasy 3b. Gimnazjum Publicznego im. Jana Pawła II w Żarnowcu. na rok szkolny 2015/2016

Zajęcia 10 Kwasy i wodorotlenki

I. Węgiel i jego związki z wodorem

protos (gr.) pierwszy protein/proteins (ang.)

Litowce i berylowce- lekcja powtórzeniowa, doświadczalna.

ARKUSZ 1 POWTÓRZENIE DO EGZAMINU Z CHEMII

Instrukcja do ćwiczeń laboratoryjnych

REAKCJE W CHEMII ORGANICZNEJ

Glicyna budowa cząsteczki i właściwości

Konkurs chemiczny - gimnazjum. 2017/2018. Etap rejonowy MODEL ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZADAŃ KONKURSU CHEMICZNEGO ETAP II (REJONOWY)

Ćwiczenie 3. Otrzymywanie i badanie właściwości chemicznych alkanów, alkenów, alkinów i arenów.

Ćwiczenie 4. Reakcja aminokwasów z ninhydryną. Opisz typy reakcji przebiegających w tym procesie i zaznacz ich miejsca przebiegu.

Lipidy (tłuszczowce)

Ćwiczenie laboratoryjne nr 5 dla e-rolnictwa (3 - skrypt).

data ĆWICZENIE 6 IZOLACJA BIAŁEK I ANALIZA WPŁYWU WYBRANYCH CZYNNIKÓW NA BIAŁKA Doświadczenie 1

Kuratorium Oświaty w Lublinie

AMINOKWASY. I. Wprowadzenie teoretyczne. Aminokwasy są to związki, które w łańcuchu węglowym zawierają zarówno grupę aminową jak i grupę karboksylową.

KWASY I WODOROTLENKI. 1. Poprawne nazwy kwasów H 2 S, H 2 SO 4, HNO 3, to:

Kuratorium Oświaty w Lublinie

Plan wynikowy z chemii do klasy III gimnazjum w roku szkolnym 2017/2018. Liczba godzin tygodniowo: 1.

1.1 Reakcja trójchlorkiem antymonu

Pochodne węglowodorów, w cząsteczkach których jeden atom H jest zastąpiony grupą hydroksylową (- OH ).

Test kompetencji z chemii do liceum. Grupa A.

SPIS TREŚCI OD AUTORÓW... 5

ĆWICZENIE 3. Cukry mono i disacharydy

TYPY REAKCJI CHEMICZNYCH

Instrukcja do ćwiczeń laboratoryjnych

Instrukcja do ćwiczeń laboratoryjnych

Przedmiotowy system oceniania dla uczniów z obowiązkiem dostosowania wymagań z chemii kl. III

WYZNACZANIE ROZMIARÓW

Deproteinizacja jako niezbędny etap przygotowania próbek biologicznych

SZKOŁA PODSTAWOWA IM. JANA PAWŁA II W DOBRONIU. Wymagania edukacyjne na poszczególne oceny CHEMIA KLASA 3 GIMNAZJUM

Ćwiczenie 5. Badanie właściwości chemicznych aldehydów, ketonów i kwasów karboksylowych. Synteza kwasu sulfanilowego.

Regulamin Przedmiotowy. XII Wojewódzkiego Konkursu Chemicznego. dla uczniów szkół gimnazjalnych województwa świętokrzyskiego

CHEMIA. Treści nauczania- wymagania szczegółowe. Substancje i ich właściwości. Uczeń: Wewnętrzna budowa materii. Uczeń:

Ocenę niedostateczną otrzymuje uczeń, który: Ocenę dopuszczającą otrzymuje uczeń, który: Ocenę dostateczną otrzymuje uczeń, który:

Identyfikacja wybranych kationów i anionów

Przedmiotowy system oceniania z chemii kl. III

WYMAGANIA EDUKACYJNE z chemii dla klasy trzeciej

Kod ucznia... Czas trwania: 100 minut. Arkusz zawiera 17 zadań. Liczba punktów możliwych do uzyskania: 55 pkt.

