Maria Sokołowska Nowak PROGRAM NAUCZANIA PRZEDMIOTU CHEMIA MEDYCZNA KLASA II ROK SZKOLNY 2013/2014



Podobne dokumenty
PLAN STUDIÓW NR VI. STUDIA PIERWSZEGO STOPNIA (3,5-letnie inżynierskie)

Program studiów II stopnia dla studentów kierunku chemia od roku akademickiego 2015/16

Kierunek i poziom studiów: Biotechnologia, pierwszy Sylabus modułu: Chemia ogólna (1BT_05)

Moduły kształcenia. Efekty kształcenia dla programu kształcenia (kierunku) MK_06 Krystalochemia. MK_01 Chemia fizyczna i jądrowa

PLAN STUDIÓW NR II PROFIL OGÓLNOAKADEMICKI POZIOM STUDIÓW: STUDIA DRUGIEGO STOPNIA (1,5-roczne magisterskie) FORMA STUDIÓW:

Program studiów II stopnia dla studentów kierunku chemia od roku akademickiego 2016/2017. Semestr 1M

KARTA KURSU. Kod Punktacja ECTS* 2

prof. dr hab. Maciej Ugorski Efekty kształcenia 2 Posiada podstawowe wiadomości z zakresu enzymologii BC_1A_W04

Wydziału Biotechnologii i Nauk o Żywności

PLAN STUDIÓW NR IV PROFIL OGÓLNOAKADEMICKI POZIOM STUDIÓW: STUDIA DRUGIEGO STOPNIA (1,5-roczne magisterskie) FORMA STUDIÓW:

Efekty kształcenia dla kierunku studiów CHEMIA studia pierwszego stopnia profil ogólnoakademicki

Plan działania opracowała Anna Gajos

KONSPEKT PRZEDMIOTU PIERWSZEGO POZIOMU STUDIÓW STACJONARNYCH

Tematy- Biologia zakres rozszerzony, klasa 2TA,2TŻ-1, 2TŻ-2

SZCZEGÓŁOWE KRYTERIA OCENIANIA Z CHEMII DLA KLASY II GIMNAZJUM Nauczyciel Katarzyna Kurczab

SPIS TREŚCI OD AUTORÓW... 5

SYLABUS. WYDZIAŁ FARMACEUTYCZNY Zakład Chemii Analitycznej... NAZWA KIERUNKU: FARMACJA...

SYLABUS. WYDZIAŁ FARMACEUTYCZNY Zakład Chemii Analitycznej...

Studia I stopnia kierunek: chemia Załącznik nr 3

SYLABUS. WYDZIAŁ FARMACEUTYCZNY Zakład Chemii Analitycznej... NAZWA KIERUNKU: FARMACJA... PROFIL KSZTAŁCENIA: PRAKTYCZNY...

WZPiNoS KUL Jana Pawła II Rok akademicki 2016/2017 Instytut Inżynierii Środowiska Kierunek: Inżynieria środowiska II stopnia

KIERUNKOWE EFEKTY KSZTAŁCENIA Efekty przewidziane do realizacji od semestru zimowego roku akademickiego

Chemia ogólna i nieorganiczna

Materiał obowiązujący do ćwiczeń z analizy instrumentalnej II rok OAM

NZ PROFIL KSZTAŁCENIA praktyczny TYP PRZEDMIOTU obligatoryjny Forma studiów. Wybrane procesy biochemiczne. Selected biochemical processes

Wydział Przyrodniczo-Techniczny UO Kierunek studiów: Biotechnologia licencjat Rok akademicki 2009/2010

Analiza instrumentalna

zaliczenie na ocenę* 1,5 0,7

Spis treści CZĘŚĆ I. PROCES ANALITYCZNY 15. Wykaz skrótów i symboli używanych w książce... 11

Chemia bionieorganiczna / Rosette M. Roat-Malone ; red. nauk. Barbara Becker. Warszawa, Spis treści

KRYTERIA WYBORU W PLANOWANIU I REALIZACJI ANALIZ CHEMICZNYCH

Podkowiańska Wyższa Szkoła Medyczna im. Z. i J. Łyko. Syllabus przedmiotowy 2016/ /2019

ODNAWIALNE ŹRÓDŁA ENERGII I GOSPODARKA ODPADAMI STUDIA STACJONARNE

Kryteria oceniania z chemii kl VII

uczeń opanował wszystkie wymagania podstawowe i ponadpodstawowe

KARTA KURSU. Chemia fizyczna I. Physical Chemistry I

Metody analizy fizykochemicznej związków kompleksowych"

Wzorcowe efekty kształcenia dla kierunku studiów biotechnologia studia pierwszego stopnia profil ogólnoakademicki

ZAKŁAD CHEMII ANALITYCZNEJ

Program zajęć z biochemii dla studentów kierunku weterynaria I roku studiów na Wydziale Lekarskim UJ CM w roku akademickim 2013/2014

SYLABUS. WYDZIAŁ FARMACEUTYCZNY Zakład Chemii Analitycznej... NAZWA KIERUNKU: ANALITYKA MEDYCZNA... PROFIL KSZTAŁCENIA: PRAKTYCZNY...

ANALITYKA PRZEMYSŁOWA I ŚRODOWISKOWA

Studiapierwszego stopnia

2. Metody, których podstawą są widma atomowe 32

WYMAGANIA EDUKACYJNE Z CHEMII 2013/2014

Chemia ogólna i nieorganiczna. SYLABUS A. Informacje ogólne Opis

Ćwiczenie 1. Ćwiczenie Temat: Podstawowe reakcje nieorganiczne. Obliczenia stechiometryczne.

