Matematyka finansowa 08.01.2007 r. Komisja Egzaminacyjna dla Aktuariuszy. XLI Egzamin dla Aktuariuszy z 8 stycznia 2007 r. Część I



Podobne dokumenty
Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. XXXVII Egzamin dla Aktuariuszy z 5 grudnia 2005 r.

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r.

Komisja Egzaminacyjna dla Aktuariuszy. XXXIX Egzamin dla Aktuariuszy z 5 czerwca 2006 r. Część I. Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy XXXV Egzamin dla Aktuariuszy z 16 maja 2005 r. Część I Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy LXX Egzamin dla Aktuariuszy z 23 marca 2015 r. Część I Matematyka finansowa

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r.

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXI Egzamin dla Aktuariuszy z 1 października 2012 r.

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część I

Komisja Egzaminacyjna dla Aktuariuszy. XLIV Egzamin dla Aktuariuszy z 3 grudnia 2007 r. Część I. Matematyka finansowa

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. L Egzamin dla Aktuariuszy z 5 października 2009 r.

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXIX Egzamin dla Aktuariuszy z 8 grudnia 2014 r. Część I

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXV Egzamin dla Aktuariuszy z 30 września 2013 r.

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXXI Egzamin dla Aktuariuszy z 15 czerwca 2015 r.

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXIII Egzamin dla Aktuariuszy z 25 marca 2013 r. Część I

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LVIII Egzamin dla Aktuariuszy z 3 października 2011 r.

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXIV Egzamin dla Aktuariuszy z 17 czerwca 2013 r.

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXXIII Egzamin dla Aktuariuszy z 7 marca 2016 r. Część I

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. XLIX Egzamin dla Aktuariuszy z 6 kwietnia 2009 r.

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część I

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. XLVIII Egzamin dla Aktuariuszy z 15 grudnia 2008 r.

WERSJA TESTU A. Komisja Egzaminacyjna dla Aktuariuszy. XLV Egzamin dla Aktuariuszy z 17 marca 2008 r. Część I. Matematyka finansowa

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LV Egzamin dla Aktuariuszy z 13 grudnia 2010 r. Część I

Komisja Egzaminacyjna dla Aktuariuszy. XXXII Egzamin dla Aktuariuszy z 7 czerwca 2004 r. Część I. Matematyka finansowa

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LVII Egzamin dla Aktuariuszy z 20 czerwca 2011 r.

Matematyka finansowa

XXXX Egzamin dla Aktuariuszy z 9 października 2006 r.

LVII Egzamin dla Aktuariuszy z 20 czerwca 2011 r.

LIII Egzamin dla Aktuariuszy z 31 maja 2010 r.

Egzamin XXVII dla Aktuariuszy z 12 października 2002 r.

LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r.

Egzamin dla Aktuariuszy z 6 grudnia 2003 r.

Komisja Egzaminacyjna dla Aktuariuszy. XL Egzamin dla Aktuariuszy z 9 października 2006 r. Część I. Matematyka finansowa

Matematyka ubezpieczeń życiowych 17 marca 2008 r.

LIV Egzamin dla Aktuariuszy z 4 października 2010 r.

LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r.

LXIII Egzamin dla Aktuariuszy z 25 marca 2013 r.

LXXV Egzamin dla Aktuariuszy z 5 grudnia 2016 r.

XXXIII Egzamin dla Aktuariuszy z 17 stycznia 2005 r.

Ćwiczenia ZPI. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym 1

LXX Egzamin dla Aktuariuszy z 23 marca 2015 r.

zaliczenie na ocenę z elementarnej matematyki finansowej I rok MF, 21 czerwca 2012 godz. 8:15 czas trwania 120 min.

LIII Egzamin dla Aktuariuszy z 31 maja 2010 r.

XLIV Egzamin dla Aktuariuszy z 3 grudnia 2007 r.

Egzamin dla Aktuariuszy z 16 listopada 1996 r.

LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r.

1. Niech g(t) oznacza gęstość wymierania, od momentu narodzin, pewnej populacji mężczyzn. Demografowie zauważyli, że po drobnej modyfikacji: =

XLIII Egzamin dla Aktuariuszy z 8 października 2007 r.

Zadanie 1. O rozkładzie pewnego ryzyka X posiadamy następujące informacje: znamy oczekiwaną wartość nadwyżki ponad 20:

Matematyka finansowa. Ćwiczenia ZPI. Ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym 1

XXXV Egzamin dla Aktuariuszy z 16 maja 2005 r.

XLVIII Egzamin dla Aktuariuszy z 15 grudnia 2008 r.

