Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki. Wykład 14. Wprowadzenie do logiki intuicjonistycznej



Podobne dokumenty
Andrzej Wiśniewski Logika II. Wykłady 10b i 11. Semantyka relacyjna dla normalnych modalnych rachunków zdań

Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki. Wykład 15. Trójwartościowa logika zdań Łukasiewicza

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykład 10. Twierdzenie o pełności systemu aksjomatycznego KRZ

Andrzej Wiśniewski Logika II. Wykłady 12 i 13. Metoda tabel analitycznych dla normalnych modalnych rachunków zdań

Wykład 11b. System aksjomatyczny Klasycznego Rachunku Predykatów. Aksjomaty i reguły inferencyjne

Wykład 6. Reguły inferencyjne systemu aksjomatycznego Klasycznego Rachunku Zdań

Metody dowodzenia twierdzeń i automatyzacja rozumowań Systemy aksjomatyczne I

Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki

RACHUNEK ZDAŃ 7. Dla każdej tautologii w formie implikacji, której poprzednik również jest tautologią, następnik także jest tautologią.

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykłady 7 i 8. Aksjomatyczne ujęcie Klasycznego Rachunku Zdań

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykład 9. Koniunkcyjne postacie normalne i rezolucja w KRZ

Tautologia (wyrażenie uniwersalnie prawdziwe - prawo logiczne)

Andrzej Wiśniewski Logika II. Wykłady 9 i 10a. Wybrane modalne rachunki zdań. Ujęcie aksjomatyczne

Logika Stosowana. Wykład 1 - Logika zdaniowa. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017

Paradoks wszechwiedzy logicznej (logical omniscience paradox) i wybrane metody jego unikania

Logika I. Wykład 4. Semantyka Klasycznego Rachunku Zdań

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykłady 12 i 13. Dowód i dowodzenie w KRP. Tezy KRP

Definicja: alfabetem. słowem długością słowa

Np. Olsztyn leży nad Łyną - zdanie prawdziwe, wartość logiczna 1 4 jest większe od 5 - zdanie fałszywe, wartość logiczna 0

METODY DOWODZENIA TWIERDZEŃ I AUTOMATYZACJA ROZUMOWAŃ

Andrzej Wiśniewski Logika II. Wykład 6. Wprowadzenie do semantyki teoriomodelowej cz.6. Modele i pełność

Elementy logiki. Wojciech Buszkowski Wydział Matematyki i Informatyki UAM Zakład Teorii Obliczeń

Logika formalna wprowadzenie. Ponieważ punkty 10.i 12. nie były omawiane na zajęciach, dlatego można je przeczytać fakultatywnie.

Monoidy wolne. alfabetem. słowem długością słowa monoidem wolnym z alfabetem Twierdzenie 1.

Wprowadzenie do logiki epistemicznej. Przekonania i wiedza

Algebrę L = (L, Neg, Alt, Kon, Imp) nazywamy algebrą języka logiki zdań. Jest to algebra o typie

domykanie relacji, relacja równoważności, rozkłady zbiorów

Wykład 11a. Składnia języka Klasycznego Rachunku Predykatów. Języki pierwszego rzędu.

Elementy logiki i teorii mnogości

Klasyczny rachunek predykatów

0.1. Logika podstawowe pojęcia: zdania i funktory, reguły wnioskowania, zmienne zdaniowe, rachunek zdań.

Klasyczny rachunek zdań 1/2

Twierdzenia Gödla dowody. Czy arytmetyka jest w stanie dowieść własną niesprzeczność?

Logika Matematyczna (1)

LOGIKA Klasyczny Rachunek Zdań

JEZYKOZNAWSTWO. I NAUKI O INFORMACJI, ROK I Logika Matematyczna: egzamin pisemny 11 czerwca Imię i Nazwisko:... FIGLARNE POZNANIANKI

Podstawowe Pojęcia. Semantyczne KRZ

Paradygmaty dowodzenia

MATEMATYKA DYSKRETNA, PODSTAWY LOGIKI I TEORII MNOGOŚCI

Metody dowodzenia twierdzeń i automatyzacja rozumowań Tabele syntetyczne: definicje i twierdzenia

Kultura logiczna Klasyczny rachunek zdań 1/2

JEZYKOZNAWSTWO. I NAUKI O INFORMACJI, ROK I Logika Matematyczna: egzamin pisemny 18 czerwca Imię i Nazwisko:... I

Dowody założeniowe w KRZ

WYKŁAD 3: METODA AKSJOMATYCZNA

Wykład 5. Metoda tabel analitycznych dla Klasycznego Rachunku Zdań

Adam Meissner.