Karta (sylabus) modułu/przedmiotu ELEKTROTECHNIKA (Nazwa kierunku studiów)

II Wydział Lekarski z Oddziałem Anglojęzycznym Kierunek: BIOMEDYCYNA Poziom studiów: pierwszy stopień Profil: Praktyczny SEMESTR I

SYLABUS. Wydział Biologiczno-Rolniczy. Katedra Chemii i Toksykologii Żywności

Wymagania edukacyjne z chemii

Przedmiot CHEMIA Kierunek: Transport (studia stacjonarne) I rok TEMATY WYKŁADÓW 15 godzin Warunek zaliczenia wykłady: TEMATY LABORATORIÓW 15 godzin

Kierunek i poziom studiów: chemia poziom pierwszy Sylabus modułu: Podstawy Chemii B 0310-CH-S1-010

BIOLOGIA klasa 1 LO Wymagania edukacyjne w zakresie podstawowym od 2019 roku

Uczeń: omawia cechy organizmów wyjaśnia cele, przedmiot i metody badań naukowych w biologii omawia istotę kilku współczesnych odkryć.

Tematy i zakres treści z chemii - zakres rozszerzony, dla klas 2 LO2 i 3 TZA/archt. kraj.

Biochemia SYLABUS A. Informacje ogólne

Moduł: Chemia. Fundamenty. Liczba godzin. Nr rozdziału Tytuł. Temat lekcji. Rozdział 1. Przewodnik po chemii (12 godzin)

Wydział Budownictwa i Inżynierii Środowiska. Poziom i forma studiów. Ścieżka dyplomowania: przedmiotu: 0) Semestr: W - 15 C- 0 L- 30 P- 0 Ps- 0 S- 0

S YL AB US MODUŁ U ( PRZEDMIOTU) I nforma cje ogólne

PLAN STUDIÓW NR V PROFIL OGÓLNOAKADEMICKI POZIOM STUDIÓW: STUDIA DRUGIEGO STOPNIA (1,5-roczne magisterskie) FORMA STUDIÓW:

LABORATORIUM PRZYRODNICZE

Spis treści. asf;mfzjf. (Jan Fiedurek)

WYDZIAŁ CHEMICZNY POLITECHNIKI GDAŃSKIEJ Kierunek Chemia. Semestr 2 Godziny Punkty ECTS 9 w c l p s

Chemia I Semestr I (1 )

Wydział Farmaceutyczny. Analityka Medyczna. Chemia ogólna i nieorganiczna. Prof. dr hab. Piotr Wroczyński. I rok. I semestr. Przedmiot podstawowy

I. Substancje i ich przemiany

STANDARDY NAUCZANIA DLA KIERUNKU STUDIÓW. TECHNOLOGIA CHEMICZNA studia zawodowe

Spis treści. 1. Wiadomości wstępne Skład chemiczny i funkcje komórki Przedmowa do wydania czternastego... 13

Opis zakładanych efektów kształcenia OPIS ZAKŁADANYCH EFEKTÓW KSZTAŁCENIA

SYLABUS PRZEDMIOTU/MODUŁU ZAJĘĆ NA STUDIACH WYŻSZYCH/DOKTORANCKICH. koordynatorzy: dr hab. Lucjan Jerzykiewicz, dr hab.

Zestaw pytań egzaminu inŝynierskiego przeprowadzanego w Katedrze Fizykochemii i Technologii Polimerów dla kierunku CHEMIA

KLASA II Dział 6. WODOROTLENKI A ZASADY

I nformacje ogólne. nie dotyczy

KARTA KURSU. Analysis of food

KIERUNKOWE EFEKTY KSZTAŁCENIA Efekty przewidziane do realizacji od semestru zimowego roku akademickiego

S YL AB US MODUŁ U ( PRZEDMIOTU) I nforma cje ogólne CHEMIA

S YLABUS MODUŁU (PRZEDMIOTU) I nformacje ogólne. Nie dotyczy

Opis efektów kształcenia dla modułu zajęć

Sesja dotycząca współpracy dydaktycznej z Przemysłem

SYLABUS. Wydział Biologiczno-Rolniczy. Katedra Chemii i Toksykologii Żywności. Odnawialne Źródła Energii i Gospodarka Odpadami

Efekty kształcenia dla kierunku studiów CHEMIA studia drugiego stopnia profil ogólnoakademicki

Uchwała nr 1/2013/2014 Rady Wydziału Chemii Uniwersytetu im. Adama Mickiewicza w Poznaniu z dnia 20 lutego 2014 roku

Wymagania programowe na poszczególne oceny. Chemia Kl.1. I. Substancje chemiczne i ich przemiany

PROGRAM ĆWICZEŃ LABORATORYJNYCH Z CHEMII (SEMESTR LETNI) OCHRONA ŚRODOWISKA

BIOTECHNOLOGIA STUDIA I STOPNIA

Chemia I. Chemistry I. Inżynieria środowiska I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Efekty kształcenia dla kierunku studiów biotechnologia i ich odniesienie do efektów obszarowych

Joanna Bereta, Aleksander Ko j Zarys biochemii. Seria Wydawnicza Wydziału Bio chemii, Biofizyki i Biotechnologii Uniwersytetu Jagiellońskiego

SYLABUS. WYDZIAŁ FARMACEUTYCZNY Zakład Chemii Analitycznej... NAZWA KIERUNKU: ANALITYKA MEDYCZNA...

