Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE. Rozwiązania. Wartość bezwzględna jest odległością na osi liczbowej.



Podobne dokumenty
Rozwiązania zadań. Arkusz maturalny z matematyki nr 1 POZIOM PODSTAWOWY

Rozwiązania zadań. Arkusz Maturalny z matematyki nr 1 POZIOM ROZSZERZONY. Aby istniały dwa różne pierwiastki równania kwadratowego wyróżnik

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale

Matura próbna 2014 z matematyki-poziom podstawowy

A. fałszywa dla każdej liczby x.b. prawdziwa dla C. prawdziwa dla D. prawdziwa dla

EGZAMIN MATURALNY Z MATEMATYKI

Tematy: zadania tematyczne

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

ARKUSZ X

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka Poziom podstawowy

PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI

I Liceum Ogólnokształcące w Warszawie

MATEMATYKA ZBIÓR ZADAŃ MATURALNYCH. Lata Poziom podstawowy. Uzupełnienie Zadania z sesji poprawkowej z sierpnia 2019 r.

PRÓBNA MATURA ZADANIA PRZYKŁADOWE

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ NA ROK SZKOLNY 2011/2012 DO PROGRAMU MATEMATYKA Z PLUSEM

1. Proporcjonalnością prostą jest zależność opisana wzorem: x 5

Szkice rozwiązań zadań z arkuszy maturalnych zamieszczonych w 47. numerze Świata Matematyki, który można nabyć w sklepie na

Matematyka rozszerzona matura 2017

Propozycje rozwiązań zadań otwartych z próbnej matury rozszerzonej przygotowanej przez OPERON.

ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna

PRÓBNA MATURA ZADANIA PRZYKŁADOWE

VIII. ZBIÓR PRZYKŁADOWYCH ZADAŃ MATURALNYCH

Praca kontrolna z matematyki nr 1 Liceum Ogólnokształcące dla Dorosłych Semestr 5 Rok szkolny 2014/2015

Nazwisko i imię.. PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska. 2 3x. 2. Sformułuj odpowiedź.

ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 2 POZIOM PODSTAWOWY. Etapy rozwiązania zadania

PRÓBNY EGZAMIN MATURALNY Z NOWĄ ERĄ

ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI

PRÓBNY EGZAMIN MATURALNY

ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI

LUBELSKA PRÓBA PRZED MATURĄ 2016 poziom podstawowy M A T E M A T Y K A 09 MARCA Instrukcja dla zdającego Czas pracy: 170 minut

LUBELSKA PRÓBA PRZED MATURĄ 09 MARCA Kartoteka testu. Maksymalna liczba punktów. Nr zad. Matematyka dla klasy 3 poziom podstawowy

7. PLANIMETRIA.GEOMETRIA ANALITYCZNA

Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 2017/2018.

UZUPEŁNIA ZDAJĄCY miejsce na naklejkę

POZIOM PODSTAWOWY - GR 1 Czas pracy 170 minut

11. Znajdż równanie prostej prostopadłej do prostej k i przechodzącej przez punkt A = (2;2).

MATEMATYKA KLASY III gimnazjum LICZBY I WYRAŻENIA ALGEBRAICZNE

Model odpowiedzi i schemat oceniania do arkusza I

PRÓBNY ARKUSZ MATURALNY Z MATEMATYKI

NOWA FORMUŁA EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MMA 2019 UZUPEŁNIA ZDAJĄCY. miejsce na naklejkę UZUPEŁNIA ZESPÓŁ NADZORUJĄCY

PRÓBNY EGZAMIN MATURALNY

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą

PYTANIA TEORETYCZNE Z MATEMATYKI

LUBELSKA PRÓBA PRZED MATURĄ 2016 poziom podstawowy M A T E M A T Y K A 09 MARCA Instrukcja dla zdającego Czas pracy: 170 minut

Arkusz I Próbny Egzamin Maturalny z Matematyki

ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna

PODKARPACKI SPRAWDZIAN PRZEDMATURALNY Z MATEMATYKI DLA KLAS DRUGICH POZIOM PODSTAWOWY

ZADANIA PRZED EGZAMINEM KLASA I LICEUM

TO TRZEBA ROZWIĄZAĆ-(I MNÓSTWO INNYCH )

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ W RUDKACH

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

Wymagania edukacyjne, kontrola i ocena. w nauczaniu matematyki w zakresie. podstawowym dla uczniów technikum. część II

Wymagania edukacyjne na poszczególne stopnie szkolne klasa III

KORESPONDENCYJNY KURS PRZYGOTOWAWCZY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY

na postać kanoniczną, podaj współrzędne wierzchołka paraboli i określ czy jej ramiona są skierowane w górę czy w dół.

Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas II w roku szkolnym 2016/2017 w Zespole Szkół Ekonomicznych w Zielonej Górze

FUNKCJA LINIOWA - WYKRES

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

LUBELSKA PRÓBA PRZED MATURĄ

Rozwiązania listopad 2016 Zadania zamknięte = = = 2. = =1 (D) Zad 3. Październik x; listopad 1,1x; grudzień 0,6x. (D) Zad 5. #./ 0'!

Wskazówki do zadań testowych. Matura 2016

EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

PRÓBNY EGZAMIN MATURALNY

Czas pracy: 170 minut. Liczba punktów do uzyskania: 50. UZUPEŁNIA UCZEŃ miejsce KOD UCZNIA PESEL na naklejkę z kodem UZUPEŁNIA ZESPÓŁ NADZORUJĄCY

PRÓBNY EGZAMIN MATURALNY

EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

Stowarzyszenie Nauczycieli Matematyki

LUBELSKA PRÓBA PRZED MATURĄ klasa 2 poziom podstawowy

STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH

PRÓBNY EGZAMIN MATURALNY

Propozycje rozwiązań zadań z matematyki - matura rozszerzona

Uniwersytet Mikołaja Kopernika w Toruniu. Egzamin wstępny z matematyki

LUBELSKA PRÓBA PRZED MATURĄ MATEMATYKA - poziom podstawowy

PRÓBNY EGZAMIN MATURALNY

Przykładowe rozwiązania

Zadania do samodzielnego rozwiązania zestaw 11

SPIS TREŚCI WSTĘP LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 25 SIERPNIA Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50

1. FUNKCJE DZIAŁ Z PODRĘCZNIKA L.P. NaCoBeZu kryteria sukcesu w języku ucznia

MATURA PRÓBNA - odpowiedzi

NOWA FORMUŁA EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MMA 2019 UZUPEŁNIA ZDAJĄCY. miejsce na naklejkę UZUPEŁNIA ZESPÓŁ NADZORUJĄCY

UZUPEŁNIA ZDAJĄCY miejsce na naklejkę

odczytywać własności funkcji y = ax 2 na podstawie funkcji y = ax 2 szkicować wykresy funkcji postaci y = ax,

1) 2) 3) 5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 15) 16) 17) 18) 19) 20) 21) 22) 23) 24) 25)

Dopuszczający Dostateczny Dobry Bardzo dobry Celujący

KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 7 MAJA Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale

PRÓBNY EGZAMIN MATURALNY

Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM w roku szkolnym 2015/2016

EGZAMIN MATURALNY Z MATEMATYKI

Transkrypt:

Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE Rozwiązania Zadanie 1 Wartość bezwzględna jest odległością na osi liczbowej. Stop Istnieje wzajemnie jednoznaczne przyporządkowanie między punktami osi liczbowej i liczbami rzeczywistymi. Zaznaczony punkt na osi liczbowej oznacza ustaloną liczbę rzeczywistą. Zatem jest odległością liczby jest odległością liczby Ponieważ jest liczbą ujemną mniejszą niż, a 2 jest liczbą większą od 1, więc spełniona jest nierówność bo odległość od do 2 jest większa niż do. Zadanie 2 Skorzystamy z własności wartości bezwzględnej, 25

Zadanie 3 Skorzystamy z definicji logarytmu, gdyż, gdyż 2,5 Zadanie 4 Rys.4 Wprowadzamy oznaczenia jak na rysunku zauważając, że styczna jest prostopadła do promienia suma kątów w trójkącie jest równa suma kątów przyległych jest równa Trójkąt COA jest równoramienny, bo okręgu mają równe długości. gdyż promienie tego samego Zatem Zadanie 5

Symbol oznacza sumę n początkowych wyrazów ciągu, zaś Zatem 26 Zadanie 6, Zadanie 7 W zbiorze liczb jest 5 cyfr, a kody tworzone z tych cyfr mają mieć po 3 znaki, które mogą się powtarzać np. Szukamy więc liczby uporządkowanych trójek cyfr z podanego zbioru i z możliwością powtórzeń. Pierwszy znak kodu możemy wybrać na 5 sposobów. Drugi na 5 sposobów. Trzeci na 5 sposobów.

