WSTĘP DO ELEKTRONIKI

Podobne dokumenty
WSTĘP DO ELEKTRONIKI

W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0,

Przyrządy elektroniki oscyloskop

BADANIE FILTRÓW. Instytut Fizyki Akademia Pomorska w Słupsku

Filtry aktywne filtr środkowoprzepustowy

Ćwiczenie F1. Filtry Pasywne

A-2. Filtry bierne. wersja

CZWÓRNIKI KLASYFIKACJA CZWÓRNIKÓW.

Sposoby modelowania układów dynamicznych. Pytania

Stosując tzw. równania telegraficzne możemy wyznaczyć napięcie i prąd w układzie: x x. x x

Filtry aktywne filtr górnoprzepustowy

Charakterystyka amplitudowa i fazowa filtru aktywnego

AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ

Projekt z Układów Elektronicznych 1

Celem dwiczenia jest poznanie budowy i właściwości czwórników liniowych, a mianowicie : układu różniczkującego i całkującego.

ĆWICZENIE 5 EMC FILTRY AKTYWNE RC. 1. Wprowadzenie. f bez zakłóceń. Zasilanie FILTR Odbiornik. f zakłóceń

Wzmacniacz jako generator. Warunki generacji

Wzmacniacze operacyjne

Ćwiczenie A1 : Linia długa

Ćwiczenie F3. Filtry aktywne

Ćwiczenie 3 Badanie własności podstawowych liniowych członów automatyki opartych na biernych elementach elektrycznych

5 Filtry drugiego rzędu

Ćwiczenie - 1 OBSŁUGA GENERATORA I OSCYLOSKOPU. WYZNACZANIE CHARAKTERYSTYKI AMPLITUDOWEJ I FAZOWEJ NA PRZYKŁADZIE FILTRU RC.

A3 : Wzmacniacze operacyjne w układach liniowych

Temat: Wzmacniacze operacyjne wprowadzenie

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM

WYKŁAD 2 Pojęcia podstawowe obwodów prądu zmiennego

Laboratorum 2 Badanie filtru dolnoprzepustowego P O P R A W A

Ćwiczenie: "Obwody prądu sinusoidalnego jednofazowego"

Ćwiczenie F1 ( 90 minut ) Filtry pasywne

Wzmacniacz operacyjny

A6: Wzmacniacze operacyjne w układach nieliniowych (diody)

L ABORATORIUM UKŁADÓW ANALOGOWYCH

Realizacja regulatorów analogowych za pomocą wzmacniaczy operacyjnych. Instytut Automatyki PŁ

Badanie układów aktywnych część II

Filtry. Przemysław Barański. 7 października 2012

u(t)=u R (t)+u L (t)+u C (t)

Pojęcia podstawowe obwodów prądu zmiennego

Filtracja. Krzysztof Patan

A-1. Linia długa (opóźniająca)

WSTĘP DO ELEKTRONIKI

Ćwiczenie A2 : Filtry bierne

Spis treści Przełączanie złożonych układów liniowych z pojedynczym elementem reaktancyjnym 28

Tranzystorowe wzmacniacze OE OB OC. na tranzystorach bipolarnych

PODSTAWY AUTOMATYKI. Analiza w dziedzinie czasu i częstotliwości dla elementarnych obiektów automatyki.

Generatory. Podział generatorów

Teoria sterowania - studia niestacjonarne AiR 2 stopień

Bierne układy różniczkujące i całkujące typu RC

INDEKS ALFABETYCZNY CEI:2002

Teoria obwodów / Stanisław Osowski, Krzysztof Siwek, Michał Śmiałek. wyd. 2. Warszawa, Spis treści

Zjawiska w niej występujące, jeśli jest ona linią długą: Definicje współczynników odbicia na początku i końcu linii długiej.

WZMACNIACZ OPERACYJNY

- Strumień mocy, który wpływa do obszaru ograniczonego powierzchnią A ( z minusem wpływa z plusem wypływa)

Rys. 1. Wzmacniacz odwracający

Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7

ĆWICZENIE 2 Wzmacniacz operacyjny z ujemnym sprzężeniem zwrotnym.

Liniowe układy scalone

ĆWICZENIE 6 Transmitancje operatorowe, charakterystyki częstotliwościowe układów aktywnych pierwszego, drugiego i wyższych rzędów

Systemy. Krzysztof Patan

PROTOKÓŁ POMIAROWY - SPRAWOZDANIE

Filtry przypomnienie. Układ różniczujący Wymuszenie sinusoidalne. Układ całkujący Wymuszenie sinusoidalne. w.6, p.1

ELEMENTY ELEKTRONICZNE

Wzmacniacze operacyjne.

