Immobilizacja drożdży

Podobne dokumenty
BIOTECHNOLOGIA OGÓLNA

Podstawy biogospodarki. Wykład 7

Definicja immobilizacji

Ćwiczenie 1 Immobilizacja

Zanieczyszczenia organiczne takie jak WWA czy pestycydy są dużym zagrożeniem zarówno dla środowiska jak i zdrowia i życia człowieka.

WYTWARZANIE I ANALIZA PRODUKTÓW MLECZNYCH

Procesy biotransformacji

Spis treści. asf;mfzjf. (Jan Fiedurek)

Immobilizacja enzymów

Immobilizacja (mikrokapsułkowanie)

a) polimery syntetyczne 3/9

Osad nadmierny Jak się go pozbyć?

Immobilizowanie drożdży Immobilizowanie komórek drożdży w kulkach alginianu wapnia

BIOSYNTEZA ACYLAZY PENICYLINOWEJ. Ćwiczenia z Mikrobiologii Przemysłowej 2011

BIOTECHNOLOGIA OGÓLNA

11. Sposób wytwarzania mikrokapsułek hydrożelowych powstających w wyniku tworzenia kompleksów

Ćwiczenie 3 BIOIMMOBILIZACJA. Mikrokapsułkowanie porównanie wydajności fermentacji alkoholowej komórek wolnych oraz immobilizowanych

Biotechnologia stosowana - biotechnologia środowiska studia II stopnia KSZTAŁTOWANIE PROCESU BIOTECHNOLOGICZNEGO

BIOSYNTEZA I NADPRODUKCJA AMINOKWASÓW. Nadprodukcja podstawowych produktów metabolizmu (kwas cytrynowy, enzymy aminokwasy)

Oczyszczanie ścieków w reaktorach BPR z całkowitą redukcją osadu nadmiernego

Powodzenia!!! WOJEWÓDZKI KONKURS PRZEDMIOTOWY Z CHEMII III ETAP. Termin: r. Czas pracy: 90 minut. Liczba otrzymanych punktów

Niestandardowe wykorzystanie buraków cukrowych

ĆWICZENIE 4. Oczyszczanie ścieków ze związków fosforu

PL B1. POLITECHNIKA ŁÓDZKA, Łódź, PL BUP 19/13

Laboratorium 6. Immobilizacja enzymu metodą pułapkowania w matrycy hydrożelowej

ZWIĄZKI WĘGLA Z WODOREM 1) Uzupełnij i uzgodnij równania reakcji spalania całkowitego alkanów, alkenów i alkinów.

CHEMIA klasa 3 Wymagania programowe na poszczególne oceny do Programu nauczania chemii w gimnazjum. Chemia Nowej Ery.

ĆWICZENIE 29. ENZYMATYCZNA INWERSJA SACHAROZY II

ZAŁĄCZNIK ROZPORZĄDZENIA DELEGOWANEGO KOMISJI

Planowanie Projektów Odnawialnych Źródeł Energii Biomasa (odpady fermentowalne)

Ćwiczenie 2: Właściwości osmotyczne koloidalnych roztworów biopolimerów.

Budowa tkanki korzeni buraków cukrowych

POLITECHNIKA ŁÓDZKA INSTRUKCJA Z LABORATORIUM W ZAKŁADZIE BIOFIZYKI. Ćwiczenie 3 ANALIZA TRANSPORTU SUBSTANCJI NISKOCZĄSTECZKOWYCH PRZEZ

WYMAGANIA EDUKACYJNE w klasie III

Ćwiczenie 2 BIOIMMOBILIZACJA. Mikrokapsułkowanie za pomocą ekstruzji oraz koekstruzji

C 6 H 12 O 6 2 C 2 O 5 OH + 2 CO 2 H = -84 kj/mol

Chemia nieorganiczna Zadanie Poziom: podstawowy

Część I ZADANIA PROBLEMOWE (26 punktów)

Właściwości, degradacja i modyfikacja hydrożeli do zastosowań w uprawach roślinnych (zadania 2, 3 i 11)

Ćwiczenie 2. Charakteryzacja niskotemperaturowego czujnika tlenu. (na prawach rękopisu)

KINETYKA HYDROLIZY SACHAROZY

WYMAGANIA EDUKACYJNE na poszczególne oceny śródroczne i roczne. Z CHEMII W KLASIE III gimnazjum

Zakład Chemii Organicznej, Wydział Chemii UMCS Strona 1

Zagadnienia z chemii na egzamin wstępny kierunek Technik Farmaceutyczny Szkoła Policealna im. J. Romanowskiej

Plan wynikowy z chemii do klasy III gimnazjum w roku szkolnym 2017/2018. Liczba godzin tygodniowo: 1.

