Sylabus modułu: Analiza instrumentalna (0310-TCH-S1-014)



Podobne dokumenty
Sylabus modułu: Analiza instrumentalna (0310-CH-S2-018)

Sylabus modułu: Analiza instrumentalna w przemyśle budowlanym (0310-CH-S2-B-063)

2. Metody, których podstawą są widma atomowe 32

Materiał obowiązujący do ćwiczeń z analizy instrumentalnej II rok OAM

I WYDZIAŁ MATEMATYCZNO-PRZYRODNICZY. SZKOŁA NAUK ŚCISŁYCH

SYLABUS. WYDZIAŁ FARMACEUTYCZNY Zakład Chemii Analitycznej...

Uniwersytet Śląski w Katowicach str. 1 Wydział

SYLABUS. WYDZIAŁ FARMACEUTYCZNY Zakład Chemii Analitycznej... NAZWA KIERUNKU: ANALITYKA MEDYCZNA... PROFIL KSZTAŁCENIA: PRAKTYCZNY...

Analiza instrumentalna

Załącznik Nr 5 do Zarz. Nr 33/11/12

Uniwersytet Śląski w Katowicach str. 1 Wydział

Kierunek i poziom studiów: Chemia, drugi Sylabus modułu: Spektroskopia (0310-CH-S2-016)

Sylabus modułu: Chemia analityczna (0310-CH-S1-011)

Sylabus modułu: Laboratorium badań materiałów (0310-CH-S1-015)

PRZEWODNIK PO PRZEDMIOCIE

Spis treści CZĘŚĆ I. PROCES ANALITYCZNY 15. Wykaz skrótów i symboli używanych w książce... 11

WYMAGANIA DO KOLOKWIUM

Uniwersytet Śląski w Katowicach str. 1 Wydział Matematyki, Fizyki i Chemii

Kierunek i poziom studiów: chemia poziom pierwszy Sylabus modułu: Podstawy Chemii B 0310-CH-S1-010

Spektrofotometria ( SPF I, SPF II ) Spektralna analiza emisyjna ( S ) Fotometria Płomieniowa ( FP )

Sylabus modułu: Moduł przedmiotów specjalizacyjnych B (0310-CH-S2-005)

S YLABUS MODUŁU (PRZEDMIOTU) I nformacje ogólne

SYLABUS. WYDZIAŁ FARMACEUTYCZNY Zakład Chemii Analitycznej... NAZWA KIERUNKU: FARMACJA...

ANALIZA INSTRUMENTALNA

Egzamin końcowy Średnia arytmetyczna przedmiotów wchodzących w skład modułu informacje dodatkowe

SYLABUS. WYDZIAŁ FARMACEUTYCZNY Zakład Chemii Analitycznej... NAZWA KIERUNKU: FARMACJA... PROFIL KSZTAŁCENIA: PRAKTYCZNY...

Uniwersytet Śląski w Katowicach str. 1 Wydział. Henryk Duda, II Stacjonarne Odrębna ocena z wykładów i laboratorium

Data wydruku: Dla rocznika: 2015/2016. Opis przedmiotu

Karta (sylabus) modułu/przedmiotu ELEKTROTECHNIKA (Nazwa kierunku studiów)

Egzamin końcowy obejmujący wykład i laboratorium Średnia arytmetyczna przedmiotów wchodzących w skład modułu informacje dodatkowe

Metody spektroskopowe:

Kierunek i poziom studiów: Chemia, drugi Sylabus modułu: Przedmiot A związany ze specjalnością (0310-CH-S2-001) Nazwa wariantu modułu: Termodynamika

Kierunek i poziom studiów: Biologia, poziom pierwszy

Kierunek i poziom studiów: Biotechnologia, pierwszy Sylabus modułu: Chemia ogólna (1BT_05)

Specjalność. Nie dotyczy. Rok, semestr studiów np. rok 1, semestr (I i II) Liczba przypisanych punktów ECTS (z rozbiciem na semestry )

Materiał obowiązujący do ćwiczeń z analizy instrumentalnej II rok WF (kierunek farmacja)