Laboratorium Przyrządów Półprzewodnikowych Laboratorium 1

CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE

A-6. Wzmacniacze operacyjne w układach nieliniowych (diody)

WYZNACZANIE CHARAKTERYSTYK FILTRÓW BIERNYCH. (komputerowe metody symulacji)

1 Układy wzmacniaczy operacyjnych

Własności i charakterystyki czwórników

Podstawowe zastosowania wzmacniaczy operacyjnych. Układ całkujący i różniczkujący

L ABORATORIUM UKŁADÓW ANALOGOWYCH

Systemy liniowe i stacjonarne

Teoria obwodów elektrycznych / Stanisław Bolkowski. wyd dodruk (PWN). Warszawa, Spis treści

BADANIE DOLNOPRZEPUSTOWEGO FILTRU RC

POLITECHNIKA POZNAŃSKA

Wykład 2 Projektowanie cyfrowych układów elektronicznych

Ćwiczenie nr 11. Projektowanie sekcji bikwadratowej filtrów aktywnych

Generatory sinusoidalne LC

WZMACNIACZE OPERACYJNE

1 Dana jest funkcja logiczna f(x 3, x 2, x 1, x 0 )= (1, 3, 5, 7, 12, 13, 15 (4, 6, 9))*.

Zapoznanie z przyrządami stanowiska laboratoryjnego. 1. Zapoznanie się z oscyloskopem HAMEG-303.

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH

Badanie przebiegów falowych w liniach długich

Zastosowania liniowe wzmacniaczy operacyjnych

Dynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8

Podstawowe zastosowania wzmacniaczy operacyjnych wzmacniacz odwracający i nieodwracający

Politechnika Białostocka

Elektronika. Wzmacniacz operacyjny

A U. -U Z Napięcie zasilania ujemne względem masy (zwykle -15V) Symbol wzmacniacza operacyjnego.

Procedura modelowania matematycznego

Ryszard Kostecki. Badanie własności filtru rezonansowego, dolnoprzepustowego i górnoprzepustowego

PRACOWNIA ELEKTRONIKI

Badanie przebiegów falowych w liniach długich

LABORATORIUM ELEKTRONIKI FILTRY AKTYWNE

Ćw. 7 Wyznaczanie parametrów rzeczywistych wzmacniaczy operacyjnych (płytka wzm. I)

ELEKTRONIKA W EKSPERYMENCIE FIZYCZNYM

Ćw. 6 Generatory. ( ) n. 1. Cel ćwiczenia. 2. Wymagane informacje. 3. Wprowadzenie teoretyczne PODSTAWY ELEKTRONIKI MSIB

rezonansu rezonansem napięć rezonansem szeregowym rezonansem prądów rezonansem równoległym

b) Zastosować powyższe układy RC do wykonania operacji analogowych: różniczkowania, całkowania

Elektronika (konspekt)

Transkrypt:

WSTĘP DO ELEKTRONIKI Część IV Czwórniki Linia długa Janusz Brzychczyk IF UJ

Czwórniki Czwórnik (dwuwrotnik) posiada cztery zaciski elektryczne. Dwa z tych zacisków uważamy za wejście czwórnika, a pozostałe dwa za wyjście. sygnał wejściowy (wymuszenie) czwórnik sygnał wyjściowy (odpowiedź) wejście wyjście Sprzężenie wyjścia z wejściem opisywane jest przez funkcję (operator) przejścia, zwany też transmisją układu lub transmitancją: T = odpowiedź wymuszenie =

liniowe nieliniowe bierne (pasywne) aktywne Przykłady czwórników: Rodzaje czwórników wzmacniacz = K K wzmocnienie układu prostownik = filtr

Czwórniki liniowe Dla fali sinusoidalnej t = U e j t funkcja przejścia ma postać T = T e j Odpowiedź: t = T t = T e j U e j t = T U e j t =U 2 e j t 2 Amplituda sygnału wyjściowego: U 2 = T U Przesunięcie fazy: 2 = W ogólnym przypadku funkcja przejścia zależy od częstości sygnału T = T. Funkcję określającą zależność amplitudową. Funkcję określającą zależność T od częstości nazywamy charakterystyką od częstości nazywamy charakterystyką fazową.