Usuwanie i odzyskiwanie metali ciężkich z użyciem drobnoustrojów

Zakład Chemii Organicznej, Wydział Chemii UMCS Strona 1

WPŁYW TEMPERATURY SUSZENIA FONTANNOWEGO NA KINETYKĘ ODWADNIANIA I ŻYWOTNOŚĆ DROŻDŻY

1. Biotechnologia i inżynieria genetyczna zagadnienia wstępne 13

METODY PRZECHOWYWANIA I UTRWALANIA BIOPRODUKTÓW SUSZENIE PODSTAWY TEORETYCZNE CZ.1

1 ekwiwalent 4 ekwiwalenty 5 ekwiwalentów

Rada Unii Europejskiej Bruksela, 1 lutego 2017 r. (OR. en)

3b Do dwóch probówek, w których znajdowały się olej słonecznikowy i stopione masło, dodano. 2. Zaznacz poprawną odpowiedź.

Przemiana materii i energii - Biologia.net.pl

Spis treści. Wstęp... 9

Zakład Chemii Organicznej, Wydział Chemii UMCS Strona 1

Zakład Chemii Organicznej, Wydział Chemii UMCS Strona 1

Podstawowe pojęcia i prawa chemiczne

Pochodne węglowodorów, w cząsteczkach których jeden atom H jest zastąpiony grupą hydroksylową (- OH ).

Instrukcja do ćwiczeń laboratoryjnych

KINETYKA HYDROLIZY SACHAROZY (REAKCJA ENZYMATYCZNA I CHEMICZNA)

SPECJALNE TECHNIKI ROZDZIELANIA W BIOTECHNOLOGII. Laboratorium nr1 CHROMATOGRAFIA ODDZIAŁYWAŃ HYDROFOBOWYCH

Przedmiot: Chemia budowlana Zakład Materiałoznawstwa i Technologii Betonu

Bioreaktor membranowy. Produkcja alkoholu przez drożdże Saccharomyces cerevisiae z permeatu serwatki

Transport przez błony

Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych CHEMIA klasa III Oceny śródroczne:

Materiały polimerowe laboratorium

MULTI BIOSYSTEM MBS. Nowoczesne technologie oczyszczania ścieków przemysłowych Multi BioSystem MBS

Regulamin BHP pracowni chemicznej. Pokaz szkła. Technika pracy laboratoryjnej

WĘGLOWODORY. Uczeń: Przykłady wymagań nadobowiązkowych Uczeń:

Hydroliza skrobi przez unieruchomioną glukoamylazę

1 ekwiwalent 1 ekwiwalent

Ćwiczenie 4. Identyfikacja wybranych cukrów w oparciu o niektóre reakcje charakterystyczne

I. Węgiel i jego związki z wodorem

KONKURS CHEMICZNY DLA UCZNIÓW GIMNAZJÓW. Eliminacje rejonowe II stopień

KATALIZA I KINETYKA CHEMICZNA

STĘŻENIE JONÓW WODOROWYCH. DYSOCJACJA JONOWA. REAKTYWNOŚĆ METALI

INSTRUKCJA TECHNOLOGICZNA PROCESU OTRZYMYWANIA DROŻDŻY EKOLOGICZNYCH

Czy produkcja żywności to procesy fizyczne i reakcje chemiczne?

Kuratorium Oświaty w Lublinie

CHEMIA ŚRODKÓW BIOAKTYWNYCH I KOSMETYKÓW PRACOWNIA CHEMII ANALITYCZNEJ. Ćwiczenie 7

Laboratorium. Technologia i Analiza Aromatów Spożywczych

Zakład Chemii Organicznej, Wydział Chemii UMCS Strona 1

Sposób otrzymywania białek o właściwościach immunoregulatorowych. Przedmiotem wynalazku jest sposób otrzymywania fragmentów witellogeniny.