Transkrypt:

Regulamin porządkowy pracy w laboratorium w Katedrze Biochemii. 1. Do udziału w zajęciach laboratoryjnych dopuszczeni są studenci/uczniowie po przeszkoleniu w zakresie BHP w związku z wykonywaniem czynności na salach ćwiczeń w Katedrze Biochemii. Udział w szkoleniu musi być zakończony pisemnym potwierdzeniem studenta/ucznia. 2. W sali ćwiczeń obowiązuje kategoryczny zakaz spożywania pokarmów i napojów. 3. Do sali ćwiczeniowej grupę studentów/uczniów wprowadza prowadzący ćwiczenia. 4. W pracowniach obowiązkowe jest noszenie odzieży ochronnej, odzież wierzchnią należy pozostawić w szatni. 5. Wszelkiego rodzaju torby, plecaki itp. nie powinny utrudniać poruszania się po laboratorium nie należy ich również przechowywać w trakcie zajęć na stołach laboratoryjnych. 6. Na każde ćwiczenie studenci/uczniowie otrzymują wyposażenie obejmujące zestawy odczynników niezbędnych do przeprowadzenia doświadczeń, szkło laboratoryjne, pipety automatyczne, spektrofotometry i inne przyrządy laboratoryjne. Po zakończeniu pracy student/uczeń jest zobowiązany do uporządkowania swojego stanowiska pracy oraz umycia szkła laboratoryjnego. 7. Odczynniki chemiczne, które znajdują się pod wyciągiem, nie mogą być przenoszone na stoły laboratoryjne, należy korzystać z nich w miejscu przechowywania. 8. Wszystkie urządzenia elektryczne, mechaniczne itp. należy używać zgodnie z zaleceniami osoby prowadzącej ćwiczenia. 9. Zabrania się uruchamiania urządzeń bez zgody prowadzącego ćwiczenia. 10. Zapalanie palników gazowych może odbywać się z należytą ostrożnością po uzyskaniu zgody prowadzącego ćwiczenia. 1

