Elektrolity Przewodność jonowa: wpływa na opór wewnętrzny ogniwa i straty energii Stabilność: wpływa na trwałość ogniwa i bezpieczeństwo pracy Selektywność: elektrolit rozdziela materiały elektrodowe, w wielu typach ogniw wskazane jest przewodzenie tylko jednego rodzaju jonów
Wymagania względem elektrolitów DOI: 10.1039/c5cs00303b
Rodzaje elektrolitów Stałe Polimerowe Ciekłe Elektrolity stosowane komercyjnie zawierają na ogół elementy stałe, ciekłe i polimerowe tzw. kompozyty/hybrydy.
Ogniwo bez elektrolitu? Ogniwo cynkowo - ferrocenowe Ke Gong et al. J. Electrochem. Soc. 2017;164:A2590-A2593 2017 by The Electrochemical Society
Elektrolity ciekłe Po zerwaniu wiązań jonowych następuje rozpuszczanie. Otoczenie jonu przez cząsteczki rozpuszczalnika nazywamy solwatacją ZALETY + Wysoka przewodność jonowa (do 1 S/cm roztwory wodne) + Przewodność słabo zależy od temperatury (niska energia aktywacji przeskoku) + Łatwo wytworzyć mocny elektrolit całkowita dysocjacja
Granica elektrolit/elektroda Johnson Matthey Technol. Rev., 2015, 59, (1), 30 doi:10.1595/205651315x685517
Elektrolity ciekłe PROBLEMY - Parowanie elektrolitu, wrzenie cieczy, wzrost ciśnienia wewnątrz ogniwa - Zamarzanie (szczególnie elektrolity wodne) - Rozpuszczalniki organiczne są palne - Nie jest separatorem mechanicznym elektrod, nie jest selektywny - Wąskie okno napięciowe niektórych roztworów (woda elektroliza) - Niepożądane reakcje chemiczne, degradacja elektrod - Transport masowy rozpuszczalnika wraz z jonami
Ciecze jonowe Sole o niskiej temperaturze topnienia (<100 o C) RTiL: sole ciekłe w temperaturze pokojowej Wolno parują, dobra stabilność elektrochemiczna kationy aniony Material Matters, 2018, 13.1
Ciecze jonowe Jon obojnaczy (związek dipolarny) posiada grupy naładowanie ujemnie i dodatnio, sam jest neutralny Membrany jonoselektywne np. elektrolity do separacji gazów i cieczy
Ciecze jonowe Przewodność jonowa cieczy jonowych jest wystarczająca do zastosowań w ogniwach Li-ion. Wymaga stosowania membran, zapewniających właściwości mechaniczne elektrolitu jako separatora. Cieczami jonowymi można nasączać polimery. Problem: gęstość energii cieczy jonowych jest niższa, niż całych ogniw Li-ion. Rozbudowane aniony mają wysoką masę molową.
Elektrolity polimerowe ZALETY + Giętkie, otrzymywane w postaci folii + Możliwość masowego wytwarzania + Lekkie (wysoka gęstość energii) + Bezpieczne (przy przestrzeganiu zaleceń)
Elektrolity polimerowe - Otrzymanie wysokiej przewodności wymaga dodania palnych rozpuszczalników problem w bateriach Li-ion - Degradacja na skutek starzenia, przemian fazowych, reakcji chemicznych - Wrażliwe na niskie temperatury Xiang et al.., J. Power Sources 196 (2011) 8561
Rodzaje elektrolitów polimerowych
Polimery stosowane w elektrolitach Pożądane właściwości: - Wysoka stała dielektryczna (wymagana dla dysocjacji) - Tworzenie wiązań koordynacyjnych z litem i sodem (w ogniwach Li i Na) - Giętki łańcuch o niskiej temperaturze zeszklenia - Długie łańcuchy zapewniające stabilność mechaniczną
Sól w polimerze Polietery np. poli(tlenek etylenu) PEO CH 2 CH 2 O Koordynacji ulegają jedynie kationy. Są one ekranowane od anionów przez łańcuch polimeru.