Matematyka ubezpieczeń życiowych r.

XXXVI Egzamin dla Aktuariuszy z 10 października 2005 r.

XXXVIII Egzamin dla Aktuariuszy z 20 marca 2006 r.

LXVIII Egzamin dla Aktuariuszy z 29 września 2014 r.

LX Egzamin dla Aktuariuszy z 28 maja 2012 r.

LIX Egzamin dla Aktuariuszy z 12 marca 2012 r.

1. Pięciu osobników pochodzi z populacji, w której pojedyncze życie podlega ryzyku śmierci

Egzamin dla Aktuariuszy z 7 grudnia 1996 r.

1. Oblicz prawdopodobieństwo zdarzenia, że noworodek wybrany z populacji, w której śmiertelnością rządzi prawo Gompertza

Zadanie 1. są niezależne i mają rozkład z atomami: ( ),

LXXII Egzamin dla Aktuariuszy z 28 września 2015 r.

Parametr Λ w populacji ubezpieczonych ma rozkład dany na półosi dodatniej gęstością: 3 f

Matematyka ubezpieczeń majątkowych r.

LXV Egzamin dla Aktuariuszy z 30 września 2013 r.

LXVI Egzamin dla Aktuariuszy z 10 marca 2014 r.

Egzamin dla Aktuariuszy z 26 października 1996 r.

Matematyka ubezpieczeń majątkowych r.

LXIX Egzamin dla Aktuariuszy z 8 grudnia 2014 r.

Wycena equity derivatives notowanych na GPW w obliczu wysokiego ryzyka dywidendy

LXI Egzamin dla Aktuariuszy z 1 października 2012 r.

= µ. Niech ponadto. M( s) oznacza funkcję tworzącą momenty. zmiennej T( x), dla pewnego wieku x, w populacji A. Wówczas e x wyraża się wzorem: 1

Zadanie 1. Liczba szkód N w ciągu roku z pewnego ryzyka ma rozkład geometryczny: k =

Zatem, jest wartością portfela (wealth) w chwili,. j=1

z przedziału 0,1 liczb dodatnich. Rozważmy dwie zmienne losowe:... ma złożony rozkład dwumianowy o parametrach 1,q i, gdzie X, wszystkie składniki X

Matematyka ubezpieczeń majątkowych r.

System finansowy gospodarki. Zajęcia nr 6 Matematyka finansowa

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LIV Egzamin dla Aktuariuszy z 4 października 2010 r.

XXXVII Egzamin dla Aktuariuszy z 5 grudniaa 2005 r.

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. XXXVIII Egzamin dla Aktuariuszy z 20 marca 2006 r.

Matematyka ubezpieczeń życiowych r.

LIV Egzamin dla Aktuariuszy z 4 października 2010 r. Część III

01. dla x 0; 1 2 wynosi:

Wycena papierów wartościowych - instrumenty pochodne

LXXIV Egzamin dla Aktuariuszy z 23 maja 2016 r.

LXIV Egzamin dla Aktuariuszy z 17 czerwca 2013 r.

XLVII Egzamin dla Aktuariuszy z 6 października 2008 r.

Zadanie 1. Ilość szkód N ma rozkład o prawdopodobieństwach spełniających zależność rekurencyjną:

8. Papiery wartościowe: obligacje

Matematyka ubezpieczeń majątkowych r.

Wzory - matematyka finansowa Opracował: Łukasz Zymiera

Licz i zarabiaj matematyka na usługach rynku finansowego

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. XLIII Egzamin dla Aktuariuszy z 8 października 2007 r.

Elementy matematyki finansowej w programie Maxima

N ma rozkład Poissona z wartością oczekiwaną równą 100 M, M M mają ten sam rozkład dwupunktowy o prawdopodobieństwach:

mgr Katarzyna Niewińska; Wydział Zarządzania UW Ćwiczenia 3

Matematyka finansowa i ubezpieczeniowa - 8 Wycena papierów wartościowych

Akademia Młodego Ekonomisty Matematyka finansowa dla liderów Albert Tomaszewski Grupy 1-2 Zadanie 1.