Na każdy pierwszy znak przypada 5 drugich, więc wybranie pierwszych dwóch znaków kodu daje możliwości. Na każdy układ z jest więc przypada 5, które zajmą trzecie miejsce. Wszystkich 125 Zadanie 8 Zadanie 9 Oznaczenie zdarzenie polegające na wylosowaniu króla tyle jest wszystkich możliwości losowania 1 karty tyle jest możliwości wylosowania króla Korzystamy z definicji klasycznej prawdopodobieństwa

Zadanie 10 Dowolny trójkąt prostokątny obracamy wokół przeciwprostokątnej c. Na rysunku Rys 7 Otrzymujemy dwa stożki sklejone podstawami o wysokościach Skoro wysokości mają mieć równe długości, to Wtedy W trójkącie prostokątnym wysokość poprowadzona z wierzchołka kąta prostego dzieli więc przeciwprostokątną na połowy. Rys. 8 Trójkąty są prostokątne o wspólnym boku i Zatem co oznacza, że trójkąt musi być trójkątem równoramiennym. Równoramienny Zadanie 11 Możemy zadanie rozwiązać dwoma sposobami

1. Sprawdzać kolejno podstawiając współrzędne punktów do podanych równań pamiętając, że jest pierwszą współrzędną a drugą. 2. Rozwiązując układ równań, ustalając punkty przecięcia krzywych i wybierając z podanych punktów odpowiedź. Stosujemy metodę 2. Oba podane równania spełniają dwa punkty Zadanie 12 Rys 10 Oznaczenia Długość półokręgu

Po zwinięciu półkola powstał stożek, w którym tworząca długość okręgu w podstawie jest równa 6cm Zadanie 13 Otrzymujemy trzy rozwiązania: Odp Zadanie 14 Wynikiem jest wielomian

Zadanie 15 Zadanie 16 Oznaczenie Stosujemy wzór na pole powierzchni kuli Stosujemy wzór na objętość kuli

Zadanie 17 Oznaczenia Podajemy wzory na pola powierzchni sześcianów Do dwukrotnym zwiększeniu długości krawędzi sześcianu pole zwiększy się Podajemy wzory na objętości sześcianów Po dwukrotnym zwiększeniu długości krawędzi sześcianu objętość zwiększy się ośmiokrotnie. Pole 4 razy większe, objętość 8 razy większa. Zadanie 18 Ustalamy dziedzinę funkcji

Zadanie 19 Sposób I Ponieważ na osi zaznaczony jest przedział domknięty, to nie jest on rozwiązaniem nierówności drugiej i czwartej. Pozostają do rozwiązania nierówności pierwsza i trzecia. Sposób II Można rozwiązywać każdą z nierówności i porównywać odpowiedź z podanym przedziałem. Zastosujemy drugi sposób. Rys.12 Na rysunkach zaznaczone są szkice wykresów funkcji kwadratowych o pierwiastkach Miejscami zerowymi funkcji są liczby Korzystamy z wykresu

0 Miejscami zerowymi funkcji są liczby Korzystamy z wykresu Miejscami zerowymi funkcji są liczby Korzystamy z wykresu Miejscami zerowymi funkcji są liczby Korzystamy z wykresu Jedynie rozwiązanie nierówności osi. jest zgodne z zaznaczonym przedziałem na Odp Zadanie 20 Prosta ma współczynnik kierunkowy równy, bo równanie można zapisać w postaci Wobec warunku równoległości prostych musi zachodzić

Zatem Zadanie 21 Obliczamy podatek Cena końcowa Zadanie 22 Z danego wyrazu wybieramy po 2 litery i tworzymy wyraz mający sens lub nie. Litery w tym wyrazie nie powtarzają się. Możemy to zrobić następująco: pierwszą literę wybieramy na drugą literę dobieramy do pierwszej już na Wszystkich wyrazów będzie. Z treści zadania

Można rozwiązać równanie kwadratowe albo zgadnąć liczbę naturalną, która po pomnożeniu przez liczbę o 1 mniejszą da 30. Trzeba ją poszukać wśród podzielników liczby 30. Taką liczbą jest, bo 6 Zadanie 23 Rys.13 Oznaczenia Z trójkąta zaznaczonego na rysunku 8 Zadanie 24 Rys 14 Oznaczenia

Trójkąt jest równoboczny, to jest średnicą podstawy stożka i i Ponieważ przekrój poprzeczny przechodzi przez środek wysokości, to i skala podobieństwa jest równa, wtedy Z treści zadania pole koła o średnicy jest równe Obliczamy objętość stożka Zadanie 25 Rys.15

W sześcian został wpisany ośmiościan foremny, którego każda ściana jest trójkątem równobocznym. Sześcian ma 8 wierzchołków i 6 ścian Ośmiościan ma 6 wierzchołków i 8 ścian Podajemy liczbę krawędzi sześcian ma 12 krawędzi ośmiościan ma 12 krawędzi Obie bryły: Zadanie 26 (2pkt) Rys.2 ZADANIA OTWARTE Z rysunku widać, że prosta ma z parabolą dwa punkty wspólne i nie przecina okręgu. Sprawdzamy czy prosta nie przecina okręgu rozwiązując układ równań