a. Badanie właściwości białek Wprowadzenie Białka są to wielkocząsteczkowe polimery występujące w komórkach organizmów żywych. Zbudowane są z reszt aminokwasowych połączonych za pomocą wiązań peptydowych. Specyficzna struktura, właściwości oraz funkcje biologiczne białek zależą od kolejności występowania (sekwencji) oraz rodzaju reszt aminokwasowych. Aminokwasy to aminowe pochodne kwasów karboksylowych. Wszystkie aminokwasy przy węglu alfa (α) ( to węgiel, który jest bezpośrednio połączony z grupą COOH) mają jednakowy układ podstawników. Są to grupa aminowa (-NH 2 ), grupa karboksylowa (-COOH), atom wodoru (H) i łańcuch boczny oznaczany symbolem R. Od struktury chemicznej łańcucha bocznego zależy rola aminokwasu w białku. Łańcuchy boczne o charakterze polarnym lub ulegające jonizacji uczestniczą w stabilizowaniu struktur przestrzennych białek. Aminokwasy połączone wiązaniami kowalencyjnymi (peptydowymi) tworzą strukturę pierwszorzędową (pierwotną) białka. Białko o określonej strukturze pierwszorzędowej ulega następnie procesowi zwijania (fałdowania) w trzy typy struktur przestrzennych (wtórnych). Są to struktury drugorzędowe: helisa α i struktura β oraz struktura trzeciorzędowa, a w przypadku białek o budowie podjednostkowej struktura czwartorzędowa. W stabilizacji struktur przestrzennych białek biorą udział wiązania niekowalencyjne (siły elektrostatyczne, oddziaływania hydrofobowe, wiązania wodorowe) powstające pomiędzy wiązaniami peptydowymi lub łańcuchami bocznymi aminokwasów oraz wiązania dwusiarczkowe. Tylko cząsteczki, które uległy zwinięciu do swoistej dla siebie struktury przestrzennej, mogą pełnić właściwą danemu białku rolę biologiczną. Ze względu na skład chemiczny, białka dzielimy na proste i złożone. Białka proste zbudowane są wyłącznie z aminokwasów, natomiast białka złożone oprócz aminokwasów zawierają dodatkowe cząsteczki lub grupy chemiczne. Kazeina jest głównym składnikiem białkowym mleka. Należy do białek złożonych, tak zwanych fosfoprotein, ponieważ zawiera reszty fosforanowe połączone za pomocą wiązań estrowych z grupami OH aminokwasów seryny i treoniny oraz kompleksowo przez jony wapnia związane aminokwasów grupami karboksylowymi aminokwasów kwaśnych. W mleku, kazeina występuje głównie w postaci sferycznych skupisk, zwanych micelami. Micele utworzone są z podjednostek, submiceli, złożonych cząsteczek kazeiny typu alfa (α), beta (β) oraz kappa (κ). Alfa i beta kazeiny to wysoko ufosforylowane białka, które łatwo strącają się w obecności jonów wapnia i które stanowią rdzeń submiceli. Kappa-kazeina posiada tylko jedną ufosforylowaną resztę seryny, co sprawia, że jest rozpuszczalna w obecności jonów wapnia. Zlokalizowana na powierzchni kappa-kazeina stabilizuje micele, a reszty cukrowców przyłączone do karboksylowego końca łańcucha polipeptydowego, wystającego ponad powierzchnię miceli, zapewniają micelom odpowiednie uwodnienie i zapobiegają agregacji. Kazeina wykazuje podobne do innych białek właściwości chemiczne, dlatego może być wykorzystana w reakcjach wykrywania wiązań peptydowych i aminokwasów zawierających w łańcuchu bocznym pierścienie aromatyczne. Kazeina, tak jak inne białka jest wrażliwa na działanie różnych czynników fizycznych i chemicznych, które mogą powodować wytrącanie jej cząsteczek z roztworu. W warunkach ćwiczenia, wytrącenie kazeiny w postaci osadu następuje pod wpływem kwasu octowego oraz na skutek działania podpuszczki, czyli enzymu rozkładającego wiązania peptydowe. Działanie podpuszczki na białka mleka. Koagulacja kazeiny przez podpuszczkę następuje w dwóch fazach. Pierwsza faza ma charakter enzymatyczny. W wyniku hydrolizy przez chymozynę (znajdującą się w podpuszczce) wiązania peptydowego pomiędzy Phe105 oraz Met106 łańcucha polipeptydowego kappa-kazeiny, ma miejsce odszczepienie z cząsteczek kappa-kazeiny C-końcowego fragmentu łańcucha polipeptydowego, tzw. glikomakropeptydu i powstanie para-kappa-kazeiny. Glikomakropeptyd zawiera 64 reszty 2

aminokwasowe, jest łatwo rozpuszczalny w wodzie i przechodzi do roztworu. Druga faza. Usunięcie hydrofilowego C-końca kappa-kazeiny przez podpuszczkę sprawia, że w obecności jonów wapnia micele agregują i tworzy się skrzep para-kazeiny (dokładniej parakazeinianu wapnia). Skrzep powstaje wskutek hydrofobowych oddziaływań pomiędzy micelami, spotęgownych odłączeniem glikomakropeptydu i utratą otoczki hydratacyjnej. Powyższy mechanizm koagulacji jest szeroko wykorzystywany w technologii otrzymywania serów podpuszczkowych. Rys. 1. Hydroliza wiązania peptydowego kappa-kazeiny przez chymozynę (podpuszczkę). Odczynniki 1. Roztwór podpuszczki. 2. Odtłuszczone mleko. 3. Roztwór kazeiny. 4. Roztwór glicyny. 5. 6M NaOH. 6. 0,5% CuSO 4. 7. Stężony HNO 3. 8. Stężony CH 3 COOH. Wykonanie 1. Wytrącanie kazeiny za pomocą kwasu octowego i podpuszczki. Białka są związkami wrażliwymi na wpływ wielu czynników, które mogą spowodować nieodwracalne zmiany w ich strukturze i utratę właściwości biologicznych. W wyniku denaturacji zniszczona zostaje drugo-, trzecio- i czwartorzędowa struktura białka, natomiast pierwszorzędowa struktura nie ulega zmianie. Zachowane pozostają mocne wiązania peptydowe, a zniszczeniu ulegają słabe wiązania wodorowe, oddziaływania elektrostatyczne, hydrofobowe oraz mostki disulfidowe. Denaturacja białka może nastąpić pod wpływem podwyższonej temperatury, stężonych kwasów i zasad, wysokich stężeń soli metali ciężkich, rozpuszczalników organicznych (alkohol lub aceton). W wyniku denaturacji obniża się najczęściej rozpuszczalność białka i wytrąca się ono z roztworu w postaci osadu. 3