Uniwersytet Śląski w Katowicach str. 1 Wydział

Inżynieria środowiska II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Wydział Budownictwa i Inżynierii Środowiska. Poziom i forma studiów. Ścieżka dyplomowania: przedmiotu: 0) Semestr: W - 15 C- 0 L- 30 P- 0 Ps- 0 S- 0

3. Ogniwa galwaniczne i ich podział (ogniwa chemiczne i stężeniowe). 5. Zasada i sposoby pomiaru siły elektromotorycznej ogniwa (metoda kompensacyjna

Kierunek i poziom studiów: Technologia chemiczna, pierwszy Sylabus modułu: Automatyka i pomiar wielkości fizykochemicznych (0310-TCH-S1-021)

Nowoczesne metody analizy pierwiastków

ZAKRES MATERIAŁU Z ANALIZY INSTRUMENTALNEJ

KARTA MODUŁU KSZTAŁCENIA

Kierunek i poziom studiów: Biotechnologia, poziom pierwszy Sylabus modułu: Metody biotechnologiczne w ochronie środowiska (1BT_27)

Uniwersytet Śląski w Katowicach str. 1 Wydział

Analiza i monitoring środowiska

RENTGENOGRAFIA. Poziom przedmiotu Studia I stopnia niestacjonarne Liczba godzin/zjazd 1W e, 2L PRZEWODNIK PO PRZEDMIOCIE

CHEMIA ANALITYCZNA. Chemia analityczna am_s_s0-1. podstawowy. dr hab. Joanna Giebułtowicz NIE. dr hab. Joanna Giebułtowicz

Inżynieria środowiska II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Uniwersytet Śląski w Katowicach str. 1 Wydział

POTENCJOMETRIA KONDUKTOMETRIA

Techniki analityczne. Podział technik analitycznych. Metody spektroskopowe. Spektroskopia elektronowa

Kierunek i poziom studiów: Chemia budowlana, II stopień Sylabus modułu: Chemia ciała stałego 0310-CH-S2-B-065

POTENCJOMETRIA KONDUKTOMETRIA

WYSOKOSPRAWNA CHROMATOGRAFIA CIECZOWA (HPLC) - ZAGADNIENIA DO OPRACOWANIA SEMESTR IV

Kierunek i poziom studiów: Chemia sądowa, II stopień. Sylabus modułu: : Moduł przedmiotów specjalizacyjnych A

Metody chemiczne w analizie biogeochemicznej środowiska. (Materiał pomocniczy do zajęć laboratoryjnych)

Uniwersytet Śląski w Katowicach str. 1 Wydział

KARTA KURSU (realizowanego w module specjalności) Biologia z przyrodą.

Uniwersytet Śląski w Katowicach str. 1 Wydział

Uniwersytet Śląski w Katowicach str. 1 Wydział

Nazwa wariantu modułu (opcjonalnie): Ekologia i ekofizjologia 0310-CH-S1-043

Sylabus - Identyfikacja Związków Organicznych

Chemia analityczna. I nformacje ogólne. Nazwa modułu. Kod modułu. Chemia analityczna F8/B

PRZEWODNIK PO PRZEDMIOCIE

S YL AB US MODUŁ U ( PRZEDMIOTU) I nforma cje ogólne

Karta (sylabus) modułu/przedmiotu ELEKTROTECHNIKA (Nazwa kierunku studiów)

SYLABUS. WYDZIAŁ FARMACEUTYCZNY Zakład Chemii Analitycznej... NAZWA KIERUNKU: ANALITYKA MEDYCZNA...