Klasyfikacja procesów membranowych. Magdalena Bielecka Agnieszka Janus

WYMAGANIA EDUKACYJNE z chemii dla klasy trzeciej

Ćwiczenie 4 Suszenie rozpyłowe

Chemiczne składniki komórek

WOJEWÓDZKI KONKURS PRZEDMIOTOWY Z CHEMII DLA UCZNIÓW GIMNAZJÓW - rok szkolny 2016/2017 eliminacje rejonowe

WOJEWÓDZKI KONKURS PRZEDMIOTOWY Z CHEMII... DLA UCZNIÓW GIMNAZJÓW - rok szkolny 2011/2012 eliminacje wojewódzkie

Mikrokapsułki CS. Prof. dr hab. Stanisław Ignatowicz Konsultacje Entomologiczne Warszawa

Ocenę niedostateczną otrzymuje uczeń, który: Ocenę dopuszczającą otrzymuje uczeń, który: Ocenę dostateczną otrzymuje uczeń, który:

XV Wojewódzki Konkurs z Chemii

Kryteria oceniania z chemii kl VII

Co to jest FERMENTACJA?

LABORATORIUM Z KATALIZY HOMOGENICZNEJ I HETEROGENICZNEJ. Prowadzący: Przemysław Ledwoń. Miejsce ćwiczenia: Czerwona Chemia, sala nr 015

Projektowanie Procesów Biotechnologicznych

Zagadnienia na egzamin dyplomowy Wydział Inżynierii. studia I stopnia. Kierunek: Chemia kosmetyczna

Regulamin Przedmiotowy. XII Wojewódzkiego Konkursu Chemicznego. dla uczniów szkół gimnazjalnych województwa świętokrzyskiego

WOJEWÓDZKI KONKURS PRZEDMIOTOWY DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH WOJEWÓDZTWA ŚLĄSKIEGO W ROKU SZKOLNYM 2018/2019 CHEMIA

Transkrypt:

ĆWICZENIE 3 Immobilizacja drożdży Prowadzący: mgr inż. Sebastian Budniok mgr inż. Przemysław Hahn mgr inż. Jadwiga Paszkowska

CEL ĆWICZENIA Celem ćwiczenia jest immobilizacja drożdży piekarskich w alginianie wapnia metodą pułapkowania. PODSTAWY TEORETYCZNE Enzymy są biokatalizatorami, które charakteryzuje: wysoka specyficzność działania kierunkowość działania zdolność do obniżania w istotny sposób energii aktywacji reakcji chemicznych. Dzięki temu znalazły szerokie zastosowanie w wielu gałęziach przemysłu spożywczego, farmaceutycznego, kosmetycznego, chemicznego i w analityce medycznej. Często jednak stosowanie enzymów w formie natywnej wiąże sie z wysokimi kosztami prowadzenia procesów, szczególnie wtedy gdy konieczne jest stosowanie preparatu enzymatycznego o wysokim stopniu oczyszczenia, jak np. w farmacji, a także wówczas gdy proces prowadzony jest cyklicznie. Dlatego od lat 60-tych XX wieku coraz większym zainteresowaniem cieszą się enzymy immobilizowane. Immobilizacją, czyli inaczej unieruchomieniem (łac. Immobilia nieruchomy), można określić zespół metod, które ograniczają całkowicie lub częściowo swobodę poruszania się określonych atomów, cząsteczek, substancji lub materiału biologicznego (enzymów, mikroorganizmów) na podłożu stałym czy też wewnątrz specyficznych struktur. Obecnie jest kilka klasyfikacji metod unieruchamiania. Najpopularniejsza z nich wyróżnia: - unieruchamianie na powierzchni nośnika, - unieruchamianie wewnątrz nośnika, - unieruchamianie bez nośnika. Unieruchamianie na powierzchni Unieruchamianie na powierzchni nośnika występuje, gdy komórki wykazują naturalną skłonność przylegania do pewnych powierzchni lub innych organizmów, ewentualnie czynią to po zastosowaniu odpowiedniego chemicznego czynnika wiążącego (Tabela 1). Adsorpcja na powierzchni Wiązanie kowalencyjne Wiązania elektrostatyczne Tabela 1 W obrębie tej grupy metod wyróżnia się adsorpcję, adhezję i wiązanie kowalencyjne komórek. Ważne jest wysokie powinowactwo komórek do nośnika zapobiegające nadmiernym stratom populacji, szczególnie podczas szybkiego przepływu strumienia substratu w bioreaktorze. 2