Wstęp do logiki. Klasyczny Rachunek Zdań II

Logika Stosowana. Wykład 2 - Logika modalna Część 2. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017

Logika Matematyczna (1)

Logika. Michał Lipnicki. 15 stycznia Zakład Logiki Stosowanej UAM. Michał Lipnicki () Logika 15 stycznia / 37

Elementy logiki matematycznej

1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych.

Drzewa Semantyczne w KRZ

Schematy Piramid Logicznych

Logika Matematyczna (10)

Logika Matematyczna (2,3)

III rok kognitywistyki UAM,

Reguły gry zaliczenie przedmiotu wymaga zdania dwóch testów, z logiki (za ok. 5 tygodni) i z filozofii (w sesji); warunkiem koniecznym podejścia do

Myślenie w celu zdobycia wiedzy = poznawanie. Myślenie z udziałem rozumu = myślenie racjonalne. Myślenie racjonalne logiczne statystyczne

Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki. Wykład 8. Modalności i intensjonalność

Metoda tabel semantycznych. Dedukcja drogi Watsonie, dedukcja... Definicja logicznej konsekwencji. Logika obliczeniowa.

Logika pragmatyczna dla inżynierów

Rachunek logiczny. 1. Język rachunku logicznego.

ROZDZIAŁ 1. Rachunek funkcyjny

Kultura logiczna Klasyczny rachunek zdań 2/2

Rachunek zdań i predykatów

LOGIKA I TEORIA ZBIORÓW

Rachunek predykatów. Formuły rachunku predykatów. Plan wykładu. Relacje i predykaty - przykłady. Relacje i predykaty

Wprowadzenie do logiki Zdania, cz. III Język Klasycznego Rachunku Predykatów

JEZYKOZNAWSTWO. I NAUKI O INFORMACJI, ROK I Logika Matematyczna: egzamin pisemny 29 czerwca Imię i Nazwisko:...

Rachunek zdań. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak

Rozdzia l 10. Najważniejsze normalne logiki modalne

Metoda Tablic Semantycznych

Logika pragmatyczna. Logika pragmatyczna. Kontakt: Zaliczenie:

ĆWICZENIE 2. DEF. Mówimy, że formuła A wynika logicznie z formuł wartościowanie w, takie że w A. A,, A w KRZ, jeżeli nie istnieje

Podstawy Sztucznej Inteligencji (PSZT)

LOGIKA Dedukcja Naturalna

Matematyka ETId Elementy logiki

ĆWICZENIE 4 KRZ: A B A B A B A A METODA TABLIC ANALITYCZNYCH

Logika intuicjonistyczna

5. OKREŚLANIE WARTOŚCI LOGICZNEJ ZDAŃ ZŁOŻONYCH

Logika. Michał Lipnicki. 18 listopada Zakład Logiki Stosowanej UAM. Michał Lipnicki Logika 18 listopada / 1

vf(c) =, vf(ft 1... t n )=vf(t 1 )... vf(t n ).

III rok kognitywistyki UAM,

Jest to zasadniczo powtórka ze szkoły średniej, być może z niektórymi rzeczami nowymi.

NOWE ODKRYCIA W KLASYCZNEJ LOGICE?

Logika Stosowana. Wykład 2 - Logika modalna Część 3. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2017/2018

Wybierz cztery z poniższych pięciu zadań. Poprawne rozwiazanie dwóch zadań oznacza zdany egzamin.

