ZADANIA PRZED EGZAMINEM KLASA I LICEUM

Podobne dokumenty
Wymagania na egzamin poprawkowy z matematyki dla klasy I C LO (Rok szkolny 2015/16) Wykaz zakładanych osiągnięć ucznia klasy I liceum

Wymagania na egzamin poprawkowy z matematyki dla klasy I A LO (Rok szkolny 2015/16)

KLASA I LO Poziom podstawowy (styczeń) Treści nauczania wymagania szczegółowe:

Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 2017/2018.

Wymagania na egzamin poprawkowy z matematyki z zakresu klasy drugiej TECHNIKUM

KONKURS ZOSTAŃ PITAGORASEM MUM. Podstawowe własności figur geometrycznych na płaszczyźnie

11. Znajdż równanie prostej prostopadłej do prostej k i przechodzącej przez punkt A = (2;2).

Planimetria Uczeń: a) stosuje zależności między kątem środkowym i kątem wpisanym, b) korzysta z własności stycznej do okręgu i własności okręgów

Matura 2011 maj. Zadanie 1. (1 pkt) Wskaż nierówność, którą spełnia liczba π A. x + 1 > 5 B. x 1 < 2 C. x D. x 1 3 3

LUBELSKA PRÓBA PRZED MATUR 2016

Równania prostych i krzywych; współrzędne punktu

ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna

I. Funkcja kwadratowa

Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TLog

LUBELSKA PRÓBA PRZED MATURĄ MATEMATYKA - poziom podstawowy klasa 1

Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TŻiUG

LUBELSKA PRÓBA PRZED MATURĄ MATEMATYKA - poziom podstawowy

PRÓBNA MATURA ZADANIA PRZYKŁADOWE

ODLEGŁOŚĆ NA PŁASZCZYŹNIE - SPRAWDZIAN

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

Zestaw VI. Zadanie 1. (1 pkt) Wskaż nierówność, którą spełnia liczba π A. (x + 1) 2 > 18 B. (x 1) 2 < 5 C. (x + 4) 2 < 50 D.

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

I. Funkcja kwadratowa

ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna

na postać kanoniczną, podaj współrzędne wierzchołka paraboli i określ czy jej ramiona są skierowane w górę czy w dół.

VIII. ZBIÓR PRZYKŁADOWYCH ZADAŃ MATURALNYCH

ARKUSZ II

7. PLANIMETRIA.GEOMETRIA ANALITYCZNA

ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI

A. fałszywa dla każdej liczby x.b. prawdziwa dla C. prawdziwa dla D. prawdziwa dla

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

Bank zadań na egzamin pisemny (wymagania podstawowe; na ocenę dopuszczającą i dostateczną)

PRÓBNA MATURA ZADANIA PRZYKŁADOWE

Przykładowe zadania z matematyki na poziomie podstawowym. Zadanie 1. (0 1) Liczba A. 3. Zadanie 2. (0 1) Liczba log 24 jest równa

Matematyka podstawowa VII Planimetria Teoria

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

Zad. 1 Liczba jest równa A B C D. Zad. 2 Liczba log16 jest równa A 3log2 + log8 B log4 + 2log3 C 3log4 log4 D log20 log4

1. Proporcjonalnością prostą jest zależność opisana wzorem: x 5

PRÓBNY EGZAMIN MATURALNY

OCENIANIE ARKUSZA POZIOM ROZSZERZONY

Zadanie PP-GP-1 Punkty A, B, C, D i E leżą na okręgu (zob. rysunek). Wiadomo, że DBE = 10

Zadania otwarte krótkiej odpowiedzi na dowodzenie

Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas II w roku szkolnym 2016/2017 w Zespole Szkół Ekonomicznych w Zielonej Górze

ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI

Próbny egzamin maturalny z matematyki Poziom podstawowy. Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA

Geometria płaska - matura Przyprostokątne trójkąta prostokątnego mają długości 3 7cm poprowadzona z wierzchołka kąta prostego ma długość: 12

OCENIANIE ARKUSZA POZIOM ROZSZERZONY

PYTANIA TEORETYCZNE Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY

LUBELSKA PRÓBA PRZED MATURĄ 2016 poziom podstawowy. M A T E M A T Y K A klasa 2-(pp) MAJ 2016

LUBELSKA PRÓBA PRZED MATURĄ 2019

Klasa 3. Trójkąty. 1. Trójkąt prostokątny ma przyprostokątne p i q oraz przeciwprostokątną r. Z twierdzenia Pitagorasa wynika równość:

Klasa III technikum Egzamin poprawkowy z matematyki sierpień I. CIĄGI LICZBOWE 1. Pojęcie ciągu liczbowego. b) a n =

PRÓBNY EGZAMIN MATURALNY

Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej.