Sól w polimerze Zalety - Łatwe do otrzymania - Dobre właściwości mechaniczne - Szerokie okno pracy - Stabilne z ogólnie stosowanymi elektrodami Wady - Niskie wartości przewodności, w szczególnie poniżej temperatury pokojowej - Polietery krystalizują - Niskie liczby przenoszenia (mały udział jonów litu w ogólnym transporcie ładunku) Chem. Mater. 13 (2001) 575
Wpływ krystalizacji na przewodność Mały spadek przewodności Średni spadek przewodności Znaczny spadek przewodności
Krystalizacja: struktura liniowa http://openlearn.open.ac.uk/ PEO 6 :LiTFSI PEG, M w = 2 10 3 PEO, M w = 5 10 6 PEO 3 :LiTFSI
Krystalizacja: struktura rozgałęziona Rozgałęzienie utrudnia krystalizację, wprowadza defekty do struktury krystalicznej i zwiększa zawartość fazy amorficznej.
Polimer w soli Główną rolą polimeru jest zapobieganie krystalizacji soli. Oprócz oddziaływań z łańcuchem występują oddziaływania jon-jon.
Polimer w soli: stabilność T / o C 140 120 100 80 60 40 20 0-20 -40 log ( / Scm -1 ) -2-3 -4-5 -6-7 -8-9 -10-11 -12-13 -14-15 Star-branched PEO, OH - groups on the core with TFSI salt EO:Li 2:1 EO:Li 1.5:1 EO:Li 1:1 LiTFSI, wt. % -16 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 Efekt 1000/T spadku / K -1 przewodności nasila się wraz ze wzrostem zawartości soli.
Krystaliczne elektrolity polimerowe Transport jonów w strukturach krystalicznych kompleksów polimer:sól Wady: - Niskie wartości przewodności - Ścieżki przewodzenia nie są ciągłe Struktura PEO 6 :LiAsF 6 Y.G. Andreev, P.G. Bruce, Electrochim. Acta 45 (2000) 1417
Polielektrolity Polielektrolity: Jeden z typów nośników na trwale wbudowany w strukturę łańcucha. Liczba przenoszenia drugiego rodzaju nośników bliska 1. + Dobrze nadają się do ogniw typu Li-ion : Normy USABC: 10-4 S/cm w temperaturze pokojowej dla polielektrolitów 10-3 S/cm dla tradycyjnych elektrolitów) - Mają niską przewodność jonową (10-6 S/cm w temperaturze pokojowej) Karboksymetyloceluloza (E46) - emulgator
Polielektrolity
Elektrolity żelowe Powstają przez dodanie do elektrolitu polimerowego cząsteczek polarnych (rozpuszczalnika) o niskiej masie cząsteczkowej. Znacznie zwiększa to przewodność elektrolitu, kosztem bezpieczeństwa użytkowania i stabilności. A. Manuel Stephan, European Polymer Journal 42 (2006) 21 42
Elektrolity żelowe Dodanie rozpuszczalnika zmienia mechanizm przewodzenia. Zmianie ulega temperaturowa zależność przewodności.
Elektrolity żelowe Russian Chemical Reviews 81 (4) 367-380 (2012)
Elektrolity z cieczą jonową Ciecz jonowa sól występująca w postaci amorficznej w temperaturze poniżej 100 o C. Polimer pełni rolę gąbki zapewniającej właściwości mechaniczne i wspomaga transport jonów.
Elektrolity z cieczą jonową Ciecze jonowe mogą być źródłem nośników w membranach przewodzących protonowo.