Chemia bionieorganiczna

WYMAGANIA DO KOLOKWIUM

Załącznik Nr 5 do Zarz. Nr 33/11/12

SUBSTANCJE CHEMICZNE I ICH PRZEMIANY

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Brak

APARATURA W OCHRONIE ŚRODOWISKA - 1. WPROWADZENIE

WYMAGANIA NA POSZCZEGÓLNE STOPNIE SZKOLNE Z CHEMII klasa I

Wymagania edukacyjne na poszczególne śródroczne oceny klasyfikacyjne z przedmiotu chemia dla klasy 7 w r. szk. 2019/2020

CHEMIA. Wymagania szczegółowe. Wymagania ogólne

Transkrypt:

Maria Sokołowska Nowak PROGRAM NAUCZANIA PRZEDMIOTU CHEMIA MEDYCZNA KLASA II ROK SZKOLNY 2013/2014 Rozkład materiału BLOKI TEMATYCZNE: I. Blok - Chemia kwantowa (5 godz.) Cele edukacyjne: Znajomość podstaw chemii kwantowej, zrozumienie natury chemicznych mechanizmów tworzenia wiązań chemicznych. Charakterystyka bloku: Tematy: Postulaty mechaniki kwantowej. Własności orbitali. Spin elektronowy. Sprzężenie spinowo-orbitalne. Układy wieloelektronowe, przybliżenie jednoelektronowe, atom helu. Wstęp do metod obliczeniowych chemii kwantowej. Korelacja elektronowa. Rozdzielenie ruchu jąder od elektronów - przybliżenie Borna-Oppenheimera, całkowita energia cząsteczki. Zastosowania chemii kwantowej - optymalizacja struktury geometrycznej i określanie właściwości fizykochemicznych. II. Blok - Technologia chemiczna ( 5 godz.) Cele edukacyjne: Zaznajomienie się z podstawowymi pojęciami technologicznymi, podstawowymi zasadami technologicznymi. Poznanie podstawowych fizykochemicznych procesów technologicznych. Charakterystyka bloku: Tematy: Zasady technologiczne. Kataliza przemysłowa. Schematy technologiczne. Surowce przemysłu chemicznego. Przegląd ważniejszych technologii chemicznych. Technologie materiałów specjalnego przeznaczenia. Technologie bezodpadowe. Wybrane procesy biotechnologiczne. Kryteria oceny jakości surowców i produktów przemysłu chemicznego i wytwórczości chemicznej. Wybrane metody i techniki analizy technicznej. Materiały

metaliczne, stopy - obróbka cieplna, korozja, erozja. Materiały ceramiczne, szkło - otrzymywanie, właściwości, stosowanie. Materiały specjalnego przeznaczenia. Materiały budowlane, powłoki malarskie, paliwa, oleje, rozpuszczalniki - zabezpieczenia w trakcie stosowania, postępowanie z odpadami. Odnawialne źródła surowców i energii. Fizykochemiczne podstawy procesów technologicznych. Operacje i aparatura do: przenoszenia ciepła, transportu gazów, cieczy i ciał stałych, rozdrabniania i przesiewania, mieszania, rozdzielania zawiesin, suszenia, rozdzielania składników mieszanin - destylacji, rektyfikacji, krystalizacji, ekstrakcji, absorpcji, adsorpcji, odwróconej osmozy, filtracji, flotacji. Podstawowe typy i eksploatacja reaktorów chemicznych. Ćwiczenia: Katalityczna dehydratacja etanolu, otrzymywanie miedzi elektrolitycznej, otrzymywanie pigmentów mineralnych, organicznonieorganiczne polimery i szkła krzemowofosforanowe, otrzymywanie i identyfikacja tworzyw sztucznych, analiza wody, jonity i wymiana jonowa, nawozy mineralne, transestryfikacja wyższych kwasów tłuszczowych na bazie oleju. III. Blok - Chemia analityczna (5 godz.) Cele edukacyjne: Znajomość podstaw chemii analitycznej, umiejętność wykonywania obliczeń dotyczących równowag chemicznych, praktyczna znajomość podstawowych reakcji analitycznych i technik klasycznej analizy jakościowej i ilościowej. Charakterystyka bloku: Tematy: Rola analizy chemicznej w poznaniu procesów biologicznych. Kryteria wyboru reakcji chemicznych do celów analitycznych (kinetyczne i termodynamiczne). Pobieranie i przygotowanie próbek do analizy ze szczególnym uwzględnieniem materiałów biologicznych i farmaceutycznych. Równowagi chemiczne w układach homogennych: kwas-zasada, utleniaczreduktor, jon metalu-ligand oraz w układach heterogennych: osad-roztwór. Czynniki wpływające na przesunięcie stanu równowagi chemicznej i jego konsekwencje analityczne. Reakcje w roztworach niewodnych. Główne techniki analityczne uwzględniające identyfikację maskowanie, rozdział oraz klasyczne metody, oparte na w/w równowagach, ilościowego oznaczania pierwiastków (metody objętościowe i wagowe).przykłady zaawansowanych oznaczeń

produktów naturalnych. Ocena wiarygodności metod analitycznych. Ćwiczenia: Podstawowe pojęcia. Obliczanie stężeń. Oddziaływania międzyjonowe, prawo Debay'a-Hückla. Reakcje w układach jednofazowych. Elektrolity mocne i słabe. Prawo rozcieńczeń Ostwalda. Reakcje kwas-zasada; obliczenia ph kwasów i zasad wieloprotonowych, roztworów buforowych i soli słabych elektrolitów. Równowagi redox. Potencjał Nernsta. Równowagi kompleksowania. Reakcje w układach wielofazowych. Strącanie osadów, rozpuszczalność. Krzywe miareczkowania. Wskaźniki. Zastosowanie komputerów w analizie i obróbce danych. Laboratorium: Reakcje identyfikacji kationów wg Freseniusa. Wybrane metody rozdziału: chromianowa, alkoholowa, siarczanowa. Specjalne metody analizy: kroplowa i mikrokrystaliczna. Metody oddzielania kationów III grupy: metoda siarczkowa i amoniakalna. Rozdział w obecności jonów przeszkadzających. Selektywne wytrącanie. Właściwości siarczków II grupy i zasada podziału na podgrupy. Klasyfikacja i badania wstępne w analizie anionów. Analiza złożona makro- i mikroskładnika. Reakcje z przeniesieniem protonu i ich aspekty analityczne, alkacymetria. Reakcje z przeniesieniem elektronów, metody analityczne oparte na tych reakcjach: manganometria, jodometria, bromianometria. Kompleksometria. Równowagi heterogenne, procesy wpływające na przesunięcie równowagi heterogennej: objętościowa analiza strąceniowa i analiza wagowa. Krzywe miareczkowania, wskaźniki. Metody ilościowego przeprowadzania substancji stałej do roztworu. Fizyczne metody analizy chemicznej, atomowa spektrometria emisyjna. IV. Blok - Metody fizykochemiczne (5 godz.) Cele edukacyjne: Zapoznanie się ze spektroskopowymi i elektrochemicznymi metodami analizy chemicznej oraz z chromatograficznymi metodami rozdziału. Wykształcenie umiejętności statystycznego opracowania wyników powyższych metod analitycznych. Charakterystyka bloku: Tematy: Podział technik analitycznych. Spektrometria atomowa i cząsteczkowa. Prawo Lamberta-Beera: zastosowania analityczne i odstępstwa. Spektroskopia absorpcyjna i emisyjna w analizie chemicznej. Absorpcyjna (ASA) i emisyjna