Adsorpcja i adhezja polegają na unieruchamianiu komórek na powierzchni poprzez wiązania wodorowe, oddziaływania sił van der Waalsa, jonowe, hydrofobowe, elektrostatyczne, powinowactwa lub kombinacje różnych sił. Taki sposób immobilizacji jest bardzo prosty i tani, jednak ma podstawowe wady stosunkowo niskie stężenie biomasy na jednostkę objętości bioreaktora oraz skłonność do desorpcji komórek w wyniku zmian ph, stężenia jonowego i innych czynników. Jako nośników używa się różnych materiałów: drewna, celulozy, jonitów, polimerów syntetycznych, szkła porowatego, spieków ceramicznych, tlenków metali, ziemi okrzemkowej i innych. Z kolei technika oparta na wiązaniu kowalencyjnym polega na odpowiedniej funkcjonalizacji nośnika i późniejszym połączeniu z białkiem. Metoda ta zapewnia trwałe związanie enzymu z powierzchnia nośnika, ale jednocześnie jej zasadniczą wadą są często dość drastyczne warunki, w jakich przebiegają reakcje. Zazwyczaj obserwuje się spadek aktywności enzymu (nawet o 50%) spowodowany zmianami konformacyjnymi i częściową denaturacją. Wybór odpowiedniej metody bywa często przypadkowy, ponieważ prawdopodobieństwo wystąpienia konkretnego aminokwasu na powierzchni białka, jak i jego stabilność w warunkach reakcji, często nie jest znane. Do wytwarzania wiązań najczęściej wykorzystuje sie grupy nukleofilowe aminokwasów: imidazolowe (His), fenylowe (Tyr), -SH (Cys), -NH 2 (Lys). Ogólnie immobilizacja tą metodą przebiega w dwóch etapach: - aktywacja nośnika przez przyłączenie reaktywnej grupy łączącej, - przyłączenie enzymu. Jako nośniki wykorzystuje sie nośniki nieorganiczne typu krzemionka (porowate szkło), polimery naturalne (celuloza, dekstran, agaroza, skrobia), polimery syntetyczne. W przypadku unieruchamiania organizmów, takich jak drożdże Saccharomyces cerevisiae, kluczową rolę w wiązaniu odgrywają oddziaływania jonowe między nośnikiem o dużej gęstości ładunków dodatnich, a licznymi ujemnymi ładunkami na ścianie komórkowej drożdży. Aby zwiększyć zdolność unieruchamiania, sugeruje się zredukowanie siły elektrostatycznego odpychania komórka-nośnik. Ewentualnie dąży się do nadania powierzchni komórki lub nośnika ładunku dodatniego, przez zastosowanie np. polietylenoiminy (PEI) lub aldehydu glutarowego. Modyfikacja nośnika musi być jednak indywidualnie dobierana do unieruchamianych organizmów, ponieważ dodatek czynników aktywnych może powodować redukcję żywotności komórek lub na przykład obniżenie ilości otrzymywanego etanolu. Wiązanie drożdży można zwiększyć także w wyniku dehydratacji powierzchni komórkowej. Dehydratacja może być wynikiem suszenia konwekcyjnego lub liofilizacji, co jest związane z niszczeniem fragmentów struktury komórkowej. Następuje zwiększenie przepuszczalności błon komórkowych i 10-30% składników wewnątrzkomórkowych przedostaje się do otaczającego podłoża, wchodząc w interakcje z powierzchnią nośnika. W zależności od rodzaju użytego nośnika ilość unieruchomionych komórek jest różna, co wskazuje że immobilizacja zależy od struktury chemicznej nośnika. Natomiast wydajność adsorpcji drobnoustrojów zależy od ich rodzaju, metabolizmu i wieku oraz cech środowiska. Sposób unieruchamiania jest bardzo prosty i polega na tym, że do roztworu z namnożonym materiałem biologicznym wprowadza się nośnik i pozostawia na pewien czas, bez mieszania lub z mieszaniem, w celu osadzenia się komórek. W drugim sposobie bioreaktor wypełnia się nośnikiem i wtłacza od góry lub od dołu, namnożone na podłożu płynnym komórki. Unieruchamianie wewnątrz nośnika Drugi rodzaj immobilizacji polega na zamykaniu komórek w materiałach włóknistych lub porowatych. W metodzie tej wyróżnia się pułapkowanie oraz zamykanie wewnątrz membran półprzepuszczalnych (Tabela 2). 3