Uzyskany w probówce pierwszej osad kazeiny powstaje wskutek denaturacji zachodzącej pod wpływem stężonego kwasu octowego. Osad w probówce drugiej jest wynikiem koagulacji kazeiny na skutek działania podpuszczki. Brak osadu w probówkach trzy i cztery jest spowodowany zbyt niską aktywnością podpuszczki w temperaturze 0 C i w temperaturze pokojowej. Wykonanie. Do czterech probówek odmierzyć po 5 ml mleka. Dwie pierwsze umieścić w łaźni wodnej o temp. 37 C, trzecią umieścić w naczyniu z lodem, natomiast czwartą pozostawić w statywie w temperaturze pokojowej. Po 5 minutach do pierwszej dodać 0,5 ml stężonego kwasu octowego (CH 3 COOH), a do pozostałych probówek dodać po 0,5 ml podpuszczki. Następnie w ciągu 10 min. od dodania odczynników obserwować pojawienie się osadu kazeiny. 2. Wykrywanie wiązań peptydowych. Aminokwasy mają zdolność do łączenia się kowalencyjnie wiązaniami amidowymi zwanymi wiązaniami peptydowymi (Rys. 2) tworząc liniowe i nierozgałęzione polimery. Wiązanie peptydowe powstaje pomiędzy grupą α-karboksylową jednego aminokwasu (grupa aminowa pozostaje wolna, N-końcowa), a grupą α-aminową drugiego aminokwasu (grupa karboksylowa pozostaje wolna, grupa C-końcowa). Zapis Ala-Gly oznacza, ze aminokwasem N-końcowym jest alanina, a C-końcowym, glicyna. Czyli zapis Gly-Ala oznacza zupełnie inny dipeptyd. aminokwas (1) aminokwas (2) wiązanie peptydowe dipeptyd woda Rys. 2. Powstawanie wiązania peptydowego. http://pl.wikipedia.org Obecność wiązań peptydowych w białkach lub peptydach, zawierających, co najmniej dwa takie wiązania, można wykryć za pomocą reakcji biuretowej Piotrkowskiego. Reakcja polega na tworzeniu przez jony miedziowe w środowisku zasadowym fioletowego kompleksu z tymi wiązaniami. Wykonanie. Do jednej probówki odmierzyć 1 ml kazeiny, do drugiej 1 ml glicyny, do trzeciej 1 ml mleka Następnie do wszystkich probówek dodać po 2 ml wodorotlenku sodowego wymieszać, dodać 0,5 ml siarczanu miedziowego i ponownie wymieszać. 3. Wykrywanie aminokwasów zawierających pierścień aromatyczny. Obecność aminokwasów (wolnych i wchodzących w skład peptydów i białek) zawierających grupę aromatyczną można wykryć za pomocą reakcji ksantoproteinowej (Rys. 3). Polega ona na powstaniu pod wpływem kwasu azotowego nitrowych pochodnych pierścieni aromatycznych, mających w środowisku zasadowym zabarwienie pomarańczowe. 4