(EAS-ICP) spektroskopia atomowa i ich zastosowania w analizie śladowych i ultraśladowych stężeń metali. Spektroskopia molekularna w zakresie UV-VIS, analityczne zastosowania spektrofotometrii i spektrofluorymetrii. Spektrometria FTIR i techniki refleksyjne pomiaru widm w podczerwieni. Spektroskopia ramanowska w analizie układów biologicznych. Analityczne aspekty metody NMR. Spektrometria masowa - zastosowanie do identyfikacji i analizy strukturalnej związków organicznych. Metody elektroanalityczne. Potencjometria, elektrody jonoselektywne i biosensory. Polarograficzne metody analizy. Konduktometria, miareczkowanie konduktometryczne. Metody kulorymetryczne w analizie przemysłowej i monitoringu zanieczyszczeń atmosfery. Rozdzielanie i analiza mieszanin za pomocą chromatografii gazowej i cieczowej. Elektroforeza kapilarna. Ćwiczenia: Oznaczanie ilościowe niektórych składników surowicy krwi (syntetyczna surowica, sporządzona zgodnie z przepisem przez nauczyciela), ilościowe oznaczanie witamin w preparatach farmaceutycznych i środkach spożywczych, oznaczanie czynników mutagennych, oznaczanie metali ciężkich: ołowiu, kadmu, arsenu i cynku. Stosowane metody analityczne: Atomowa spektroskopia absorpcyjna (ASA) oraz emisyjna (ICP-ESA) i fotometria płomieniowa; spektrofotometria w zakresie UV i widzialnym; spektrofluorymetria, spektrometria IR i Ramana. Potencjometria z zastosowaniem elektrod jonoselektywnych; kulometria, metody woltamperometryczne, konduktometria. Chromatografia gazowa i cieczowa. V. Blok Krystalochemia (5 godz.) Cele edukacyjne: Zdobycie umiejętności stosowania baz krystalograficznych do celów chemicznych. Charakterystyka bloku: Tematy: Postać krystaliczna jako jeden z wielu stanów występowania materii. Wstępne informacje o kryształach i metodach ich badań. Metody obrazowania struktur: opisowe, graficzne i liczbowe. Typy i charakterystyka kryształów. Analiza geometryczna związków chemicznych oraz jej interpretacja. Bazy danych jako źródło wiedzy chemicznej. Wnioski wynikające z badań kryształów.

VI. Blok - Chemia środowiska (5 godz.) Cele edukacyjne: Zapoznanie uczniów z podstawowymi problemami dotyczącymi zagadnień środowiskowych. Zanieczyszczenia poszczególnych ekosystemów oraz możliwości ochrony przed nimi. Skutki obecności substancji zarówno pochodzenia naturalnego jak i antropogennego w środowisku. Koncepcja zrównoważonego rozwoju. Racjonalne korzystanie z zasobów środowiska. Charakterystyka bloku: Tematy: Zakres i zadania nauki o środowisku (podstawowe definicje i pojęcia). Pierwiastki biogenne i cykle biogeochemiczne. Klasyfikacja i składowanie odpadów (odpady ciekłe, ścieki oraz procesy ich oczyszczania; uzdatnianie wody; unieszkodliwianie i składowanie odpadów stałych - komunalnych, przemysłowych i specjalnych redukcja, recykling, segregacja; paliwa, oleje, rozpuszczalniki zabezpieczenia, utylizacja; odpady gazowe oraz metody usuwania zanieczyszczeń gazowych; odsiarczanie spalin). Źródła energii oraz odnawialne źródła surowców i energii. Odpady z gospodarstw domowych - segregacja, recykling, utylizacja, zagospodarowanie. Litosfera - gleby (degradacja, denudacja, zmęczenie). Sposoby zwiększania produkcji żywności (nawożenie, ochrona roślin). Środki ochrony roślin - stosowanie, szkodliwość, zabezpieczenia w trakcie stosowania. Chemiczne zanieczyszczenia i skażenia gleb; rekultywacja. Pestycydy (podział oraz ogólna charakterystyka toksykologiczna, adsorpcja i degradacja). Podstawowe zanieczyszczenia i skażenia żywności oraz dodatki do żywności. Atmosfera - skład i struktura (zmiany cykliczne i acykliczne). Źródła zanieczyszczeń atmosfery i mechanizmy samoregulacji. Aerozole i smogi. Efekt cieplarniany. Ozon w atmosferze. Kwaśne opady atmosferyczne (wpływ na środowisko przyrodnicze, hipotezy zamierania lasów). Hydrosfera charakterystyka w środowisku i klasyfikacja. Chemiczne zanieczyszczenia wód (czynniki wpływające na specjację substancji chemicznych). Ropa naftowa i zanieczyszczenia olejowe. Detergenty i środki czyszczące - oddziaływanie na środowisko, utylizacja odpadów. Eutrofizacja. Problem Bałtyku. Wskaźniki zanieczyszczenia wód - system saprobów. Charakterystyka procesów samooczyszczania się wód. Koncepcja zrównoważonego rozwoju - chemia przyjazna człowiekowi i otoczeniu.