Elektrolity z napełniaczami
Elektrolity z napełniaczami + Zwiększają przewodność + Polepszają właściwości mechaniczne + Polepszają stabilność elektrochemiczną + Zwiększają zawartość fazy amorficznej - Są zarodkami krystalizacji - Mają inną gęstość niż polimer (ulegają sedymentacji) - Mogą blokować transport jonów
Elektrolity z napełniaczami
Polimerowe przewodniki protonowe Proton Exchange Membrane
Przewodniki protonowe
Przewodniki protonowe Transport wody w elektrolicie i elektrodach ma decydujące znaczenie dla pracy ogniwa
Przewodniki protonowe
Przewodniki protonowe Nature communications 1:88 DOI: 10.1038/ncomms1086
Przewodniki protonowe Napełniacze o wymiarach nanometrycznych wytwarzają kanały przewodzenia i ułatwiają transport jonów.
Inne przewodniki protonowe
Ogniwa z elektrolitem stałym Ceramiczne ogniwo litowe: Możliwości: Prosta struktura Możliwa integracja on-chip Temperatura pracy <500 o C Bezpieczne i niepalne materiały Nowe zastosowania 1 cm Li + bezpiecznie związany w strukturze krystalicznej Solid state battery w skali laboratoryjnej wystawiona na działanie warunków atmosferycznych Przykład: zniszczone urządzenie po samoczynnym zapłonie baterii J van den Broek, S Afyon, JLM Rupp, Advanced Energy Materials (2016) 1600736 R. Pfenninger, M. Struzik JLM Rupp, Advanced Energy Materials (2017) in revision Źródło: dr M. Struzik, WF PW
Elektrolity stałe Zalety - Stabilne elektrochemicznie - Odporne na wysokie temperatury - Niepalne - Stabilne z ogólnie stosowanymi elektrodami - Mogą być selektywne Wady - Sztywne i kruche - Mogą wymagać wysokich temperatur - Delaminacja na styku z elektrodą - Wysoki koszt produkcji
Elektrolity ceramiczne - ogniwa Li-ion Nowe materiały elektrodowe dla dużych gęstości energii i mocy Wysoka gęstość energii: Li jako anoda kierunek Li-air battery Gęstość mocy dla szybkiego ładowania Stabilność i bezpieczeństwo Nowe architektury Możliwa integracja on-chip Konkurencja dla superkondensatorów Ragone s plot SOLID STATE MICROBATTERIES Pikul et al., Nat Commun 4, 2013, 1732 Ścieżka rozwoju Materiały 1 cm Skalowanie Cienkie warstwy Architektura 3D Skala laboratoryjna Rupp, Struzik [2,3] Rupp, Struzik [2,3] Rupp, Struzik [2,3] Lewis et al. [1] [1] Sun, Lewis et al. (2013). Advanced Materials 25(33): 4539-4543, [2] Pfenninger, Struzik, Garbayo, JLM Rupp et al., in review 2017, [3] Pfenninger, Struzik, JLM Rupp et al., in review 2017 Miniaturyzacja i integracja z MEMS oraz w urządzeniach mobilnych
Przewodność elektrolitów stałych [1] Kamaya, Nat. Mater. 10, 682 686 (2011) [2] Thangadurai, Chem. Soc. Rev., 2014, 43, 4714--4727
Elektrolity stałe Związek Li 10 GeP 2 S 12 + Wysoka przewodność + Niewielka energia aktywacji - Problemy ze stabilnością względem anod o niskim potencjale (0-1V wzgl. Li)
Elektrolity stałe
Mechanizm przewodzenia: Li 7 La 3 Zr 2 O 12 cubic tetragonal Dwie fazy krystaliczne: regularna i tetragonalna W strukturze regularnej występują ścieżki łatwego przewodzenia
Elektrolity hybrydowe Proc. Natl. Acad. Sci. USA 113 (2016) 7094
Elektrolity hybrydowe doi: 10.1149/2.1571707jes J. Electrochem. Soc. 2017 volume 164, issue 7, A1731