Trzy razy o indukcji

Egzamin z logiki i teorii mnogości, rozwiązania zadań

Przykłady zdań w matematyce. Jeśli a 2 + b 2 = c 2, to trójkąt o bokach długości a, b, c jest prostokątny (a, b, c oznaczają dane liczby dodatnie),

Logika i teoria mnogości Wykład Sformalizowane teorie matematyczne

Składnia rachunku predykatów pierwszego rzędu

Semantyka rachunku predykatów

Logika Stosowana. Wykład 7 - Zbiory i logiki rozmyte Część 3 Prawdziwościowa logika rozmyta. Marcin Szczuka. Instytut Informatyki UW

Mieczysław Omyła Logika a czas i zmiana. Filozofia Nauki 5/3,

Kultura logiczna Wnioskowania dedukcyjne

Ziemia obraca się wokół Księżyca, bo posiadając odpowiednią wiedzę można stwierdzić, czy są prawdziwe, czy fałszywe. Zdaniami nie są wypowiedzi:

I. Podstawowe pojęcia i oznaczenia logiczne i mnogościowe. Elementy teorii liczb rzeczywistych.

Internet Semantyczny i Logika II

Transkrypt:

Andrzej Wiśniewski Logika II Materiały do wykładu dla studentów kognitywistyki Wykład 14. Wprowadzenie do logiki intuicjonistycznej 1

Przedstawione na poprzednich wykładach logiki modalne możemy uznać za rozszerzenia logiki klasycznej. Istnieją jednak logiki, które są alternatywne względem logiki klasycznej. Omówimy krótko tylko dwie z nich: (zdaniową) logikę intuicjonistyczną oraz logikę trójwartościową Łukasiewicza. Proszę jednak zapamiętać, że istnieje baaaardzo dużo logik alternatywnych wobec logiki klasycznej niektórzy mówią nawet, że stanowczo za dużo :) Z powodów, o których można długo opowiadać :), logika intuicjonistyczną cieszy się największym prestiżem spośród logik stanowiących alternatywę wobec logiki klasycznej. Od niej zatem zaczniemy. 2

Intuicjonistyczna interpretacja stałych logicznych U podstaw logiki intuicjonistycznej leży pewna podstawowa intuicja filozoficzna: fakty matematyczne są ustalane za pomocą konstrukcji. Intuicjonista sądzi, że aby wykazać, iż pewien obiekt matematyczny istnieje, trzeba ten obiekt skonstruować nie wystarczy tutaj pokazanie, że nieistnienie rozważanego obiektu prowadzi do sprzeczności. Podobnie aby wykazać, że zachodzi pewna zależność matematyczna, nie wystarczy pokazać, że (ewentualne) nie zachodzenie tej zależności prowadzi do sprzeczności trzeba przedstawić konstrukcję uzasadniającą zachodzenie rozważanej zależności. W logice intuicjonistycznej stałe logiczne są rozumiane odmiennie niż w logice klasycznej pojęcie konstrukcji i tutaj gra główną rolę. 3

Intuicjonistyczna interpretacja stałych logicznych Dowód [tego, że] φ to dla intuicjonisty nic innego, jak Konstrukcja ustalająca, że φ. W konsekwencji jest (z grubsza) tak: dowód zdania A B jest parą konstrukcji d, d*, gdzie d jest dowodem zdania A, natomiast d* jest dowodem zdania B, dowód zdania A B jest parą konstrukcji: d, d*, gdzie d wybiera jedno ze zdań: A, B, natomiast d* jest dowodem tego zdania, dowód zdania A B to konstrukcja d*, która, zastosowana do jakiegokolwiek dowodu d zdania A, daje nam dowód d*(d) zdania B, [uzupełniona sprawdzeniem, że konstrukcja ta jest istotnie dowodem zdania B], dowód zdania A to konstrukcja pokazująca, że zdanie A nie ma żadnego dowodu (tj. konstrukcja tworząca z każdego dowodu formuły A dowód formuły sprzecznej), dowód zdania x i A(x i ) to konstrukcja, która wybiera obiekt α i daje dowód zdania A[x i /α], gdzie α jest nazwą obiektu α, dowód zdania x i A(x i ) to konstrukcja, która przypisuje każdemu obiektowi α, z rozważanego uniwersum, dowód zdania A[x i /α], [poddając następnie ten dowód sprawdzeniu]. 4