VII. Blok - Chemia bionieorganiczna (5 godz.) Cele edukacyjne: Zapoznanie z podstawami chemii bionieorganicznej. Nabycie umiejętności wyszukiwania i prezentowania informacji. Charakterystyka bloku: Tematy: Metale w procesach biologicznych. Homeostaza jonów metali. Relacje między właściwościami chemicznymi jonu metalu a jego funkcją biologiczną. Metaloproteiny oraz metaloenzymy. Metale w biologii kwasów nukleinowych. Wapń w układach biologicznych. Transport i magazynowanie żelaza i miedzi. Metale w medycynie, wprowadzenie do chemii leków nieorganicznych. Czynniki chelatujące jony metali w medycynie. Neurobiologia jonów metali. VIII. Blok - Chemia makromolekuł (5 godz.) Cele edukacyjne: Opanowanie podstaw chemii związków wielkocząsteczkowych w powiązaniu z chemią organiczną. Nabycie umiejętności łączenia właściwości polimerów z ich strukturą. Praktyczne zapoznanie się z podstawowymi technikami oczyszczania, analizy i charakteryzacji biomakromolekuł. Charakterystyka bloku: Tematy: Chemia polimerów: Pojęcie makromolekuły i polimeru, polimeryzacja i polikondensacja, polimeryzacja jako reakcja łańcuchowa: mechanizmy reakcji łańcuchowych: inicjacja, propagacja, terminacja, Przykłady polimerów i polikondensatów, struktury oraz przykłady syntez: poliolefiny, polimery winylowe, poliamidy, poliestry. Specjalne zastosowania polimerów: w medycynie, w syntezie chemicznej, w analityce, Elementy chemii supramolekularnej: etery koronowe, cyklodekstryny, cykloparafany, rozpoznanie cząsteczkowe: związki inkluzyjne i klatraty, wiązanie metali przez etery koronowe, kataliza przeniesienia fazy, modele enzymów i receptorów. Biomakromolekuły: Polipeptydy i białka, hierarchiczna struktura białek: aminokwasy; struktura pierwszorzędowa; metody sekwencjonowania; pojęcia struktur drugo-, trzecio- i czwartorzędowych; pojęcie domeny,

naddrugorzędowe struktury białek; graficzna reprezentacja struktury białek, procesy fałdowania białek, oddziaływanie enzym-substrat i enzym inhibitor, oddziaływanie antygen-przeciwciało, oddziaływanie polipeptyd-kwas nukleinowy, białka wiążące metale, synteza polipeptydów i białek, metody syntezy w roztworze i na nośniku stałym, białka rekombinacyjne. Kwasy nukleinowe: nukleotydy nukleozydy i polinukleotydy, konformacja oraz budowa przestrzenna. Cukry: monosacharydy, polisacharydy, oligosacharydy, metody badawcze, sekwencjonowanie oligosacharydów, konformacja monoi oligosacharydów, oddziaływania sacharydów z białkami. IX. Blok - Chemia komórki (5 godz.) Cele edukacyjne: Znajomość podstaw molekularnej organizacji komórki w aspekcie biochemicznym oraz chemicznym, podstawy biologii strukturalnej, znajomość podstawowych szlaków metabolicznych i umiejętność ich wzajemnego powiązania. Charakterystyka bloku: Tematy: Budowa komórki eukariotycznej i prokariotycznej, budowa wybranych organelli komórkowych z odniesieniem do funkcji biologicznej, podstawy strukturalne białek, kwasów nukleinowych (DNA i RNA), lipidów a także kofaktorów enzymatycznych (witaminy), proces oddychania tlenowego (glikoliza, cykl Krebsa i łańcuch transportu elektronów), proces translacji (inicjacja, elongacja i teminacja) i modyfikacje posttranslacyjne, enzymologia (klasyfikacja i specyficzność enzymatyczna oraz kinetyka enzymatyczna), procesy transportu komórkowego (symport, antyport, uniport). X. Blok - Biochemia (5 godz.) Cele edukacyjne: Poznanie podstawowych procesów biochemicznych, nomenklatury oraz budowy makrocząsteczek Charakterystyka bloku:

Tematy: Struktura i funkcja białek: budowa aminokwasów, wiązanie peptydowe, struktura I, II, III i IV rzędowa, a-helisa, struktury typu b. Proces fałdowania białek. Enzymy, molekularne mechanizmy wykorzystania energii wiązania w katalizie, mechanizm działania proteaz serynowych oraz lizozymu. Inhibitory: odwracalne nieodwracalne, inhibicja kompetycyjna, niekompetycyjna oraz akompetycyjna. Białka allosteryczne, mechanizm działania. Układ krzepnięcia krwi, kaskadowy charakter procesu, budowa fibrynogenu oraz fibryny. Trombina, plazmina oraz tkankowy aktywator plazminogenu. Translacja, lokalizacja procesu, budowa rybosomu. Modyfikacje posttranslacyjne i kierowanie białek. Białka chaperonowe - mechanizm działania, procesy degradacji białek. Budowa i mechanizm działania kanału receptora acetylocholinowego, pompy: sodowo potasowa oraz bakteriorodopsyna. Podstawy funkcjonowania układu immunologicznego: odpowiedź humoralna i komórkowa. Struktura immunoglobulin, receptora limfocytów T oraz MHC klasy I i II. Budowa i działanie wirusa HIV. Lipidy - budowa, skład błony biologicznej. Węglowodany - budowa, monosacharydy, polisacharydy, cukry zapasowe. Podstawowe pojęcia metabolizmu. Związki wysokoenergetyczne, przenośniki oksydoredukcyjne, witaminy. Podstawowe procesy kataboliczne: glikoliza, cykl kwasu cytrynowego i fosforylacja oksydacyjna. Fotosynteza i inne szlaki anaboliczne. Budowa i funkcje błon biologicznych. Podstawy genetyki klasycznej, populacyjnej i molekularnej. Podstawy biotechnologii. XI. Blok - Chemia medyczna (5 godz.) Cele edukacyjne: Przekazanie podstawowych wiadomości z zakresu chemii medycznej i chemii leków dotyczących klasyfikacji leków, miejsca ich działania, mechanizmów oddziaływania leków, projektowania leków i farmakokinetyki. Charakterystyka bloku: Tematy: Klasyfikacja leków. Historia chemii leków. Docelowe obiekty działania leków (lipidy, węglowodany, białka transportujące, białka strukturalne, enzymy, receptory, kwasy nukleinowe). Przeciwciała w chemii medycznej.. Zastosowanie inhibitorów enzymów w medycynie. Typy receptorów. Neuroprzekaźniki i hormony. Projektowanie agonistów i antagonistów.