Pułapkowanie Mikrokapsułkowanie Unieruchamianie wewnątrz membran Tabela 2 Pułapkowanie (inkluzja) to unieruchamianie w matrycy żelu, która najczęściej jest w kształcie kuleczki o średnicy 0.3-3 mm, ale może być w formie sferycznej czy dysków. Najpowszechniej stosowany nośnik to: alginian, poza tym stosuje się kappa-karagenian, chitozan, agar, pektynę, żywice epoksydowe, poliakryloamid. Alginian jest kopolimerem kwasu ß-D-mannurowego i α-l-guluronowego, uzyskanym metodą ekstrakcji z brązowych alg Phaeophyceae. W obecności kationów dwuwartościowych (jak Ca 2+ ) kwas alginianowy tworzy porowaty żel, idealny do kolonizacji i uzyskania dużego stężenia biomasy w nośniku. Matrycę polimeru uzyskuje się przez żelowanie w łagodnych warunkach, co umożliwia zamknięcie komórek z minimalną utratą ich aktywności. Najpowszechniej stosowana technika to zawieszanie komórek w alginianie sodu i wkraplanie tej mieszaniny do roztworu chlorku wapnia. W ten sposób otrzymuje się porowate kulki z uwięzionym biokatalizatorem, biomasą mikroorganizmów lub białkiem enzymatycznym (rys.1) rys. 1 Zamykanie komórek w żelach nie eliminuje ich ucieczki do fermentowanego podłoża, ponadto, w przypadku drożdży, zachodzi pękanie kuleczek pod wpływem powstającego podczas fermentacji CO 2. W celu ograniczenia tego zjawiska prowadzono m.in. badania nad utwardzaniem kuleczek alginianu wapnia polietylenoiminą i aldehydem glutarowym, karagenianu chlorkiem potasu, a kuleczek żelatyny utlenioną skrobią. W immobilizacji wewnątrz nośnika wykorzystuje się również półprzepuszczalne membrany, przez które dyfundują małocząsteczkowe produkty i substraty, natomiast 4