Uniwersytet Śląski w Katowicach str. 1 Wydział

Kierunek i poziom studiów: Chemia poziom drugi Sylabus modułu: Pracownia magisterska B

Uniwersytet Śląski w Katowicach str. 1 Wydział

Zakres wymagań przedmiotu Analiza instrumentalna

Chemia bionieorganiczna

S YLABUS MODUŁU (PRZEDMIOTU) I nformacje ogólne. Nie dotyczy

Nazwa wariantu modułu (opcjonalnie): Laboratorium programowania w języku C++

II WYDZIAŁ MATEMATYCZNO-PRZYRODNICZY. SZKOŁA NAUK ŚCISŁYCH

Teoria procesów spawalniczych Theory of welding processes Forma studiów: Stacjonarne Poziom kwalifikacji: I stopnia. Liczba godzin/tydzień: 2W E, 1C

Atomowa spektrometria absorpcyjna i emisyjna

OZNACZANIE ŻELAZA METODĄ SPEKTROFOTOMETRII UV/VIS

PRZEWODNIK PO PRZEDMIOCIE

Podhalańska Państwowa Wyższa Szkoła Zawodowa w Nowym Targu

SYLABUS. Wydział Biologiczno-Rolniczy. Katedra Chemii i Toksykologii Żywności

Uniwersytet Śląski w Katowicach str. 1 Wydział

KRYTERIA WYBORU W PLANOWANIU I REALIZACJI ANALIZ CHEMICZNYCH

SYLABUS. WYDZIAŁ FARMACEUTYCZNY Zakład Chemii Analitycznej, Zakład Chemii Bionieorganicznej. NAZWA KIERUNKU: ANALITYKA MEDYCZNA...

Podstawy fizyki IV - Optyka, Fizyka wspólczesna - opis przedmiotu

Karta (sylabus) modułu/przedmiotu ELEKTROTECHNIKA (Nazwa kierunku studiów)

Instrukcja do ćwiczeń laboratoryjnych

Treść modułu zajęć (program wykładów i pozostałych zajęć)

Uniwersytet Śląski w Katowicach str. 1 Wydział Matematyki, Fizyki i Chemii

SYLABUS. Wydział Biologiczno-Rolniczy. Katedra Chemii i Toksykologii Żywności

PRZEWODNIK PO PRZEDMIOCIE

Nazwa przedmiotu BAZY DANYCH I METODY KOMPUTEROWE W KRYSTALOGRAFII Databases and Computer Methods in Crystallography

Nazwa przedmiotu INSTRUMENTARIUM BADAWCZE W INŻYNIERII MATERIAŁOWEJ Instrumentation of research in material engineering

INSTRUMENTALNE METODY ANALIZY CHEMICZNEJ

Rok akademicki: 2030/2031 Kod: STC OS-s Punkty ECTS: 2. Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne

Kierunek i poziom studiów: Sylabus modułu: Chemia organiczna (0310-CH-S1-026) Nazwa wariantu modułu (opcjonalnie):

PRZEWODNIK PO PRZEDMIOCIE

Transkrypt:

Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: technologia chemiczna Sylabus modułu: Analiza instrumentalna (0310TCHS1014) 1. Informacje ogólne koordynator modułu Rafał Sitko rok akademicki 2014/2015 semestr pierwszy/zimowy forma studiów stacjonarne sposób ustalania oceny Średnia arytmetyczna: końcowej modułu Ocena końcowa = 0.5 x wykład + 0.5 x laboratorium Warunkiem uzyskania pozytywnej oceny końcowej jest uzyskanie pozytywnych ocen ze wszystkich sposobów efektów kształcenia. 2. Opis zajęć dydaktycznych i pracy studenta Wykład prowadzący treści zajęć Rafał Sitko 0310TCHS1 014_fs_1 1. Podstawowe pojęcia i cele współczesnej analizy instrumentalnej. Sygnał analityczny, kalibracja. Wstęp do metod spektroskopowych, oddziaływanie promieniowania elektromagnetycznego z materią. 2. Budowa spektrometrów: źródła promieniowania, monochromatyzacja i detekcja. Podział i podstawy metod spektroskopowych: absorpcyjnych, emisyjnych i fluorescencyjnych. 3. Wstęp do atomowych metod spektroskopowych: podział, powstawanie widm atomowych, szerokość linii widmowych. Podstawy emisyjnej spektrometrii atomowej i źródła wzbudzenia. Fotometria płomieniowa: podstawy, aparatura, analiza ilościowa i zastosowanie. 4. Spektrometria emisyjna ze wzbudzeniem łukiem lub iskrą. Rodzaje elektrod, sposoby rejestracji widm. Budowa spektrometrów sekwencyjnych i wielokanałowych. Możliwości i zastosowanie analityczne spektrometrii emisyjnej ze wzbudzeniem łukiem lub iskrą. 5. Podstawy i zastosowanie laserowo indukowanej atomowej spektrometrii emisyjnej (LIBS). Podstawy i możliwości emisyjnej spektrometrii atomowej ze wzbudzeniem jarzeniowym (GDS). Analiza profilowa. 6. Techniki emisyjnej spektrometrii atomowej ze wzbudzeniem w plazmie. Podstawy emisyjnej spektrometrii atomowej ze wzbudzeniem w plazmie prądu stałego (DCPOES). Emisyjna spektrometria atomowa ze wzbudzeniem w plazmie sprzężonej indukcyjnie o częstotliwości radiowej (ICPOES): Budowa i działanie palnika ICP. Metody wprowadzania próbki do plazmy. Budowa spektrometrów ICPOES. Analiza ilościowa i efekty przeszkadzające w analizie ICPOES. Zastosowanie ICPOES. 7. Absorpcyjna spektrometria atomowa (AAS). Pomiar absorpcji atomowej, szerokość połówkowa linii. Budowa spektrometrów AAS: źródła promieniowania, atomizery. Absorpcyjna spektrometria atomowa z atomizacją płomieniową (FAAS) i elektrotermiczną (ETAAS). Zakłócenia w analizie AAS, zastosowanie modyfikatorów w technice ETAAS. Zastosowanie spektrometrii AAS. 8. Technika generowania wodorków (HGAAS, HGICPOES) i technika zimnych par (CVAAS). Podstawy i zastosowanie atomowej spektrometrii fluorescencyjnej (AFS). 9. Wstęp do cząsteczkowych metod spektroskopowych. Spektrofotometria UVVis. Prawo LambertaBeera, odstępstwa od prawa i czułość metod spektrofotometrycznych. Budowa spektrofotometrów, spektrofotometry jedno i dwuwiązkowe. Analiza ilościowa. Chromofory