Struktura receptora i transdukcja sygnałów (receptory kontrolujące kanały jonowe, receptory sprzężone z białkiem G, receptorowe kinazy proteinowe, receptory wewnątrzkomórkowe). Farmakodynamika. Leki działające na DNA i RNA. Etapy prowadzące od pomysłu do klinicznego zastosowania nowego preparatu. Wybór jednostki chorobowej. Wybór miejsca działania leku. Określenie badań biologicznych. Poszukiwanie struktury wiodącej. Izolowanie i oczyszczanie. Ustalenie budowy związku. Zależność między strukturą a działaniem związku. Metabolizm leków. Badania toksyczności. Badania kliniczne. Patenty. Projektowanie leków i oddziaływanie lek-miejsce działania. Ćwiczenia: Prezentacje uczniów dotyczące zagadnień: elementy komórki i ich znaczenie w interakcjach z lekami; oddziaływanie leków ze składnikami komórki; mechanizmy działania leków w obrębie komórki; klasyfikacja leków wg wybranych kryteriów; substancje aktywne biologiczne znaczenie w medycynie; strategie w projektowaniu nowych farmaceutyków; zależności: budowa a aktywność leków. XII. Blok Warsztaty. (5 godz.) Cele edukacyjne: Doskonalenie metod przeprowadzania i projektowania doświadczeń chemicznych. Udział w otwartych wykładach na Politechnice Poznańskiej, UAM, Uniwersytecie Medycznym, Uniwersytecie Przyrodniczym, zajęcia laboratoryjne w Sanepidzie, laboratorium analitycznym, na wydziale chemii UAM i Politechniki Poznańskiej. Środki dydaktyczne Foliogramy, filmy, prezentacje multimedialne, odczynniki chemiczne, karty pracy, kserokopie pomocy dydaktycznych. Proponowane metody nauczania Wykład informacyjny, dyskusja dydaktyczna, metoda tekstu przewodniego, metoda projektów, ćwiczenia praktyczne ( zajęcia laboratoryjne). Metody

nauczania powinny zapewniać wdrażanie do samodzielnego i logicznego myślenia oraz aktywny udział ucznia w rozwiązywanie problemów, stosowania zdobytej wiedzy w praktyce. Plan wynikowy Lp. Temat lekcji 1. Zapoznanie uczniów z programem nauczania i systemem oceniania. Przepisy BHP, regulamin. I. Blok - Chemia kwantowa 2 Postulaty mechaniki kwantowej. 3 Własności orbitali. Spin elektronowy. Sprzężenie spinowo-orbitalne. 4 Układy wieloelektronowe, przybliżenie jednoelektronowe, atom helu. 5 Wstęp do metod obliczeniowych chemii kwantowej. Korelacja elektronowa. Rozdzielenie ruchu jąder od elektronów - przybliżenie Borna- Oppenheimera, całkowita energia cząsteczki. Liczba Osiągnięcia uczniów Godzin lekcyjnych 1 Uczeń; - stosuje zasady BHP obowiązujące w pracowni chemicznej - zna wymagania i sposób oceniania stosowane przez nauczyciela 6 Zastosowania chemii - zna podstawy chemii kwantowej - zna podstawy chemii kwantowej - definiuje spin elektronowy - zna własności orbitali - zna podstawy chemii kwantowej - wie jak zbudowany jest atom helu - wie co to układy wieloelektrodowe i jednoelektronowe - zna podstawy chemii kwantowej - potrafi zastosować metody obliczeniowe w chemii kwantowej

kwantowej - optymalizacja struktury geometrycznej i określanie właściwości fizykochemicznych. II. Blok - Technologia chemiczna 7 Zasady technologiczne, operacje i aparatura 8 Kataliza przemysłowa. Schematy technologiczne. 9 Surowce przemysłu chemicznego. Rodzaje materiałów. Fizykochemiczne podstawy - rozumie naturę chemicznych mechanizmów tworzenia wiązań chemicznych - jest zaznajomiony z podstawowymi pojęciami technologicznymi, podstawowymi zasadami technologicznymi - zna podstawowe fizykochemiczne procesy technologiczne - zna operacje i aparaturę do: przenoszenia ciepła, transportu gazów, cieczy i ciał stałych, rozdrabniania i przesiewania, mieszania, rozdzielania zawiesin, suszenia, rozdzielania składników mieszanin - destylacji, rektyfikacji, krystalizacji, ekstrakcji, absorpcji, adsorpcji, odwróconej osmozy, filtracji, flotacji - zna podstawowe typy i zasady eksploatacji reaktorów chemicznych - potrafi przeprowadzić katalityczną dehydratację etanolu - omawia katalizę przemysłową - zna schematy technologiczne - rozróżnia podstawowe surowce przemysłu chemicznego