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM. Etap Rejonowy

1. Oblicz miarę kąta wpisanego i środkowego opartych na tym samym łuku równym 1/10 długości okręgu. 2. Wyznacz kąty x i y. Odpowiedź uzasadnij.

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY

LUBELSKA PRÓBA PRZED MATURĄ MATEMATYKA - poziom rozszerzony klasa I

Indukcja matematyczna

KORESPONDENCYJNY KURS PRZYGOTOWAWCZY Z MATEMATYKI

Matematyka. dla. Egzamin. Czas pracy będzie

WOJEWÓDZKI KONKURS MATEMATYCZNY

PRÓBNY EGZAMIN MATURALNY

PRZYKŁADOWE ZADANIA Z MATEMATYKI NA POZIOMIE PODSTAWOWYM

LUBELSKA PRÓBA PRZED MATURĄ 2016 poziom podstawowy. M A T E M A T Y K A klasa 2-(pp) MAJ 2016

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

LUBELSKA PRÓBA PRZED MATURĄ 2015

PRÓBNY EGZAMIN MATURALNY

LUBELSKA PRÓBA PRZED MATURĄ klasa 2 poziom podstawowy

Planimetria poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie

Wymagania z matematyki na poszczególne stopnie szkolne w klasie trzeciej gimnazjum

Próbny egzamin maturalny z matematyki Poziom podstawowy

EGZAMIN MATURALNY OD ROKU SZKOLNEGO

EGZAMIN MATURALNY OD ROKU SZKOLNEGO

PRÓBNY EGZAMIN MATURALNY

Przygotowanie do poprawki klasa 1li

PRÓBNY EGZAMIN MATURALNY Z NOWĄ ERĄ

ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna

UZUPEŁNIA ZDAJĄCY miejsce na naklejkę

MATEMATYKA ZBIÓR ZADAŃ MATURALNYCH. Lata Poziom podstawowy. Uzupełnienie Zadania z sesji poprawkowej z sierpnia 2019 r.

ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna

KURS MATURA PODSTAWOWA Część 2

Instrukcja dla zdającego Czas pracy: 170 minut

ZDAJ MATMĘ NA MAKSA POZIOM PODSTAWOWY 2018/ : (2 5 ) 5 (0, 5)

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 4 CZERWCA Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50

Praca kontrolna z matematyki nr 1 Liceum Ogólnokształcące dla Dorosłych Semestr 5 Rok szkolny 2014/2015

PRÓBNY EGZAMIN MATURALNY

Wielokąty na płaszczyźnie obliczenia z zastosowaniem trygonometrii. Trójkąty. Trójkąt dowolny. Wielokąty trygonometria 1.

MATEMATYKA KLASY III gimnazjum LICZBY I WYRAŻENIA ALGEBRAICZNE

PRÓBNY EGZAMIN MATURALNY MATEMATYKA. MaturoBranie

Transkrypt:

ZADANIA PRZED EGZAMINEM KLASA I LICEUM + 7. Równanie = 0 : + A. ma tylko jedno rozwiązanie równe 7 B. ma tylko jedno rozwiązania równe 7 C. ma tylko jedno rozwiązanie równe D. nie ma rozwiązań.. Do przedziału, należy: A. nieskończenie wiele liczb B. więcej niż siedem liczb, ale mniej niż milion C. tylko siedem liczb D. tylko pięć liczb.. Liczba 0,(4) jest równa: 4 4 A. B. 00 0 C. 44 D. 00 PRYWATNA SZKOŁA PODSTAWOWA, GIMNAZJUM I LICEUM IM. Z. I J. MORACZEWSKICH