Uniwersytet Śląski w Katowicach str. 2 metody prowadzenia zajęć dydaktycznych (kontaktowych) pracy własnej studenta opis pracy własnej studenta organizacja zajęć literatura obowiązkowa w związkach organicznych, analiza nieorganiczna, układy barwne stosowane w chemii analitycznej. Podstawy i zastosowanie w analityce spektrometrii IR i spektrometrii ramanowskiej. 10. Rentgenowska spektrometria fluorescencyjna (XRF). Oddziaływanie promieniowania rentgenowskiego z materią. Powstawanie promieniowania fluorescencyjnego. Źródła promieniowania pierwotnego. Rentgenowska spektrometria fluorescencyjna z dyspersją długości fali (WDXRF). Dyfrakcja promieniowania rentgenowskiego. Budowa spektrometrów WDXRF: lampy, kryształy analizujące, detektory. Rentgenowska spektrometria fluorescencyjna z dyspersją energii (EDXRF). Budowa spektrometrów EDXRF, detektory półprzewodnikowe. Przygotowanie próbek do analizy XRF. Zastosowanie spektrometrii EDXRF i WDXRF. 11. Rentgenowska spektrometria fluorescencyjna z mikrowiązką promieniowania (µxrf). Budowa spektrometrów µxrf: mono i polikapilary. Przykłady zastosowań spektrometrii µxrf w przemyśle, nauce, archeologii, w badaniu dzieł sztuki. Rentgenowska spektrometria fluorescencyjna z całkowitym odbiciem promieniowania (TXRF). Zjawisko całkowitego odbicia promieniowania rtg. Budowa spektrometrów TXRF. Zastosowanie spektrometrii TXRF. Emisja rentgenowska wywołana elektronami (EPMA): podstawy i zastosowanie. 12. Metody spektroskopowe oparte na widmach korpuskularnych. Spektrometria mas: podstawy, metody jonizacji. Budowa spektrometrów: rodzaje analizatorów mas, detektory. Widma masowe. Techniki sprzężone: ICPMS, LAICPMS. Zastosowanie technik opartych na spektrometrii mas. Podstawy i zastosowanie innych technik opartych na widmach korpuskularnych: spektrometria mas jonów wtórnych (SIMS), spektrometria fotoelektronów (XPS), spektrometria Augera (AES). Metody optyczne: turbidymetria, nefelometria, polarymetria, refraktometria podstawy teoretyczne, aparatura i przykłady oznaczeń. 13. Metody elektroanalityczne: podstawy fizykochemiczne. Potencjometria: rodzaje elektrod i zastosowanie. Elektrograwimetria i kulometria: prawa elektrolizy, pomiar ładunku. Polarografia i woltamperometria podstawy i analiza ilościowa. 14. Miareczkowanie amperometryczne. Podstawy i zastosowanie. Miareczkowanie z jedną i dwiema elektrodami wskaźnikowymi. Konduktometria. Zastosowaniea konduktometrii bezpośredniej i miareczkowania konduktometrycznego. 15. Przygotowanie próbek do analizy. Specjacja. Źródła błędów, precyzja i dokładność. Jak w opisie modułu 45 30 Praca ze wskazaną literaturą obejmująca samodzielne przyswojenie wiedzy odnośnie wskazanych na wykładzie zagadnień. Przygotowanie do egzaminu. Wykład raz w tygodniu (3 godziny) 1. D.A. Skoog, D.M. West, F.J. Holler, S.R. Crouch, Podstawy chemii analitycznej, Tom 2, PWN, Warszawa 2007 2. A. Cygański, Metody spektroskopowe w chemii analitycznej, WNT, Warszawa 2009 3. W. Szczepaniak, Metody instrumentalne w analizie chemicznej, PWN, Warszawa 2008 literatura 1. Spektrometria atomowa. Możliwości analityczne, pr. zb. pod red. E. Bulskiej i K. Pyrzyńskiej, uzupełniająca Wyd. Malamut, Warszawa 2007 adres strony www zajęć