procesów technologicznych. 10 Przegląd ważniejszych technologii chemicznych. Technologie materiałów specjalnego przeznaczenia. Technologie bezodpadowe. Wybrane procesy biotechnologiczne. 11 Kryteria oceny jakości surowców i produktów przemysłu chemicznego i wytwórczości chemicznej. Wybrane metody i techniki analizy technicznej. - zna ich właściwości - klasyfikuje materiały stosowane w przemyśle chemicznym (materiały metaliczne, stopy - obróbka cieplna, korozja, erozja. Materiały ceramiczne, szkło - otrzymywanie, właściwości, stosowanie. Materiały specjalnego przeznaczenia. Materiały budowlane, powłoki malarskie, paliwa, oleje, rozpuszczalniki) - zna fizykochemiczne podstawy procesów technologicznych. - zna metody: otrzymywania miedzi elektrolitycznej, otrzymywania pigmentów mineralnych, organicznonieorganiczne polimery i szkła krzemowofosforanowe, otrzymywania i identyfikacji tworzyw sztucznych, - potrafi dokonać analizy wody - wymienia jonity i omawia wymianę jonową - zna nawozy mineralne - omawia proces transestryfikacji wyższych kwasów tłuszczowych na bazie oleju. - zna zabezpieczenia w trakcie stosowania materiałów w przemyśle chemicznym - umie postępować z odpadami - zna odnawialne źródła

surowców i energii - wymienia wybrane metody i techniki analizy technicznej III. Blok - Chemia analityczna 12 Rola analizy chemicznej w poznaniu procesów biologicznych. Kryteria wyboru reakcji chemicznych do celów analitycznych (kinetyczne i termodynamiczne). 13 Pobieranie i przygotowanie próbek do analizy ze szczególnym uwzględnieniem materiałów biologicznych i farmaceutycznych. 14 Równowagi chemiczne w układach homogennych: kwas-zasada, utleniaczreduktor, jon metalu-ligand oraz w układach heterogennych: osad-roztwór. 15 Czynniki wpływające na przesunięcie stanu równowagi chemicznej i jego konsekwencje analityczne. Reakcje - zna podstawowe pojęcia chemii analitycznej - potrafi obliczać stężenia - zna oddziaływania międzyjonowe, prawo Debay'a-Hückla - zna kryteria wyboru reakcji chemicznych do celów analitycznych (kinetyczne i termodynamiczne) - potrafi pobrać i przygotować próbki materiałów biologicznych i farmaceutycznych do analizy - klasyfikuje elektrolity mocne i słabe - zna prawo rozcieńczeń Ostwalda - zna reakcje kwas-zasada -wykonuje obliczenia ph kwasów i zasad wieloprotonowych, roztworów buforowych i soli słabych elektrolitów - wymienia reakcje w układach jednofazowych 1 Uczeń zna: - reakcje z przeniesieniem elektronów, metody analityczne oparte na tych reakcjach: manganometria,

w roztworach niewodnych. 16 Główne techniki analityczne uwzględniające identyfikację maskowanie, rozdział oraz klasyczne metody, oparte na w/w równowagach, ilościowego oznaczania pierwiastków (metody objętościowe i wagowe). jodometria, bromianometria -reakcje identyfikacji kationów wg Freseniusa -wybrane metody rozdziału: chromianowa, alkoholowa, siarczanowa - specjalne metody analizy: kroplowa i mikrokrystaliczna - metody oddzielania kationów III grupy: metoda siarczkowa i amoniakalna - rozdział w obecności jonów przeszkadzających - selektywne wytrącanie - właściwości siarczków II grupy i zasada podziału na podgrupy - równowagi heterogenne, procesy wpływające na przesunięcie równowagi heterogennej: objętościowa analiza strąceniowa i analiza wagowa 1 Uczeń zna: - podstawowe pojęcia - krzywe miareczkowania, wskaźniki - metody ilościowego przeprowadzania substancji stałej do roztworu - fizyczne metody analizy chemicznej, atomowa spektrometria emisyjna - klasyfikacja i badania wstępne w analizie anionów - analiza złożona makroi mikroskładnika - reakcje z przeniesieniem protonu i ich aspekty analityczne, alkacymetria - kompleksometrię. Równowagi kompleksowania

- reakcje w układach wielofazowych - strącanie osadów, rozpuszczalność - krzywe miareczkowania. Wskaźniki - potrafi zastosować komputer w analizie i obróbce danych - podaje przykłady zaawansowanych oznaczeń produktów naturalnych - ocenia wiarygodność metod analitycznych. IV. Blok - Metody fizykochemiczne 17 Podział technik analitycznych. - jest zapoznany ze spektroskopowymi i elektrochemicznymi metodami analizy chemicznej oraz z chromatograficznymi metodami rozdziału -posiada umiejętności statystycznego opracowania wyników powyższych metod analitycznych - definiuje potencjometrię z zastosowaniem elektrod jonoselektywnych; kulometrię, metody woltamperometryczne, konduktometrię - definiuje chromatografię gazową i cieczową - omawia rozdzielanie i analizę mieszanin za pomocą chromatografii gazowej i cieczowe - definiuje elektroforezę kapilarną 18 Spektrometria atomowa

i cząsteczkowa. Prawo Lamberta-Beera: zastosowania analityczne i odstępstwa. 19 Spektroskopia absorpcyjna i emisyjna w analizie chemicznej. Absorpcyjna (ASA) i emisyjna (EAS-ICP) spektroskopia atomowa i ich zastosowania w analizie śladowych i ultraśladowych stężeń metali. 20 Spektroskopia molekularna w zakresie UV-VIS, analityczne zastosowania spektrofotometrii i spektrofluorymetrii. Spektrometria FTIR i techniki refleksyjne pomiaru widm w podczerwieni. 21 Spektroskopia ramanowska w analizie układów biologicznych. Analityczne aspekty metody NMR. - ćwiczy oznaczanie ilościowe niektórych składników surowicy krwi (syntetyczna surowica, sporządzona zgodnie z przepisem przez nauczyciela) - potrafi ilościowo oznaczać witaminy w preparatach farmaceutycznych i środkach spożywczych, oznacza czynniki mutagenne, oznacza metale ciężkie: ołów, kadm, arsen i cynk - potrafi stosować metody analityczne - zna fotometrię płomieniową zna tomową spektroskopię absorpcyjną (ASA) oraz emisyjną (ICP-ESA) spektrofotometrię w zakresie UV i widzialnym - wie na czym polega spektrofluorymetria, spektrometria IR - potrafi omówić spektrometrię masową - podaje zastosowanie do identyfikacji i analizy strukturalnej związków organicznych - zna metody elektroanalityczne. Potencjometria, elektrody jonoselektywne i biosensory.