O + - N O COOH COOH COOH HNO 3 NaOH CH CH OH CH CH OH CH CH 2 2 2 H N H N H N 2 2 2 O + N - O ONa tyrozyna Rys. 3. Przebieg reakcji ksantoproteinowej. żółty pomarańczowy Wykonanie. Do jednej probówki odmierzyć 1 ml kazeiny, do drugiej 1 ml glicyny, do trzeciej 1 ml mleka Następnie do wszystkich probówek dodać po 1 ml stężonego kwasu azotowego (HNO 3 ) i ogrzewać we wrzącej łaźni wodnej przez 5 min. Ostudzić i dodać stopniowo 3,5 ml wodorotlenku sodowego (NaOH) ostrożnie! Opracowanie wyników Porównać warunki otrzymania osadów kazeiny za pomocą różnych czynników. Podać wyniki uzyskane dla reakcji charakterystycznych (zabarwienie, osad) wraz z uzasadnieniem. 5

b. Rozdział barwników roślinnych metodą cienkowarstwowej chromatografii adsorpcyjnej. Wiadomości wstępne Chromatografia to fizykochemiczna metoda rozdzielania mieszanin, których składniki ulegają zróżnicowanemu podziałowi pomiędzy dwie fazy, fazę ruchomą i stacjonarną. Jeżeli fazą ruchomą jest gaz, to chromatografia nosi nazwę gazowej, gdy ciecz, wówczas nazywana jest cieczową. Fazą stacjonarną może być ciało stałe bądź ciecz, osadzona na stałym nośniku. Faza ruchoma przepływając przez fazę stacjonarną powoduje migrację poszczególnych składników mieszaniny. Składniki te przemieszczają się z różną szybkością wynikającą z ich odmiennego powinowactwa do adsorbenta, swoistego powinowactwa do ligandu, z różnic w ich masie cząsteczkowej, z różnic w wypadkowym ładunku, bądź z różnej rozpuszczalności w określonych warunkach rozdziału. Stąd, ze względu na naturę oddziaływań fizykochemicznych będących podstawą rozdziału wyróżniamy pięć podstawowych metod chromatograficznych: chromatografię adsorpcyjną, powinowactwa, sita molekularnego, jonowymienną i podziałową. Ze względu na technikę prowadzenia rozdziału wyróżniamy natomiast chromatografię kolumnową, w której faza stacjonarna umieszczana jest w kolumnie, lub chromatografię planarną, w której faza stacjonarna umieszczana jest na płaszczyźnie (chromatografia bibułowa i cienkowarstwowa). Cel ćwiczenia Celem ćwiczenia jest teoretyczne i praktyczne zapoznanie studentów/uczniów z metodą cienkowarstwowej chromatografii adsorpcyjnej i jej zastosowaniem do rozdzielania barwników roślinnych. Wprowadzenie W chromatografii cienkowarstwowej rozdział mieszaniny substancji wykonuje się na cienkich warstwach nośnika osadzonych na płytkach szklanych, plastikowych lub aluminiowych. W zależności od zastosowanego nośnika, rozdział może mieć charakter chromatografii adsorpcyjnej (np.: na żelu krzemionkowym, tlenku glinu), podziałowej (np.: na celulozie, skrobi) lub jonowymiennej (np.: na karboksymetylo-celulozie). Chromatografia adsorpcyjna opiera się na zjawisku adsorpcji, czyli nagromadzeniu cząsteczek rozdzielanych substancji na powierzchni adsorbenta za pomocą słabych oddziaływań fizykochemicznych. W czasie przesuwania się fazy ruchomej po powierzchni adsorbenta (faza stacjonarna), substancje słabo adsorbujące się (o mniejszym powinowactwie do adsorbenta) przesuną się na większą odległość niż substancje silnie adsorbowane (o większym powinowactwie do adsorbenta). Powinowactwo adsorpcyjne zatrzymywanej na adsorbencie substancji (adsorbatu) uzależnione jest od natury chemicznej i właściwości adsorbentu, adsorbatu oraz fazy ruchomej. Fazę ruchomą stanowi najczęściej rozpuszczalnik lub mieszanina rozpuszczalników o różnych stopniach polarności, od węglowodorów po alkohole i kwasy organiczne. Adsorbentem jest nierozpuszczalna w stosowanym układzie rozpuszczalników, wysokoporowata substancja. Adsorbenty można podzielić na dwie zasadnicze grupy, tj. polarne, np. żel krzemionkowy, tlenek glinowy, i niepolarne, np. węgiel aktywny, talk. Najczęściej stosowanym adsorbentem jest żel krzemionkowy - kwas krzemowy, którego aktywność uwarunkowana jest obecnością na jego powierzchni grup hydroksylowych. Grupy te mogą tworzyć wiązania wodorowe z polarnymi grupami rozdzielanych substancji. Termiczna aktywacja żelu (110 C) przed rozdziałem ma na celu usunięcie z jego powierzchni wody blokującej grupy hydroksylowe. Na polarnym adsorbencie zachodzi silna adsorpcja substancji o charakterze polarnym, a bardzo słaba substancji niepolarnych, stąd droga migracji substancji bardziej polarnej jest mniejsza w stosunku do 6