Intuicjonistyczna interpretacja stałych logicznych Z kolei dla intuicjonisty: formuła A jest prawdą znaczy tyle i tylko tyle, co: formuła A posiada dowód. --------------------------------------------------------------------------------------------------------- Gdy negację i pojęcie prawdy rozumiemy klasycznie, dla dowolnego zdania A otrzymujemy (na mocy metalogicznej zasady wyłączonego środka): (1) A jest prawdą lub A jest prawdą Jeśli natomiast negację i pojęcie prawdy rozumiemy intuicjonistycznie, to odpowiednik powyższej zależności znaczyłby tyle, co: (1*) A ma dowód lub istnieje dowód tego, że A nie ma żadnego dowodu i z pewnością nie ma powodu, aby akceptować (1*) nawet w odniesieniu do zdań dyscyplin formalnych. W konsekwencji prawem intuicjonistycznej logiki zdań nie powinno być: (2) p p i faktycznie nim nie jest. 5

Logika intuicjonistyczna a niektóre prawa logiki klasycznej Podobnie gdy negację rozumiemy klasycznie, to ze zdania postaci A wynika - na gruncie logiki klasycznej - zdanie A. Przy interpretacji intuicjonistycznej stwierdzenie postaci: (3) A jest prawdą znaczy tyle, co: (3*) istnieje dowód tego, że A nie ma żadnego dowodu natomiast stwierdzenie postaci: (4) A jest prawdą znaczy: (4*) istnieje dowód tego, że nie ma żadnego dowodu tego, że istnieje dowód tego, że A nie ma żadnego dowodu. To ostatnie zdanie z pewnością głosi co innego, niż: (5) A ma dowód (tj. A jest prawdą intuicjonistyczną) i nie widać powodu, aby wynikanie A z A zachodziło na gruncie logiki intuicjonistycznej. 6

Logika intuicjonistyczna a niektóre prawa logiki klasycznej W konsekwencji prawem intuicjonistycznego rachunku zdań nie powinno być i faktycznie nie jest prawo: (6) p p Z drugiej strony, prawo: (7) p p zdaje się nie budzić podobnych zastrzeżeń. Patrząc od strony czysto formalnej, pewne prawa KRZ nie są prawami Intuicjonistycznego Rachunku Zdań. Terminologia: Dalej zamiast Intuicjonistyczny Rachunek Zdań będziemy pisać krótko: IRZ. Oto dalsze przykłady praw KRZ, które nie są prawami IRZ: 1 (8) ( p p) p, (9) ((p q) p) p, 1 Ściślej: których odpowiedniki nie są tezami IRZ ; odpowiedniki uzyskujemy rozumiejąc spójniki na sposób intuicjonistyczny (zob. dalej). 7

Logika intuicjonistyczna a niektóre prawa logiki klasycznej (10) ( q p) (p q), (11) (p q) ( p q), (12) (p q) ( p q), (13) ( p q) p q, (14) ( p q) p q. A oto przykłady (meta)tez KRP, których odpowiedniki nie są (meta)tezami Intuicjonistycznego Rachunku Predykatów: (15) x A xa, (16) x A xa, (17) xa x A. Implikacje odwrotne do powyższych (ściślej: ich odpowiedniki) jednak zachodzą w Intuicjonistycznym Rachunku Predykatów. Ponadto w obu rachunkach obowiązuje: (18) xa x A. 8

System aksjomatyczny IRZ Intuicjonistyczny rachunek zdań można przedstawić w postaci systemu aksjomatycznego. System taki jest wyrażony w zasadzie w tym samym języku, co KRZ: spójnikami są negacja, implikacja, koniunkcja i alternatywa, natomiast formuły są budowane przy pomocy spójników ze zmiennych zdaniowych. (Dla uproszczenia nie wprowadzamy w tej prezentacji spójnika równoważności.) Trzeba jednak pamiętać, że w IRZ ze spójnikami łączone są inne intuicje niż w przypadku KRZ. Jeśli tak, to spójniki te wypadałoby zapisywać jakoś inaczej niż spójniki KRZ. Jednakże nie pójdziemy tutaj tak daleko wobec wszystkich spójników: inaczej będziemy zapisywać tylko spójniki negacji i implikacji. Nadamy im odpowiednio postacie oraz. Należy jednak pamiętać, że również spójniki koniunkcji i alternatywy występujące w formułach IRZ należy rozumieć intuicjonistycznie, a nie klasycznie. Dygresja: W literaturze przedmiotu IRZ często wyraża się w języku, w alfabecie którego występuje stała zdaniowa falsum. Przy jej pomocy można zdefiniować negację intuicjonistyczną następująco: A = df A. 9