niemożliwa jest migracja cząsteczek biokatalizatora. Biokatalizatory albo zamyka się we wnętrzu kapsułki, która imituje naturalne błony biologiczne, wówczas mówimy o mikrokapsułkowaniu, albo biokatalizator jest oddzielony od środowiska przegrodą membranową w postaci płaskiej foli lub w postaci kapilary. W przypadku mikrokapsułkowania stosuje się membrany nylonowe, silikonowe, liposomowe, a także wytwarzane z pochodnych celulozy, a przegrody membranowe otrzymuje się na bazie polimerów, takich jak polichlorek winylu czy polipropylen. Ten sposób unieruchamiania jest jednak rzadko stosowany w przypadku żywych komórek, częściej zamykane są enzymy. Unieruchamianie bez pomocy nośnika W obrębie tej grupy metod wyróżnia się następujące sposoby: sieciowanie przestrzenne, flokulacja komórek przy udziale elektrolitów, naturalna flokulacja (samoagregacja) oraz wzrost drobnoustrojów w postaci kuleczek lub kłaczków biomasy. Sieciowanie polega na wiązaniu ze sobą komórek drobnoustroju różnymi reagentami, zdolnymi do reakcji z grupami funkcyjnymi ich ściany komórkowej. Czynnikami sieciującymi mogą być aldehyd glutarowy, chlorek cyjanurowy lub heksametylenocyjaniany. Wzajemne sieciowanie jest techniką łatwą i tanią. Daje zazwyczaj dość trwały biomateriał, jednak może prowadzić także do częściowej utraty aktywności i utrudniać dyfuzję substratów. Metoda ta jest zalecana raczej do procesów z użyciem substratów małocząsteczkowych. Flokulacja definiowana jest jako zdolność zawieszonych komórek do tworzenia większych skupień i konglomeratów w postaci kłaczków, które ulegają szybkiej sedymentacji. Procesy flokulacji pozwalają utrzymać wysoką gęstość populacji drobnoustrojów w bioreaktorze, bez stosowania nośników i innych materiałów. Przyspieszenie procesu samoagregacji można spowodować poprzez regulację ph, skład pożywki, stężenie rozpuszczonego tlenu i inne czynniki (np. dodatek polielektrolitów). Cechy nośników stosowanych do immobilizacji W metodach immobilizacji ważny jest właściwy dobór nośnika i techniki immobilizacji, ponieważ decydują one o aktywności unieruchomionego biokatalizatora oraz wydajności procesu technologicznego. Uważa się, że dobry nośnik powinien wykazywać następujące cechy: - obojętność w stosunku do zatrzymywanych mikroorganizmów, - prostota i łagodność unieruchamiania, - duża zdolność zatrzymywania komórek, - wysoka mechaniczna stabilność, - obojętność chemiczna, - duża zdolność dyfuzyjna w stosunku do substratu i produktu, - możliwość regeneracji i kilkakrotnego użycia, - łatwa dostępność, niski koszt, - możliwość zastosowania w skali przemysłowej. 5

Zalety i wady immobilizacji Zastosowanie komórek immobilizowanych stwarza korzyści technologiczne oraz ekonomiczne w porównaniu z tradycyjnymi procesami wykorzystującymi komórki wolne. Do korzyści tych można zaliczyć: - wydłużenie aktywności i stabilności biokatalizatora, ponieważ nośnik może działać ochronnie w przypadku zmian ph, temperatury i składu podłoża, - zwiększenie gęstości komórek w przeliczeniu na jednostkę objętości fermentora, co prowadzi do wyższej produktywności, skrócenia czasu fermentacji oraz eliminacji fazy namnażania się komórek, - lepsze wykorzystanie substratu, w związku z czym proces przebiega z wyższą wydajnością, - możliwość prowadzenia procesów ciągłych, - obniżenie kosztów procesu, ze względu na możliwość wielokrotnego użycia biokatalizatora. Jednak w przypadku stosowania komórek immobilizowanych, obok zalet pojawiają się pewne problemy, które nie występują w układach z komórkami wolnymi. Do wad zaliczyć można: - zmiany metaboliczne wywołane unieruchomieniem i długotrwałym wykorzystaniem tych samych komórek, - problemy ze skuteczną dyfuzją substratów i produktów, - problemy z długotrwałą stabilnością nośnika, - wymywanie komórek z nośnika. Stąd cały czas prowadzone są badania nad doborem do różnych procesów technologicznych zarówno metod immobilizacji, jak i nośników. Zastosowanie drobnoustrojów immobilizowanych Od wielu lat trwają prace nad możliwością szerszego wykorzystania komórek unieruchomionych w procesach technologicznych. Duży wzrost zainteresowania aplikacją takich systemów w różnych procesach biotechnologicznych, głównie w przemyśle spożywczym, wynika z korzyści, jakie można osiągnąć z użycia immobilizowanej biomasy. Największe szanse przemysłowego wykorzystania istnieją w procesach biosyntezy witamin, aminokwasów i kwasów organicznych, a szczególnie fermentacji etanolowej (Tabela 3). Preparaty komórek drobnoustrojów immobilizowanych są droższe od podobnych preparatów komórek wolnych, dlatego też po zakończonym procesie należy odzyskać biomasę i przygotować do ponownego użycia. Z tej przyczyny do stosowania im mobilizowanych kultur drobnoustrojów przemysłowych nadają się tylko płyny o odpowiedniej konsystencji i klarowności. Warunki te spełniają wszystkie roztwory fermentacyjne brzeczka piwna, nastawy winiarskie, brzeczki miodowe, klarowane zaciery gorzelnicze oraz inne media i podłoża płynne stosowane w procesach biosyntezy i biotransformacji. 6