drogi którą pokonuje substancja mniej polarna, słabiej adsorbowana. Stopień adsorpcji rośnie wraz ze wzrostem liczby polarnych grup funkcyjnych oraz ilością podwójnych wiązań występujących w cząsteczce adsorbatu. Na powinowactwo adsorpcyjne ma również wpływ polarność fazy ruchomej. Rozpuszczalniki stosowane w chromatografii adsorpcyjnej wykazują różną zdolność do wymywania (elucji) zaadsorbowanych substancji. Im większa siła elucyjna rozpuszczalnika, tym silniej wypiera on z powierzchni adsorbenta zaadsorbowane substancje. Tak więc, przepływ rozpuszczalnika po powierzchni żelu krzemionkowego powoduje przemieszczanie się rozdzielanych substancji, tym szybsze, im substancja mniej polarna i większa siła elucyjna rozpuszczalnika. Prędkość wędrówki poszczególnych składników mieszaniny, czyli odległość, na jaką przesunęły się one od miejsca startu w określonym czasie, wyraża się podobnie jak w chromatografii podziałowej, tzw. współczynnikiem przesunięcia (Rf): Rf = przesunięcie badanej substancji przesunięcie czoła rozpuszczalnika Barwniki roślinne to związki nierozpuszczalne w wodzie, natomiast dobrze rozpuszczalne w rozpuszczalnikach organicznych. Należą do nich chlorofile oraz karotenoidy (Rys. 4). W zielonych liściach najwięcej jest chlorofili i to one maskują barwę karotenoidów. Ze względu na charakter budowy (brak lub obecność polarnych grup funkcyjnych) i długość łańcuchów węglowych w cząsteczce, barwniki roślinne różnią się znacznie polarnością. Chlorofile są to związki porfirynowe zbudowane z 4 pierścieni pirolowych połączonych mostkami metinowymi. Atomy azotu pierścieni pirolowych są związane z centralnie położonym atomem magnezu. Charakterystyczną cechą chlorofili jest także obecność fitolu, hydrofobowego 20-węglowego alkoholu, związanego estrowo z grupą propionową jednego z pierścieni (III). Chlorofil b różni się tym od chlorofilu a, że grupa metylowa przy atomie C jednego z pierścieni (II) jest zastąpiona grupą aldehydową. Karotenoidy to barwniki roślinne z grupy tetraterpenów. Należą do nich pomarańczowe karoteny oraz żółte ksantofile. W liściach głównym składnikiem karotenoidowym jest β-karoten, którego cząsteczka na obu końcach zawiera pierścienie β-jononu. Oba pierścienie połączone są długim łańcuchem węglowodorowym, w którym występują na przemian wiązania pojedyncze i podwójne. Ksantofile są to utlenione pochodne karotenów, zawierające w pierścieniach jononu grupy hydroksylowe, karbonylowe lub karboksylowe. Najpowszechniej występującym ksantofilem jest luteina. W warunkach ćwiczenia, barwniki zostaną wyekstrahowane z roślin za pomocą acetonu, następnie zostaną naniesione w postaci mieszaniny na płytkę chromatograficzną pokrytą warstwą żelu krzemionkowego i rozdzielone w kamerze zawierającej układ rozpuszczalników - eter naftowy: aceton. Do rozdziału barwników zostanie wykorzystana technika wstępująca rozwijania chromatogramu, w której rozpuszczalnik podsiąka od dołu żelu do góry dzięki działaniu sił kapilarnych. Podczas rozwijania chromatogramu, poszczególne związki barwne będą się przemieszczać się z różną prędkością i ułożą się w następującej kolejności od góry płytki: karoteny o barwie pomarańczowej (ciemnożółtej), feofityna (chlorofil, w którym Mg zastąpiony jest przez 2 atomy H) o barwie oliwkowobrunatnej, chlorofil a o barwie niebieskozielonej, chlorofil b o barwie żółtozielonej oraz najbardziej polarne z rozdzielanych barwników ksantofile - luteina, wiolaksantyna i neoksantyna o barwie żółtej. 7