Forward Rate Agreement

ANALIZA OPCJI ANALIZA OPCJI - WYCENA. Krzysztof Jajuga Katedra Inwestycji Finansowych i Zarządzania Ryzykiem Uniwersytet Ekonomiczny we Wrocławiu

Transkrypt:

Komisja Egzaminacyjna dla Aktuariuszy XLI Egzamin dla Aktuariuszy z 8 stycznia 2007 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 00 minut

. Ile wynosi wartość bieżąca nieskończonego ciągu rent nieskończonych, gdzie renta startująca na początku roku k (k=, 2,...) wypłaca miesięcznie z dołu wartość raty 20 letniego kredytu w wysokości k spłacanego w równych miesięcznych ratach. Wszystkich wyliczeń dokonujemy przy założeniu miesięcznej efektywnej stopy i = %. Podaj najbliższą wartość. A) 84,2 B) 85, C) 86,0 D) 86,9 E) 87,8 2

2. Przyjmujemy założenie, że cena akcji spółki X za rok ma rozkład równomierny na przedziale <30 ; 90>. Ceny rocznych opcji typu europejskiego wynoszą: a) opcji kupna z ceną wykonania 70-3 PLN b) opcji sprzedaży z ceną wykonania 70-2 PLN Inwestor buduje portfel zawierający wyłącznie długie pozycje na powyższych opcjach. Przy jakim udziale opcji kupna portfel ma najmniejszą wariancję rocznej stopy zwrotu. Podaj najbliższą wartość. A) 8% B) 23% C) 28% D) 33% E) 38% 3

3. Renta nieskończona wypłaca kwotę k( k + ) na koniec lat k =, 2,. Rozważmy N takich jednakowych rent. Ile powinno wynosić co najmniej N, aby suma wartości obecnych tych rent była wyższa od wartości obecnej renty nieskończonej wypłacającej kwotę k na koniec lat k =, 2,? Do obliczeń przyjmij czynnik dyskontujący v = 0.9. Odpowiedź : A) 2 B) 3 C) 4 D) 5 E) 6 4

4. Roczna opcja typu europejskiego oferuje możliwość zakupu po cenie 50 PLN jednej akcji spółki A lub spółki B (wybranej przez inwestora w momencie realizacji opcji). Inwestor przyjmuje następujące założenia: rozkład ceny akcji spółki A za rok jest równomierny < 40 ; 70 > rozkład ceny akcji spółki B za rok jest równomierny < X / 2 ;,5 * X >, gdzie X cena akcji spółki A. Jaką maksymalną kwotę byłby skłonny zapłacić inwestor za opcję jeżeli oczekuje rocznej stopy zwrotu i = 5% z tej inwestycji? Podaj najbliższą wartość. A) 9,05 B) 9,75 C) 0,45 D),5 E),85 5

5. Bank chce ubezpieczyć udzielony kredyt 30-letni. Kredyt ma następujące parametry: a) spłacany jest w równych ratach na koniec kolejnych lat, b) efektywna stopa oprocentowania i = 8% w skali roku, c) kwota kredytu 400.000 PLN, d) na koniec 5 roku (po zapłaceniu 5-tej raty) kredytobiorca ma możliwość zaciągnięcia dodatkowego kredytu w wysokości równej wielkości aktualnego zadłużenia z tytułu kredytu dotychczasowego. Przyjmujemy założenie, że kredytobiorca zawsze skorzysta z tej opcji, o ile będzie wówczas wypłacalny (nie dojdzie wcześniej do jego bankructwa). Dodatkowy kredyt spłacany jest w 5 równych ratach płatnych na koniec kolejnych lat przy tej samej stopie i = 8%. Prawdopodobieństwo bankructwa kredytobiorcy w każdym z lat,2,...,30 wynosi 0.5% o ile nie doszło do niego wcześniej (bankructwo jest nieodwracalne i może wystąpić tylko raz). W przypadku bankructwa kredytobiorcy, ubezpieczyciel przejmuje na siebie spłacanie kredytu i musi spłacić wszystkie pozostałe do zapłaty raty w terminach ich płatności (również wynikające z zaciągniętego kredytu dodatkowego, o ile miał miejsce). Ile wynosi składka jednorazowa netto, jeżeli zakład ubezpieczeń stosuje do takiego ubezpieczenia roczną stopę techniczną i 2 = 5%? Podaj najbliższą wartość A) 34 760 B) 35 330 C) 35 90 D) 36 540 E) 37 090 6

6. Sytuację na giełdzie opisuje łańcuch Markowa z dwoma stanami: H (hossa - stan ) i B (bessa - stan 2). Prawdopodobieństwa przejścia tego procesu zawiera macierz: h h b b W chwili t = 0 kupujemy za kwotę 00 PLN dwuletnią obligację X, wypłacającą w chwili t = 2 jednorazowo kwotę 25, jeżeli na giełdzie w drugim okresie (t = 2) była hossa, zaś 00 jeżeli była bessa. Jaki powinien być początkowy rozkład prawdopodobieństwa łańcucha, aby oczekiwana wartość bieżąca inwestycji (NPV) wyniosła 0 dla h = 0.4, b = 0.9? Stała intensywność oprocentowania wynosi δ = 0.. Odpowiedź: A) [0,35; 0,865] B) [0,275; 0,725] C) [0,45; 0,585] D) [0.555; 0,445] E) [0,695; 0,305]. 7