A oto jedna z możliwych aksjomatyk IRZ: p (q p) (p (q r)) ((p q) (p r)) p q p p q q (p q) ((p r) (p q r)) p p q q p q (p r) ((q r) (p q r)) (p q) (q p) p (p q) System aksjomatyczny IRZ Pierwotne reguły inferencyjne prezentowanego systemy aksjomatycznego IRZ to reguła odrywania RO i reguła podstawiania RP (rozumiane analogicznie jak w przypadku KRZ). Pojęcia dowodu i tezy rozumiane są w standardowy sposób. 10

Pewne własności IRZ W przeciwieństwie do spójników klasycznych, spójniki intuicjonistyczne nie są wzajemnie definiowalne. W przypadku logiki intuicjonistycznej zdaniowej i kwantyfikatorowej - zachodzi tzw. własność dyzjunkcji: Formuła postaci A B jest tezą wtw co najmniej jedna z formuł: A, B jest tezą. Odmiennie jest w przypadku logiki klasycznej. Udowodniono, że formuła A języka KRZ jest tezą KRZ wtw formuła języka IRZ o postaci A jest tezą IRZ; A oznacza tutaj formułę będącą odpowiednikiem formuły A, tj. taką, którą uzyskujemy z A zastępując spójniki klasyczne spójnikami intuicjonistycznymi. Gdy z kolei w podanych wyżej aksjomatach IRZ zastąpimy spójniki intuicjonistyczne klasycznymi, oraz dołączymy do tak otrzymanych formuł formułę p p, otrzymamy aksjomatykę KRZ, która wystarcza do udowodnienia w oparciu o R0 i RP każdej tezy/tautologii KRZ. 11

Znane są ponadto pewne dalsze ciekawe związki formalne między IRZ a KRZ. Jakie? Zapraszam na wykład :) Modele Kripkego dla IRZ Dla IRZ istnieje kilka adekwatnych semantyk. Jedną z nich jest semantyka typu Kripkego, którą się teraz zajmiemy. 12

Modele Kripkego dla IRZ Definicja 14.1. Modelem Kripkego dla IRZ nazywamy dowolną trójkę uporządkowaną <W, R, V> taką, że: (a) W jest niepustym zbiorem; (b) R jest relacją binarną w W, zwrotną i przechodnią w W; (c) V jest funkcją, której argumentami są formuły języka IRZ i elementy zbioru W, natomiast wartościami prawda 1 i fałsz 0, spełniającą następujące warunki: (i) dla dowolnej zmiennej zdaniowej p i, dla każdego w W: V(p i, w) = 1 lub V(p i,w) = 0; (H) dla dowolnej zmiennej zdaniowej p i, dla każdego w W: jeżeli V(p i, w) = 1 oraz wrw*, to V(p i, w*) = 1; (ii) dla dowolnej formuły A języka IRZ, dla każdego w W: V( A, w) = 1 wtw dla każdego w* W takiego, że wrw*: V(A, w*) = 0; (iii) dla dowolnych formuł A, B języka IRZ, dla każdego w W: V(A B, w) = 1 wtw V(A, w) = 1 oraz V(B, w) = 1; V(A B, w) = 1 wtw V(A, w) = 1 lub V(B, w) = 1; V(A B, w) = 1 wtw dla każdego w* W takiego, że wrw*: V(A, w*) = 0 lub V(B, w*) = 1. 13

Modele Kripkego dla IRZ Intuicje zostaną omówione na wykładzie (na który oczywiście zapraszam :)) Terminologia: Warunek (H) to tzw. heredity condition. Będziemy go nazywać warunkiem dziedziczności. Definicja 14.2. Formuła A języka IRZ jest prawdziwa w modelu Kripkego <W, R, V> dla IRZ wtw dla każdego w W jest tak, że V(A, w) = 1. Zauważmy, że warunek prawdziwości dla formuły języka IRZ mającej kształt: A przypomina warunek prawdziwości dla formuły MRZ o postaci: A w modelu Kripkego dla MRZ. Podobnie warunek prawdziwości dla formuły postaci: A B przypomina warunek prawdziwości dla formuły języka MRZ mającej postać: (A B) w semantyce Kripkego dla MRZ. W tej ostatniej semantyce nie występuje jednak żaden odpowiednik warunku dziedziczności (H). 14