Kultura mikroorganizmów Rodzaje nośnika Produkt Saccharomyces cerevisiae materiał ceramiczny, drewno, żelatyna etanol Saccharomyces cerevisiae alginian, karagen lub poliakrylamid etanol Saccharomyces cerevisiae żywice jonowymienne etanol Zymomonas mobilis alginian, włókno drewniane etanol Saccharomyces bayanus alginian, żelatyna sieciowana, karagen, wióry wino dębowe Saccharomyces uvarum alginian wapnia, ziemia okrzemkowa, Piwo DEAE - celuloza Escherichia coli karagen, poliakrylamid kwas asparaginowy Bravibacterium flavum kolagen kwas glutaminowy Propionibacterium acidipropionici Gluconobacter oxydans włókno bawełny karagen, wióry bukowe, szkło porowate kwas propionowy kwas octowy Corynebacterium glutamicum alkohol poliwinylowy lizyna Clostridium thermosaccharolyticum kulki szkła porowatego etanol Bacillus amyloliquefaciens alginian α-amylaza Drożdże rekombinowane alginia, agaroza Bakterie kwasu mlekowego alginian, żele polisacharydowe, karagen jogurt Bakterie kwasu mlekowego szczepy odkwaszające alginian, drewno biologiczne odkwaszanie moszczów i win WYKONANIE ĆWICZENIA Sprzęt: mieszadło magnetyczne, waga analityczna, kolby stożkowe o poj. 100ml, cylindry o poj. 100ml, zlewki o poj. 250 ml, kolbki fermentacyjne, lejek Buchnera Materiał i odczynniki: drożdże piekarskie, alginian sodu, 2,5% roztwór chlorku wapnia, nasycony roztwór chlorku sodu, 2% roztwór sacharozy. 7

Procedura: W kolbie o pojemności 100 ml umieścić 40 ml wody destylowanej, dodać 0,8 g alginianu sodu i mieszać do całkowitego rozpuszczenia. Do uzyskanego roztworu dodać 10 g drożdży piekarskich i mieszać do uzyskania jednorodnej zawiesiny. Z uzyskanej zawiesiny przenieść 8 ml do rozdzielacza i wkraplać do 100 ml 2,5% roztworu chlorku wapnia umieszczonego w zlewce o pojemności 250 ml. Należy uzyskać złoże w postaci kulek. Immobilizowane drożdże kondycjonować w zlewkach z roztworem chlorku wapnia przez 15 minut (licząc od ostatniej utworzonej kulki). Po tym czasie odsączyć złoże na lejku Buchnera i przemyć kilkakrotnie wodą destylowaną. Tak przygotowany preparat przechowywać w wodzie destylowanej. Rozdzielacz przemyć wodą destylowaną, a następnie acetonem. Porównanie aktywności preparatu drożdży immobilizowanych i drożdży świeżych w reakcji z sacharozą. Przygotować dwie kolby okrągłodenne o pojemności 100 ml z odprowadzeniem gazu do wyskalowanego cylindra zawierającego nasycony roztwór NaCl. Umieścić w nich 100 ml 2% roztworu sacharozy. Do pierwszej kolby dodać preparat drożdży immobilizowanych (przygotowany z 8 ml zawiesiny), a do drugiej wprowadzić 2 g świeżych drożdży. Pod wpływem enzymów zawartych w drożdżach zachodzi hydroliza sacharozy do glukozy i fruktozy (inwertaza), a następnie fermentacja alkoholowa (zymaza). Postęp reakcji śledzić obserwując objętość wydzielonego dwutlenku węgla. Po 1 h zakończyć reakcje, odsączyć preparat immobilizowany, przemyć go wodą destylowaną i użyć ponownie w kolejnym eksperymencie ze 100 ml 2% roztworu sacharozy. Opracowanie wyników. Uzyskane wyniki zebrać w tabeli: Czas [min] Drożdże świeże Objętość CO 2 [ml] Drożdże immobilizowane I Drożdże immobilizowane II 8