Czwórnik liniowy filtr sygnałów elektronicznych Jeżeli sygnał wejściowy jest superpozycją fal sinusoidalnych o amplitudach a k a a a 2 a 3 i częstościach k t = k a k e j k t k to dla T = T e j T napięcie wyjściowe wynosi: t = k = T k a k e j k t k k k T k a k e j k t k T a

T Rodzaje filtrów Filtr dolnoprzepustowy Filtr środkowoprzepustowy Filtr górnoprzepustowy Filtr środkowozaporowy

Czwórniki liniowe bierne Czwórniki te zbudowane są z elementów R, L, C. Rozważamy czwórniki zawierające impedancje Z oraz Z 2, połączone według nastepującego schematu: Dla sygnałów sinusoidalnych: i t = U e j t Z Z2 t = Z 2 i t = Z 2 t Z Z 2 t = T t Czwórnik ten nazywany jest filtrem typu lub też uogólnionym dzielnikiem napięcia. T = Z 2 Z Z 2

Czwórnik R R (dzielnik napięcia) i Dla sygnałów o dowolnych przebiegach czasowych: R R2 t = R 2 i t = R 2 t R R 2 = R 2 R R 2 t Z = R = const Z 2 = R 2 = const T = R 2 R R 2

Czwórnik C R filtr górnoprzepustowy układ różniczkujący i C R Z = jc Z 2 = R T = Z 2 Z Z 2 = R jc R = j RC jrc = j 0 j 0 gdzie: 0 = RC = = RC (stała czasowa)

Czwórnik C R charakterystyka amplitudowa C R T = j 0 j 0 T T = 0 2 0 2 0.7 0

Czwórnik C R charakterystyka fazowa C R T = j 2 j 0 0 0 j = 2 0 0 2 4 = arctg ImT ReT = arctg 0 0

Czwórnik CR : Przechodzenie sygnałów o dowolnym kształcie i C R Q ładunek na okładce kondensatora t = Q t C d t t różniczkując względem czasu oraz uwzględniając, że d t = i t C du t 2 = u t 2 RC du t 2 i t = t R dq t = i t, ponieważ otrzymujemy: Rozwiązując to równanie różniczkowe znajdujemy odpowiedź na zadany sygnał wejściowy. Dla małych stałych czasowych RC, przy powolnych zmianach napięcia w czasie: d t t RC czyli t d t Napięcie wyjściowe śledzi zróżniczkowany sygnał wejściowy. Dlatego nazwa: układ różniczkujący

Układ różniczkujący : Przechodzenie impulsów prostokątnych U sygnał wejściowy t t = 0 dla t0 i tt p t p t = U dla 0tt p d t = t d t, = RC U sygnał wyjściowy gdy = 0.t p Poza punktami t = 0 oraz t = t p : d t = 0 0 = t t = d t d t d t = t p Rozwiązując to równanie z uwzględnieniem warunków początkowych otrzymujemy: t =U e t/ dla 0 t t p = 0t p t =U e t p / e t/ dla t t p

Czwórnik R C filtr dolnoprzepustowy układ całkujący i R C Z = R Z 2 = jc T = Z 2 Z Z 2 = jc R jc = jrc = j 0 gdzie: 0 = RC = = RC (stała czasowa)

Czwórnik R C charakterystyka amplitudowa R C T skala liniowa 0.7 T = 0 0 2 j 0 T skala log log 0 T = 0 2 0. 0.0 T 0 0.0 0. 0 00 0

Czwórnik R C charakterystyka fazowa R C 0 2 0 T = j 0 = j 0 0 2 4 2 = arctg ImT ReT = arctg 0

Czwórnik R C : Przechodzenie sygnałów o dowolnym kształcie i R C Q ładunek na okładce kondensatora t = Ri t t uwzględniając, że i t = dq t = C d t otrzymujemy: t = RC d t t = du t 2 u 2 t Gdy d t t (duża częstotliwość, duża stała czasowa) wówczas: t d t czyli t t 0 t t' ' Napięcie wyjściowe śledzi scałkowany sygnał wejściowy. Dlatego nazwa: układ całkujący

Układ całkujący : Przechodzenie impulsów prostokątnych U sygnał wejściowy t = 0 dla t0 i tt p t p t t = U dla 0tt p t = du t 2 u 2 t, = RC Rozwiązując to równanie z uwzględnieniem warunków początkowych otrzymujemy: U U t p sygnał wyjściowy gdy: = 0.t p = t p t t = U e t/ dla 0 t t p t = U e t / p e t/ dla t t p U = 0t p