Modele Kripkego dla IRZ Przedstawiona semantyka jest adekwatna względem IRZ, natomiast IRZ jest pełny względem tej semantyki. Można udowodnić: Twierdzenie 14.1. Formuła A języka IRZ jest tezą IRZ wtw formuła A jest prawdziwa w każdym modelu Kripkego dla IRZ. Pojęcie wynikania definiujemy następująco: Definicja 14.3. Formuła A języka IRZ wynika na gruncie IRZ ze zbioru formuł X języka IRZ (co oznaczamy przez X IRZ A) wtw dla każdego modelu Kripkego <W, R, V> dla IRZ, dla każdego w W jest tak, że: (#) jeżeli dla każdego B X, V(B, w) = 1, to V(A, w) = 1. Innymi słowy, X IRZ A zachodzi dokładnie wtedy, gdy nie istnieją: model Kripkego <W, R, V> dla IRZ oraz świat w tego modelu takie, że wszystkie formuły w X są prawdziwe w świecie w (tj. dla każdego B X, V(B, w) = 1) i jednocześnie A nie jest prawdą w świecie w (tj. V(A, w) = 0)). Podobnie jak w przypadku MRZ, również dla IRZ istnieje metoda tabel analitycznych oparta w istocie - na semantyce typu Kripkego dla IRZ. 15

Metoda tabel analitycznych dla IRZ Nie wchodząc zbytnio w szczegóły, powiemy tutaj kilka słów o metodzie tabel analitycznych dla IRZ w wersji zaproponowanej przez Grahama Priesta. Tabela analityczna ma postać drzewa, którego węzłami są formuły etykietowane oraz formuły relacyjne. Podobnie jak w przypadku tabel dla MRZ, formuła relacyjna ma postać: (19) irj gdzie i, j są liczebnikami. Formuły etykietowane mają schematy: (20) A, +i (21) A, -i gdzie A jest formułą języka IRZ oraz i jest liczebnikiem. Sens intuicyjny formuły etykietowanej postaci (20) jest następujący: formuła A jest prawdziwa/dowodliwa w świecie oznaczanym przez liczebnik i natomiast sens intuicyjny formuły etykietowanej postaci (21) to: formuła A jest fałszywa/nie jest dowodliwa w świecie oznaczanym przez liczebnik i. 16

Metoda tabel analitycznych dla IRZ Budując tabelę analityczną dla formuły A języka IRZ pragnąc ustalić, czy A jest tezą IRZ - rozpoczynamy od formuły etykietowanej: A, -0 Z kolei pragnąc ustalić, czy {B 1,..., B n } IRZ A, rozpoczynamy od: A, -0 B 1, +0... B n, +0 Kolejne węzły wprowadzamy (o ile to konieczne) stosując reguły. Oto one: 17

Metoda tabel analitycznych dla IRZ A B, +i A B, -i A B, +i A B, -i A, +i A, -i B, -i A, +i B, +i A, -i B, +i B, -i A B, +i A B, -i A, +i A, -i z, +i irj irj irj irj irj A, -j B, +j A, +j A, -j A, +j z, +j B, -j gdzie j jest nowym gdzie j jest nowym gdzie z jest dowolną liczebnikiem liczebnikiem zmienną zdaniową 18

Metoda tabel analitycznych dla IRZ r zw : (zwrotność) r prz : (przechodniość) ϕ(i) irj jrk iri irk Tabela jest zamknięta wtw na każdej gałęzi tej tabeli występuje co najmniej jedna para komplementarnych formuł etykietowanych, tj. co najmniej jedna para formuł etykietowanych: B, +i, B, -i. Zamkniętą tabelę dla formuły A języka IRZ możemy uważać za dowód tego, że A jest tezą IRZ. Gdy budujemy tabelę, której celem jest wykazanie, iż {B 1,..., B n } IRZ A, zamknięcie tej tabeli świadczy o tym, że A wynika na gruncie IRZ z {B 1,..., B n }. Przykłady zostaną podane na wykładzie. Na który, jak zawsze, zapraszam :) 19