Równanie nie ma rozwiązania, więc prosta nie ma punktu wspólnego z okręgiem. Funkcja ma miejsca zerowe. Ustalamy współrzędne wierzchołka W paraboli Dla punkt na prostej ma rzędną 2, która jest mniejsza od stąd punkt W leży powyżej prostej i prosta musi przecinać parabolę w 2 punktach. Ustalamy punkty wspólne paraboli i prostej Sposób 1. Rozwiązujemy układ Punkty Sposób 2. Można odczytać z wykresu punkty wspólne prostej i paraboli I wtedy trzeba sprawdzić czy te punkty spełniają równania prostej i paraboli, co łatwo jest widoczne.

2 punkty: Zadanie 27 (2pkt) Sposób 1. Dla Zastosowaliśmy wzór na kwadrat różnicy. Sposób 2. Dla Zastosowaliśmy wzór na różnicę kwadratów. Sposób 3. Dla Skorzystaliśmy z własności kwadratu liczby W każdym sposobie po przekształceniu występuje dla. i nie otrzymamy Ale przyrównajmy,

podanym zbiorze. zachodzi tylko dla, a więc jest sprzeczna w Zadanie 28 (2pkt) Sprawdzamy czy uzyskane pierwiastki mogą być: Ponieważ, zatem w zależności od wyboru kąta ostrego w trójkącie prostokątnym mamy Zadanie 29 (3pkt) Równanie jest kwadratowe. Obliczamy.

Rozwiązujemy równanie w 3 przypadkach Dla Równanie ma postać i jedno rozwiązanie Dla równanie ma dwa rozwiązania lub Dla równanie jest sprzeczne czyli ma zero rozwiązań.

to 1 rozwiązanie; to 2 rozwiązania; to 0 rozwiązań ) a) Wykres funkcji przecina oś w punktach, które są miejscami zerowymi funkcji. b) Osią symetrii paraboli jest prosta równoległa do osi i przechodząca przez wierzchołek paraboli. Taką prostą jest. c) Zbiór wartości funkcji odczytujemy na osi Zatem a) b) c) Zadanie 31 (2pkt) Porządkujemy dane malejąco: a) Wpisujemy dane do tabeli w 2-ej kolumnie. Różnice danych od maksymalnej liczby punktów, którą mogą uzyskać zawodniczki, wpisujemy do 3-ej kolumny. Lp. Dane Różnice 1 2 3 4 5 6 7 760 539 414 329 282 256 255 40 261 386 471 518 544 545 Razem 2835 2765 Obliczamy średnią danych z 2-ej kolumny

Obliczamy średnią różnic z 3-ej kolumny Średnio najlepszym zawodniczkom na etapie przedstawiania uzyskanych ilości punktów brakowało do 800 punktów 395, ale zdobyły więcej, bo średnio 405 punktów, wykazały więc dość wysoki poziom w tej dyscyplinie. b) Medianę wyników odczytujemy z podanych liczb uporządkowanych malejąco: Ponieważ liczba danych jest nieparzysta, to z podanego ciągu wybieramy wynik środkowy Liczba ta dzieli zestaw danych na takie, które są od niej większe (lepsze zawodniczki) i które są od niej mniejsze (słabsze zawodniczki). Wynik 4-ej zawodniczki na liście ustala ten podział., Zadanie 32 (3pkt) Korzystamy ze wzoru gdzie Oznaczenia czas przejazdu drogi z prędkością

czas przejazdu drogi z prędkością Obliczamy średnią prędkość na całej trasie Zadanie 33 (4pkt) Trójkąty są podobne, bo i i kąty odpowiadające są równe. Oznaczenia wysokość trójkąta wysokość trójkąta Z podobieństwa co oznacza, że skala k podobieństwa tych trójkątów spełnia warunek i wynosi. Zatem stosunek wysokości trójkątów jest równy

Stąd skala podobieństwa trójkątów Z równoległości odcinków i czworokąt jest równoległobokiem i oraz jego wysokością jest h. Zadanie 34 (5pkt) Rys.9 Oznaczenia a) Z trójkąta

Obliczamy promień półokręgu tworzącego ucho kubka Długość ucha kubka [cm] b) W czworokącie wielkie koło kuli musi być styczne do oraz powinno być albo rozłączne z odcinkiem albo do niego styczne. Sprawdzamy więc czy wielkie koło kuli jest wpisane w trapez co jest prawdą, gdyż. Wysokość stożka jest średnicą kuli. Zatem a) 10,55cm b) 243,22