Rys. 4. Wzory strukturalne podstawowych barwników roślinnych: chlorofili (A) oraz karotenoidów (B). Odczynniki 1. Żel krzemionkowy typu 60 G (60 - rozmiar porów 6 nm, G - 11 % domieszka gipsu) 2. Aceton 3. Układ rozwijający - eter naftowy: aceton (7: 3) Wykonanie 1. Przygotowanie wyciągu z liści. Odważyć 1g liści pietruszki, rozetrzeć w moździerzu, dodać 3 ml acetonu (3) i znowu rozcierać szybko tak, aby nie wyparował aceton. Zawartość moździerza przesączyć przez mały zwitek waty, umieszczony w lejku, do suchej 8

kalibrowanej probówki. Ewentualnie przepłukać sączek niewielką objętością acetonu, aby końcowa objętość ekstraktu wynosiła 3 ml. Probówkę szczelnie zamknąć parafilmem. 2. Nanoszenie ekstraktu barwników na płytki z adsorbentem. Ekstrakt barwników (60µl) nanosić na wcześniej przygotowaną płytkę chromatograficzną o wymiarach 2,3 7,5 cm z żelem krzemionkowym bardzo małymi kroplami w postaci pasma przyjmując, że linia startu jest oddalona 1 cm od krawędzi dolnej płytki i 0,5 cm od krawędzi bocznych. Preparat nanosić mikropipetą w trzech porcjach (3 x 20µl), za każdym razem kolejną porcję ekstraktu nanieść dopiero po wyschnięciu poprzedniej. Uważać, aby podczas nakraplania ekstraktu nie naruszyć warstwy żelu końcówką mikropipety!!! 3. Rozwijanie chromatogramu). Po wyschnięciu naniesionego ekstraktu, płytkę wstawić pionowo do kamery zawierającej 4,5 ml mieszaniny rozpuszczalników (4) i przykryć pokrywą. Linia naniesionych barwników musi znajdować się powyżej poziomu mieszaniny rozpuszczalników, w przeciwnym razie barwniki będą przechodziły do roztworu. Zwrócić uwagę, aby płytka w kamerze była ustawiona w pozycji możliwie dokładnie pionowej, i nie opierała się o ściany komory jedną z krawędzi bocznych, gdyż powoduje to nierównomierne wznoszenie się układu rozwijającego. Rozwijanie chromatogramu trwa ok. 20-30 minut. Płytkę wyjąć z kamery w momencie, kiedy czoło rozpuszczalnika dojdzie na odległość 0,5 cm od górnego końca płytki, i suszyć w temperaturze pokojowej przez kilka minut pod włączonym wyciągiem. Opracowanie wyników Przedyskutować schemat ułożenia pasm barwników na rozwiniętym chromatogramie oraz podać ich zabarwienie. Literatura 1. Bielawski W., Zagdańska B. (2011) Przewodnik do ćwiczeń z biochemii. Wydawnictwo SGGW. 2. Kacprzak F., Klimek B., Kwapińska H. (1969) Chromatografia barwników. WN-T. 3. Narval S.S., Bogatek R., Zagdańska B.M., Sampietro D.A., Vattuone M.A., (2009) Plant Biochemistry, 4. Sherma J., Lippstone G. S. (1964). Chromatography of chloroplast pigments on preformed thin layers. J. Chrom. A 41, 220-227 5. Strain H. H., Sherma J. (1969). Modifications of solution chromatography illustrated with chloroplast pigments. J. Chem. Educ. 46, 476-483. 6. Stryer L., (2009) Biochemia, PWN 7. Witkiewicz Z. (2000). Podstawy chromatografii. WN-T. 9