Polarograficzne metody analizy. - zna zastosowania metody kulorymetrycznej w analizie przemysłowej i monitoringu zanieczyszczeń atmosfery V. Blok Krystalochemia 22 Postać krystaliczna jako jeden z wielu stanów występowania materii. 23 Wstępne informacje o kryształach i metodach ich badań. 24 Typy i charakterystyka kryształów. 25 Analiza geometryczna związków chemicznych oraz jej interpretacja. 26 Bazy danych jako źródło wiedzy chemicznej. VI. Blok - Chemia środowiska 27 Zakres i zadania nauki o środowisku (podstawowe definicje i pojęcia). Koncepcja zrównoważonego rozwoju - chemia przyjazna człowiekowi i otoczeniu. - posiada umiejętności stosowania baz krystalograficznych do celów chemicznych - zna i omawia metody obrazowania struktur: opisowe, graficzne i liczbowe. - zna typy kryształów -potrafi scharakteryzować określony typ kryształu - dokonuje analizy związków chemicznych na podstawie geometrii związków chemicznych - potrafi wyciągać wnioski wynikające z badań kryształów. - jest zapoznany z podstawowymi problemami dotyczącymi zagadnień środowiskowych - potrafi omówić zanieczyszczenia poszczególnych ekosystemów oraz możliwości ochrony

przed nimi - zna koncepcja zrównoważonego rozwoju - potrafi racjonalne korzystać z zasobów środowiska. 28 Pierwiastki biogenne i cykle biogeochemiczne. 29 Klasyfikacja i składowanie odpadów. 30 Źródła energii oraz odnawialne źródła surowców i energii. 31 Litosfera - gleby (degradacja, denudacja, zmęczenie). Atmosfera - skład i struktura (zmiany cykliczne - zna skutki obecności substancji zarówno pochodzenia naturalnego jak i antropogennego w środowisku. - klasyfikuje odpady ciekłe, ścieki oraz procesy ich oczyszczania - omawia procesy uzdatniania wody - wie jak unieszkodliwiać i składować odpady stałe - komunalne, przemysłowe i specjalne redukcja, recykling, segregacja; paliwa, oleje, rozpuszczalniki zabezpieczenia, utylizacja; odpady gazowe - zna metody usuwania zanieczyszczeń gazowych; odsiarczanie spalin - potrafi postępować z odpadami z gospodarstw domowych - segregacja, recykling, utylizacja, zagospodarowanie - podaje i omawia źródła energii - zna odnawialne źródła energii - podaje sposoby zwiększania produkcji żywności (nawożenie, ochrona roślin)

i acykliczne). Hydrosfera charakterystyka w środowisku i klasyfikacja. - wymienia i omawia środki ochrony roślin - stosowanie, szkodliwość, zabezpieczenia w trakcie stosowania - wymienia chemiczne zanieczyszczenia i skażenia gleb - omawia rekultywację - zna pestycydy (podział oraz ogólna charakterystyka toksykologiczna, adsorpcja i degradacja) - podaje podstawowe zanieczyszczenia i skażenia żywności oraz dodatki do żywności - wymienia źródła zanieczyszczeń atmosfery i mechanizmy samoregulacji. Aerozole i smogi - omawia efekt cieplarniany, ozon w atmosferze, kwaśne opady atmosferyczne (wpływ na środowisko przyrodnicze, hipotezy zamierania lasów) wymienia chemiczne zanieczyszczenia wód (czynniki wpływające na specjację substancji chemicznych) - charakteryzuje ropę naftową i zanieczyszczenia olejowe - omawia detergenty i środki czyszczące - oddziaływanie na środowisko, utylizacja odpadów - definiuje pojęcie eutrofizacja - zna wskaźniki zanieczyszczenia wód - system saprobów - charakteryzuje procesy samooczyszczania się wód - omawia problem Bałtyku

VII. Blok - Chemia bionieorganiczna 32 Metale w procesach biologicznych. 33 Homeostaza jonów metali. Relacje między właściwościami chemicznymi jonu metalu a jego funkcją biologiczną. 34 Metaloproteiny oraz metaloenzymy. Metale w biologii kwasów nukleinowych. 35 Wapń w układach biologicznych. Transport i magazynowanie żelaza i miedzi 36 Metale w medycynie, wprowadzenie do chemii leków nieorganicznych. VIII. Blok - Chemia makromolekuł 37 Chemia polimerów. Podstawowe pojęcia chemii polimerów (makromolekuły, polimeru, polimeryzacja). Mechanizmy reakcji łańcuchowych: inicjacja, propagacja, terminacja. - zna podstawowe pojęcia chemii bionieorganicznej - nabywa umiejętności wyszukiwania i prezentowania informacji - definiuje pojęcie homeostaza - potrafi przedstawić relację między właściwościami chemicznymi jonu metalu a jego funkcją biologiczną - definiuje pojęcia metaloproteiny oraz metaloenzymy - zna znaczenie metali w biologii kwasów nukleinowych - potrafi omówić rolę wapnia, żelaza i miedzi w układach biologicznych - wie, jaką rolę pełnią metale w medycynie - wymienia czynniki chelatujące jony metali w medycynie - omawia neurobiologię jonów metali. - opanował podstawy chemii związków wielkocząsteczkowych w powiązaniu z chemią organiczną - nabył umiejętności łączenia