Uniwersytet Śląski w Katowicach str. 3 Laboratorium prowadzący treści zajęć metody prowadzenia zajęć dydaktycznych (kontaktowych) pracy własnej studenta opis pracy własnej studenta organizacja zajęć 0310TCHS1 014_fs_2 Barbara Mikuła, Katarzyna Pytlakowska, Rozalia Czoik, Beata Zawisza, Rafał Sitko, Marzena Połowniak 1. Absorpcyjna spektrometria atomowa: Zapoznanie się z budową, obsługą i możliwościami pomiarów na spektrometrze absorpcji atomowej SOLLAR M6. Zapoznanie się z kalibracją metody analitycznej. Oznaczanie zawartości cynku w próbkach wody pitnej metodą krzywej wzorcowej i dodatku wzorca. Walidacja metody AAS. 2. Emisyjna spektrometria atomowa: Spektrograficzna analiza jakościowa (wykrywanie obecności pierwiastków na podstawie położenia linii w widmie, porównanie widma badanej próbki z widmem wzorca) i ilościowa (oznaczanie ilościowe krzemu w stali metodą względnych zaczernień). Oznaczanie ilościowe chromu z wykorzystaniem techniki ICPOES. 3. Spektrofotometria UVVis: Spektrofotometryczne oznaczanie żelaza(iii) w wodach powierzchniowych z zastosowaniem Chromazurolu S i Brij 35. Badanie wpływu wybranych substancji powierzchniowo czynnych (kationowych, niejonowych i ich mieszanin) na czułość reakcji Fe(III) z Chromazurolem S. Wykreślenie krzywej wzorcowej oznaczania żelaza(iii) w postaci kompleksu FeCASBrij 35 w wodach powierzchniowych 4. Potencjometria i konduktometria Prezentacja elektrod stosowanych w potencjometrii, wyznaczanie charakterystyki elektrody szklanej). Oznaczanie kwasów solnego i octowego obok siebie metodą miareczkowania potencjometrycznego. Miareczkowanie konduktometryczne. Zastosowanie konduktometrii w ocenie stopnia czystości różnych wód. 5. Rentgenowska spektrometria fluorescencyjna: prezentacja budowy spektrometrów EDXRF i WDXRF. Analiza jakościowa stali i próbek środowiskowych. Interpretacja widm XRF, piki promieniowania charakterystycznego i rozproszonego. Dekonwolucja widma EDXRF. Analiza ilościowa na przykładzie certyfikowanych materiałów odniesienia stali wysokostopowych: analiza wzorcowa i bezwzorcowa. Metoda parametrów fundamentalnych. Analiza próbek wybranych przez studentów np. biżuteria, banknoty. Jak w opisie modułu 45 45 Przygotowanie do ćwiczeń laboratoryjnych oraz kolokwiów przez samodzielną pracę z literaturą. Przygotowanie sprawozdań z wykonanych ćwiczeń. Zajęcia odbywają się w laboratoriach Zakładu Chemii Analitycznej. Każdej technice instrumentalnej poświęcone są dwa spotkanie po 4,5 godziny. literatura 1. D.A. Skoog, D.M. West, F.J. Holler, S.R. Crouch, Podstawy chemii analitycznej, Tom 2, PWN, obowiązkowa Warszawa 2007 2. A. Cygański, Metody spektroskopowe w chemii analitycznej, WNT, Warszawa 2009 3. W. Szczepaniak, Metody instrumentalne w analizie chemicznej, PWN, Warszawa 2008 literatura 1. Spektrometria atomowa. Możliwości analityczne, pr. zb. pod red. E. Bulskiej i K. Pyrzyńskiej, uzupełniająca Wyd. Malamut, Warszawa 2007 adres strony

Uniwersytet Śląski w Katowicach str. 4 www zajęć Ocena z laboratorium jest średnią arytmetyczną z pięciu ocen uzyskanych z każdej techniki instrumentalnej. Ocena uzyskana z każdej techniki instrumentalnej jest średnią ważoną: 0.7 x kolokwium pisemne + 0.2 x sprawozdanie + 0.1 x ocenianie ciągłe. Warunkiem zaliczenia laboratorium jest uzyskanie pozytywnych ocen ze wszystkich kolokwiów pisemnych, sprawozdań oraz z oceniania ciągłego. W przypadku uzyskania oceny negatywnej student ma prawo do poprawy. Konsultacje prowadzący treści zajęć metody prowadzenia zajęć dydaktycznych (kontaktowych) pracy własnej studenta opis pracy własnej studenta organizacja zajęć literatura obowiązkowa literatura uzupełniająca adres strony www zajęć Pomoc w rozwiązywaniu bieżących trudności wynikających z realizacji treści programowych modułu Analiza Instrumentalna Jak w opisie modułu 7,5 3. Opis sposobów efektów kształcenia modułu Egzamin (y) zajęć osoba(y) przeprowadzająca( 0310TCHS1014_fs_1 Rafał Sitko 0310TCHS1 014_fs_3 Barbara Mikuła, Katarzyna Pytlakowska, Rozalia Czoik, Marzena Połowniak, Beata Zawisza, Rafał Sitko 0310TCHS1 014_w_1 Znajomość technik spektroskopowych i elektrochemicznych, budowy aparatury oraz