4. Zaprzeczeniem zdania: Nie pójdę do sklepu i poczytam książkę jest zdanie: A. Nie pójdę do sklepu i nie poczytam książki B. Pójdę do sklepu lub nie poczytam książki C. Nie pójdę do sklepu lub nie poczytam książki D. Pójdę do sklepu i nie poczytam książki.. Twierdzeniem odwrotnym do twierdzenia: Jeśli a > b, to a + > b + jest zdanie: A. Jeśli a + > b +, to a > b B. Jeśli a + b +, to a b C. Jeśli a b, to a + b + D. Jeśli a > b, to a + b +. 6. Liczba, jest przybliżeniem z niedomiarem liczby,4. Błąd względny tego przybliżenia jest równy: A. 8 B. 7 C. 4 D. 0 7. Ile liczb pierwszych należy do zbioru A = {0,,,, 7, 9}? A. B. C. 4 D. 8. Litera X oznacza w liczbie 004X cyfrę jedności. Liczba ta jest podzielna przez 6 wtedy i tylko wtedy, gdy: A. X = 0 B. X = 6 C. X = X = 8 D. X = 4 X = 8 9. Bank podniósł oprocentowanie kredytu o punkty procentowe i obecnie wynosi ono % w skali roku. Zatem oprocentowanie kredytu wzrosło o: A. % B. 4% C. % D. 0% PRYWATNA SZKOŁA PODSTAWOWA, GIMNAZJUM I LICEUM IM. Z. I J. MORACZEWSKICH

0. Ułamek 6 6 jest równy: B. A. C. + D.. Wyrażenie ( a ) : a 7 a a, a 0, jest równe: A. a B. a 4 C. a D. a. Liczbę 4 0 można zapisać jako: A. B., C. 4 D. 4, 0. Wyrażenie: pierwiastek kwadratowy z sumy sześcianu liczby a i potrojonej liczby b można zapisać symbolicznie w następujący sposób: A. a + b B. a b + C. a + b D. a + b 4. Wyrażenie (a + b) jest równe: A. 4a + b B. 4a + ab + b C. a + 4ab + b D. 4a + 4ab + b PRYWATNA SZKOŁA PODSTAWOWA, GIMNAZJUM I LICEUM IM. Z. I J. MORACZEWSKICH

. Jeśli log =, to: A. = B. = 9 C. = 7 D. = 8 6. Kąt przyległy do kąta α ma miarę 4 razy większą od kąta α. Zatem: A. α = 8 B. α = 6 C. α = 4 D. α = 4 7. Łuk okręgu o promieniu ma długość π. Ile procent długości okręgu stanowi długość tego łuku? A. 00% B. 0% C. 00% D. % π π 8. Styczne do okręgu w punktach K, L, M przecinają się w punktach A, B, C, jak na rysunku obok. Wiadomo, że AC = BC = oraz obwód trójkąta ABC jest równy 8. Z tego wynika, że: A. CL = 0, B. CL = C. CL =, D. CL = 9. Dane są dwa okręgi o środkach O, O i promieniach równych odpowiednio r i r. Wiadomo, że r = cm, r = 6 cm oraz O O = cm. Zatem okręgi te: A. są rozłączne zewnętrznie B. przecinają się B. są styczne wewnętrznie C. są rozłączne wewnętrznie PRYWATNA SZKOŁA PODSTAWOWA, GIMNAZJUM I LICEUM IM. Z. I J. MORACZEWSKICH 4

0. Na rysunku obok punkty A, B, C dzielą okrąg na trzy łuki, których stosunek długości wyraża zależność: l : l : l = 4 : : 6. Z tego wynika, że: A. ACB = 48 B. ACB = 4 C. ACB = 60 D. ACB = 7. Trójkąt prostokątny może mieć boki długości: A.,, 4 B.,, C.,, D. 6,, 4. Symetralne boków trójkąta przecięły się w punkcie należącym do jednego z jego boków. Zatem trójkąt ten jest: A. ostrokątny B. prostokątny C. rozwartokątny D. równoramienny. Okrąg opisany na trójkącie prostokątnym ma długość 6π cm. Wobec tego długość środkowej poprowadzonej na przeciwprostokątną w tym trójkącie jest równa: A. 4 cm B. 4π cm C. 8 cm D. 6 cm 4. Na rysunku obok dwusieczne kątów: A i B trójkąta ABC przecięły się w punkcie D. Jeżeli ACB = 70, to: A. ADB = B. ADB = 0 C. ADB = D. ADB = 40 PRYWATNA SZKOŁA PODSTAWOWA, GIMNAZJUM I LICEUM IM. Z. I J. MORACZEWSKICH