7. W chwili t = 0 rozpoczynamy oprocentowanie kwoty zł w sposób ciągły ze zmienną intensywnością δ ( t) = dla 0 < t 2. We wzorze tym s 2 t s t 2 obliczamy przy założeniu innej stałej ciągłej intensywności δ 0, odpowiadającej stopie i = 0% (służy ona tylko do wyznaczenia s 2 t ). Oblicz kwotę zakumulowaną w chwili t =. Odpowiedź (podaj najbliższą wartość): A).52 B).67 C).73 D).9 E) 2. 8

8. Rozkład ceny akcji spółki X za ½ roku jest równomierny <40 ; 80>. Rozkład ceny akcji za rok jest równomierny < 0,7 * Y;,5 * Y > gdzie Y cena akcji za pół roku. Jaką maksymalną cenę byłby skłonny zapłacić inwestor, oczekujący efektywnej rocznej stopy zwrotu z inwestycji i=2%, za półroczną europejską opcję kupna na długą pozycję na półrocznym kontrakcie terminowym opiewającym na akcję spółki X z ceną rozliczenia kontraktu 60? Podaj najbliższą wartość. Uwaga. Opcja uprawnia jej posiadacza do zajęcia za ½ roku długiej pozycji na półrocznym kontrakcie terminowym. Ewentualne straty z tytułu posiadania kontraktu terminowego dyskontujemy również stopą i. A) 5,57 B) 6,48 C) 7,36 D) 8,29 E) 9, 9

9. Oblicz dla t = 0 iloczyn parametrów greckich delta i vega europejskiej opcji call w modelu Blacka-Scholesa z bieżącą ceną akcji S (akcja nie wypłaca dywidendy), stopą wolną od ryzyka r, zmiennością cen akcji σ, czasem zapadalności opcji T i ceną wykonania K. N(.) jest dystrybuantą a n(.) gęstością standardowego rozkładu normalnego. A) S T n d ) N( ) ( d B) S T n d ) N( ) C) N d ) ( ( 2 d D) N d ) N( ) ( d 2 E) S T n d ) N( ) ( d 2 Wskazówka. Parametry greckie mierzą wrażliwość ceny opcji na zmianę parametrów C kształtujących cenę opcji. Delta dotyczy ceny instrumentu podstawowego ( delta = ), zaś S vega oznacza wrażliwość ceny na parametr zmienności instrumentu podstawowego ( vega = C ), gdzie C oznacza cenę opcji call. σ Ponadto rt C = SN( d) Ke N( d 2 ), d / 2 ln = S K 2 σ + ( r ± ) T 2. σ T 0

0. Dwie konkurencyjne firmy przygotowują się do przejęcia przedsiębiorstwa P. Momenty przystąpienia tych firm do transakcji są niezależnymi zmiennymi losowymi X, Y o rozkładach wykładniczych z parametrami α, µ (czyli ze średnimi /α, /µ). Przystąpienie jednej firmy do transakcji utożsamiamy z przejęciem i wyklucza to drugą firmę z tego procesu. Firma, która przejmie przedsiębiorstwo w chwili T zaczyna realizować zyski w formie ciągłej renty wieczystej o rocznym natężeniu płatności t 2 w chwili t licząc od momentu przejęcia. Wyznacz wartość oczekiwaną wartości bieżącej zysków przedsiębiorstwa otrzymanych przez firmę, która je przejęła. Intensywność oprocentowania wynosi δ = 0., zaś α = 0.2, µ = 0.5. Odpowiedź (podaj najbliższą wartość): A) 70 B) 720 C) 730 D) 740 E) 750

Egzamin dla Aktuariuszy z 8 stycznia 2007 r. Matematyka finansowa Arkusz odpowiedzi * Imię i nazwisko:... Pesel:... OZNACZENIE WERSJI TESTU... Zadanie nr Odpowiedź Punktacja D 2 D 3 C 4 D 5 E 6 E 7 D 8 C 9 A 0 E * Oceniane są wyłącznie odpowiedzi umieszczone w Arkuszu odpowiedzi. Wypełnia Komisja Egzaminacyjna. 2