Uniwersytet Śląski w Katowicach str. 5 umiejętność zaproponowania metody przygotowania próbki oraz techniki instrumentalnej w zależności od rodzaju materiału i analitu oraz jego stężenia. Student przygotowuje się do egzaminu na podstawie wiadomości zdobytych na wykładzie oraz z literatury wskazanej w pkt. 2. Ocena z egzaminu oparta jest o liczbę zdobytych punktów: ndst: 060%, dst: 6169%, dst+: 7078%, db: 7987%, db+: 8894%, bdb: 95100% Egzamin pisemny. Pytania z odpowiedziami do jednokrotnego wyboru oraz pytania w formie otwartej. Czas trwania egzaminu 1,5 godziny Kolokwium pisemne (y) zajęć 0310TCHS1014_fs_2 osoba(y) przeprowadzająca( 0310TCHS1014_w_2 Barbara Mikuła, Katarzyna Pytlakowska, Rozalia Czoik, Beata Zawisza, Rafał Sitko, Marzena Połowniak Znajomość podstaw teoretycznych wybranej techniki spektroskopowej lub elektrochemicznej, budowy aparatury, metod przygotowania próbek oraz bezpieczeństwa pracy. Ocena oparta jest o liczbę zdobytych punktów: ndst: 060%, dst: 6169%, dst+: 7078%, db: 7987%, db+: 8894%, bdb: 95100% Kolokwium odbywa się na drugich zajęciach z danej techniki instrumentalnej. Sprawozdanie (y) zajęć osoba(y) przeprowadzająca( 0310TCHS1014_w_3 0310TCHS1014_fs_2 Barbara Mikuła, Katarzyna Pytlakowska, Rozalia Czoik, Rafał Sitko, Beata Zawisza, Marzena Połowniak Sprawozdanie obejmuje opis przeprowadzonego doświadczenia, ponadto uzyskane wyniki oraz wszystkie niezbędne obliczenia. Ocenie podlega prawidłowy opis wykonanego doświadczenia, obliczenia oraz błąd przeprowadzonej analizy. Ocena stanowi średnią ze wszystkich sprawozdań. Warunkiem uzyskania oceny pozytywnej jest przystąpienie do wszystkich ćwiczeń. Student oddaje sprawozdanie na następnych zajęciach laboratoryjnych.

Uniwersytet Śląski w Katowicach str. 6 Ocenianie ciągłe (y) zajęć osoba(y) przeprowadzająca( 0310TCHS1014_w_4 0310TCHS1014_fs_2 Barbara Mikuła, Katarzyna Pytlakowska, Rozalia Czoik, Rafał Sitko, Beata Zawisza, Marzena Połowniak Prawidłowe wykonanie ćwiczenia. Bezpieczna praca w laboratorium analitycznym wyposażonym w aparaturę spektrometrii atomowej i rentgenowskiej. Umiejętność pracy laboratoryjnej indywidualnej i zespołowej. Ocena bardzo dobra wykonuje eksperyment zgodnie z instrukcjami prowadzącego. Zna i rozumie realizowane zagadnienie, zna podstawy teoretyczne prowadzonej analizy. Potrafi prawidłowo korzystać z aparatury. Zachowuje prawidłowe i bezpieczne zasady pracy w laboratorium analitycznym. Potrafi pracować indywidualnie i zespołowo. Ocena dobra wykonuje eksperyment zgodnie z instrukcjami prowadzącego. Zna i rozumie realizowane zagadnienie, zna podstawy teoretyczne prowadzonej analizy. Na ogół potrafi prawidłowo korzystać z aparatury. Zachowuje prawidłowe i bezpieczne zasady pracy w laboratorium analitycznym. Potrafi pracować indywidualnie i zespołowo. Świadomie unikając błędów w pracy laboratoryjnej konsultuje się z prowadzącym. Ocena dostateczna prawidłowe wykonanie eksperymentu wymaga znaczącej pomocy prowadzącego. Zna i rozumie realizowane zagadnienie, zna podstawy teoretyczne prowadzonej analizy. Na ogół potrafi prawidłowo korzystać z aparatury. Zachowuje prawidłowe i bezpieczne zasady pracy w laboratorium analitycznym. Potrafi pracować indywidualnie i zespołowo. Ocena niedostateczna student nie jest w stanie prawidłowo wykonać eksperymentu nawet po konsultacji z prowadzącym. Nie rozumie realizowanego zagadnienia. Nie potrafi prawidłowo korzystać z aparatury i nie zachowuje prawidłowych zasad pracy w laboratorium analitycznym. Student podlega ocenianiu w ciągu pracy laboratoryjnej.