. Odległość środka okręgu od cięciwy mającej długość 8 cm wynosi cm. Średnica tego okręgu jest równa: A. cm B. 7 cm C. 7 cm D. 0 cm 6. Na rysunku obok przedstawiony jest czworokąt ABCD, w którym DC = AC = a oraz AB = a. Przekątna AC tworzy z bokiem AD kąt ostry α, zaś z bokiem CB kąt ostry β oraz AC DC i AC AB. Wobec tego sin α + cos β ma wartość: A. + + B. C. + + D.. 7. Wiadomo, że α (90, 80 ) oraz sin(90 + α) cos α =. Zatem: A. tg α = B. tg α = C. tg α = D. tg α =. 8. Wiadomo, że a = log sin 4. Wobec tego: A. a (, 0) B. a (, ) C. a (0, ) D. a {, }. 9. Jeśli sin α = 0,8 oraz α (90, 80 ), to: A. cos α = B. cos α = C. cos α = 4 D. cos α = 0,7. 0. Wartość wyrażenia tg 40 ctg 4 tg 0 jest liczbą: A. pierwszą B. złożoną C. całkowitą D. niewymierną. PRYWATNA SZKOŁA PODSTAWOWA, GIMNAZJUM I LICEUM IM. Z. I J. MORACZEWSKICH 6

. Wysokość trójkąta prostokątnego poprowadzona z wierzchołka kąta prostego podzieliła przeciwprostokątną na odcinki mające długość cm i cm. Pole tego trójkąta jest więc równe: A. 0 cm B. cm C. 40 cm D. 4 cm. Pole trójkąta równobocznego jest równe. Zatem bok tego trójkąta ma długość: A. B. 4 C. 4 D. 4. Na rysunku obok zaznaczony jest w kole wycinek, któremu odpowiada kąt środkowy. Pole wycinka jest równe π. Zatem pole koła wynosi: A. 6π B. 60π C. 6π D. 64π 4. Trójkąt A B C o polu 4 cm jest podobny do trójkąta ABC o polu 6 cm. Skala podobieństwa trójkąta A B C do trójkąta ABC jest równa: A. 7 8 B. C. 4 9 D.. Funkcja y = f() opisana jest tabelką: 6 0 4 Zatem: f() 0 4 0 PRYWATNA SZKOŁA PODSTAWOWA, GIMNAZJUM I LICEUM IM. Z. I J. MORACZEWSKICH 7

A. funkcja f jest rosnąca B. funkcja f ma jedno miejsce zerowe C. f(4) f() = 6 D. największa wartość funkcji wynosi. 6. Funkcja f opisana jest wzorem f() =. Zatem dziedziną funkcji f jest zbiór: A. (,, + ) B., C. (,, + ) D.,. 7. Liczby oraz są miejscami zerowymi funkcji: A. f() = + + B. f() = C. f() = ( + )( ) D. f() =. 8. Wykresy funkcji f() = oraz g() = + k 6 mają z osią OY ten sam punkt wspólny. Zatem: A. k = B. k = 6 C. k = 0 D. k = 4. 9. Na rysunku obok przedstawione są wykresy dwóch funkcji: f() = 6 oraz g() =, gdzie R. Iloczyn rozwiązań równania 6 = wynosi: A. 6 B. 8 C. 4 D. 8. PRYWATNA SZKOŁA PODSTAWOWA, GIMNAZJUM I LICEUM IM. Z. I J. MORACZEWSKICH 8

40. Wektory a = [, 0] i b = [, y + ] są równe. Zatem: A. = 4y B. y = 0 C. y = - 6 D. y =. 4. Funkcja f opisana jest za pomocą tabelki: 4 7 f() 8 Funkcję g, gdzie g() = f() opisuje tabelka: A. 6 0 6 B. 4 8 g( ) 8 g( ) 8 C. 4 7 D. 4 7 g( ) 7 4 0 g( ) 9 6 4 4. Miejscami zerowymi funkcji f są liczby 4 oraz. Wykres funkcji g jest symetryczny do wykresu funkcji f względem osi OY. Zatem wartość wyrażenia 6 g(4) g() wynosi: A. 6 B. C. 0 D.. PRYWATNA SZKOŁA PODSTAWOWA, GIMNAZJUM I LICEUM IM. Z. I J. MORACZEWSKICH 9

4. Dziedziną funkcji f jest zbiór,. Dziedziną funkcji g, gdzie g() = f( ) jest zbiór: A. 4, 6 B. 6, 4 C., 0 D., 4. 44. Wykres funkcji y = przekształcono przez symetrię środkową względem początku układu współrzędnych i otrzymano wykres funkcji g. Funkcję g opisuje wzór: A. g() = + B. g() = + C. g() = D. g() =. PRYWATNA SZKOŁA PODSTAWOWA, GIMNAZJUM I LICEUM IM. Z. I J. MORACZEWSKICH 0