Czwórnik Wiena filtr środkowo przepustowy układ różniczkująco całkujący i R C R 2 C 2 Z = R jc Z 2 = jc R 2 2 T = Z 2 Z Z 2 =

Czwórnik Wiena filtr środkowo przepustowy układ różniczkująco całkujący

Symetryczny czwórnik Wiena i C R R C Z = R jc Z 2 = R jc T = Z 2 Z Z 2 = Z Z 2 = 3 j 0 0 = 3 j 0 0 9 0 0 2 T = T T = 9 0 0 2 = arctg ImT ReT = arctg [ 3 0 0 ]

Symetryczny czwórnik Wiena charakterystyka częstotliwościowa Charakterystyka amplitudowa ⅓ T 0. T = 9 0 0 2 0.0 Charakterystyka fazowa 0.00 0.0 0. 0 00 000 2 0 = arctg [ 3 0 0 ] 0 0.0 0. 0 00 000 0 2

Czwórniki o elementach rozłożonych: Linia długa l wejście wyjście ~ Z obc d x x L d x R d x konduktancja Propagację sygnału w linii długiej opisują tzw. równania telegrafistów: u x,t i x,t = L x t i x,t u x,t = C x t R i x,t G u x,t G d x d x C d x u x,t, i x,t R, L, C, G odnoszą się do jednostki długości linii uogólnione napięcie i prąd (zespolone)

Linia długa Jeżeli na wejściu linii sygnał sinusoidalny, całkowanie równań telegrafistów daje: i x,t = Z 0 A e x A 2 e x e jt u x,t = A e x A 2 e x e j t fala biegnąca (od wej. do wyj.) fala odbita (od wyj. do wej.) gdzie: A, A 2 stałe całkowania Z 0 = R jl G jc impedancja charakterystyczna linii = R jl G jc stała propagacji linii (bezwymiarowa) Zapisując stałą propagacji w postaci = a jb otrzymujemy: u x,t = A e ax e j t b x A2 e ax e j t b x Prędkość fali biegnącej i odbitej: amplituda fali biegnącej amplituda fali odbitej v f = b

Linia długa Linie długie (np. kable) są tak projektowane, aby R << L oraz G << C dla używanego zakresu częstości Można wtedy taką linię traktować jako linię bez strat : R = 0, G = 0. Wówczas: a = 0 oraz b = LC amplitudy fal padającej i odbitej nie zależą od x v f = nie zależy od b = LC wartość Z 0 = L rzeczywista (rezystancja) C W liniach ze stratami: fala padająca i odbita są tłumione (czynniki ) prędkości fal zależą od ich częstości Z 0 jest zespolone e ax, e ax

Linia długa W linii jednorodnej fala wsteczna może powstać jedynie w wyniku odbicia fali od końca linii. Stosunek amplitudy fali odbitej do amplitudy fali padającej określony jest przez współczynnik odbicia: = A 2 A = Z obc Z 0 Z obc Z 0 Wyróżnić można następujące przypadki szczególne: Z obc = Z 0 = 0 Mówimy, że linia jest zwarta prawidłowo (lub dopasowana). Brak jest odbić od końca linii, mamy tylko sygnał od źródła do odbiornika. Z obc = = Linia rozwarta, sygnał odbija się z taką samą amplitudą. Z obc = 0 = Linia jest krótko zwarta. Obserwujemy całkowite odbicie sygnału z jego inwersją. Gdy linia nie jest zwarta prawidłowo odbicia na końcach linii utrudniają lub uniemożliwiają obserwację właściwego sygnału.

Przesyłanie sygnałów: Zastosowania linii długiej ~ Z W Z obc Do przesyłania sygnałów stosuje się najczęściej kable koncentryczne. Są one tak wykonywane aby Z 0 L/C (kilkadziesiąt kilkaset omów). Dla uzyskania maksymalnego przekazu mocy musi być spełniony warunek Z W = Z 0. Aby nie było odbić musi być Z obc = Z 0. W linii bez strat sygnały są przenoszone bez tłumienia i zniekształceń. Opóźnianie impulsów linie opóźniające: Dla linii bez strat v f = LC Dla typowych kabli t(l) ~ 5 ns/m. t l = l LC = l c c prędkość światła przenikalność dielektryczna izolatora kabla Formowanie impulsów: Przy pomocy linii długiej można dokonać formowania impulsów, a więc zmiany ich kształtu. Wykorzystuje się efekt odbicia sygnału na końcu linii (np. linii krótko zwartej) i interferencji fali odbitej z falą padającą.