Matematyka ubezpieczeń majątkowych 1.10.2012 r.



Podobne dokumenty
01. dla x 0; 1 2 wynosi:

LIV Egzamin dla Aktuariuszy z 4 października 2010 r. Część III

Matematyka ubezpieczeń majątkowych r.

Zadanie 1. Ilość szkód N ma rozkład o prawdopodobieństwach spełniających zależność rekurencyjną:

Zadanie 1. Zmienne losowe X 1, X 2 są niezależne i mają taki sam rozkład z atomami:

z przedziału 0,1 liczb dodatnich. Rozważmy dwie zmienne losowe:... ma złożony rozkład dwumianowy o parametrach 1,q i, gdzie X, wszystkie składniki X

N ma rozkład Poissona z wartością oczekiwaną równą 100 M, M M mają ten sam rozkład dwupunktowy o prawdopodobieństwach:

Zadanie 1. Liczba szkód N w ciągu roku z pewnego ryzyka ma rozkład geometryczny: k =

Zadanie 1. O rozkładzie pewnego ryzyka X posiadamy następujące informacje: znamy oczekiwaną wartość nadwyżki ponad 20:

dla t ściślejsze ograniczenie na prawdopodobieństwo otrzymujemy przyjmując k = 1, zaś dla t > t ściślejsze ograniczenie otrzymujemy przyjmując k = 2.

Matematyka ubezpieczeń majątkowych r.

Zadanie 1. są niezależne i mają rozkład z atomami: ( ),

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r.

Parametr Λ w populacji ubezpieczonych ma rozkład dany na półosi dodatniej gęstością: 3 f

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r.

LIII Egzamin dla Aktuariuszy z 31 maja 2010 r. Część III

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. ma złożony rozkład Poissona. W tabeli poniżej podano rozkład prawdopodobieństwa ( )

Agata Boratyńska Statystyka aktuarialna... 1

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r.

Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX = 4 i EY = 6. Rozważamy zmienną losową Z =.

Matematyka ubezpieczeń majątkowych r.

LXX Egzamin dla Aktuariuszy z 23 marca 2015 r.

XLVIII Egzamin dla Aktuariuszy z 15 grudnia 2008 r.

LXIII Egzamin dla Aktuariuszy z 25 marca 2013 r.

= µ. Niech ponadto. M( s) oznacza funkcję tworzącą momenty. zmiennej T( x), dla pewnego wieku x, w populacji A. Wówczas e x wyraża się wzorem: 1

LXXV Egzamin dla Aktuariuszy z 5 grudnia 2016 r.

MUMIO Lab 6 (składki, kontrakt stop-loss)

XXXX Egzamin dla Aktuariuszy z 9 października 2006 r.

Matematyka ubezpieczeń życiowych r.

LX Egzamin dla Aktuariuszy z 28 maja 2012 r.

XXXVI Egzamin dla Aktuariuszy z 10 października 2005 r.

LVII Egzamin dla Aktuariuszy z 20 czerwca 2011 r.

Zadanie 1. Liczba szkód w każdym z trzech kolejnych lat dla pewnego ubezpieczonego ma rozkład równomierny:

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. XLI Egzamin dla Aktuariuszy z 8 stycznia 2007 r. Część I

LXIX Egzamin dla Aktuariuszy z 8 grudnia 2014 r.

XXXVIII Egzamin dla Aktuariuszy z 20 marca 2006 r.

1. Oblicz prawdopodobieństwo zdarzenia, że noworodek wybrany z populacji, w której śmiertelnością rządzi prawo Gompertza

LXVIII Egzamin dla Aktuariuszy z 29 września 2014 r.

LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r.

1. Niech g(t) oznacza gęstość wymierania, od momentu narodzin, pewnej populacji mężczyzn. Demografowie zauważyli, że po drobnej modyfikacji: =

LXXIV Egzamin dla Aktuariuszy z 23 maja 2016 r.

LIX Egzamin dla Aktuariuszy z 12 marca 2012 r.

LIV Egzamin dla Aktuariuszy z 4 października 2010 r.

XXXV Egzamin dla Aktuariuszy z 16 maja 2005 r.

LIII Egzamin dla Aktuariuszy z 31 maja 2010 r.

LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r.

Matematyka ubezpieczeń życiowych 17 marca 2008 r.

Komisja Egzaminacyjna dla Aktuariuszy. XLIV Egzamin dla Aktuariuszy z 3 grudnia 2007 r. Część I. Matematyka finansowa

f(x)dx gdy a, b (0, 100), f(x) = exp( 1

1. Pięciu osobników pochodzi z populacji, w której pojedyncze życie podlega ryzyku śmierci

LXVI Egzamin dla Aktuariuszy z 10 marca 2014 r.

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXIV Egzamin dla Aktuariuszy z 17 czerwca 2013 r.

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część I

LXV Egzamin dla Aktuariuszy z 30 września 2013 r.

LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r.

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXXIII Egzamin dla Aktuariuszy z 7 marca 2016 r. Część I

XXXIII Egzamin dla Aktuariuszy z 17 stycznia 2005 r.

Komisja Egzaminacyjna dla Aktuariuszy. XXXIX Egzamin dla Aktuariuszy z 5 czerwca 2006 r. Część I. Matematyka finansowa

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. XXXVII Egzamin dla Aktuariuszy z 5 grudnia 2005 r.

Matematyka ubezpieczeń majątkowych r. Zadanie 1. Rozważamy proces nadwyżki ubezpieczyciela z czasem dyskretnym postaci: n

UBEZPIECZ SIĘ, NAJLEPIEJ U MATEMATYKA

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXI Egzamin dla Aktuariuszy z 1 października 2012 r.

XLIII Egzamin dla Aktuariuszy z 8 października 2007 r.

Prawdopodobieństwo i statystyka

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r.

LXXII Egzamin dla Aktuariuszy z 28 września 2015 r.

Statystyka aktuarialna i teoria ryzyka, model indywidualny i zespołowy, rozkłady złożone

Kolokwium ze statystyki matematycznej

Komisja Egzaminacyjna dla Aktuariuszy LXX Egzamin dla Aktuariuszy z 23 marca 2015 r. Część I Matematyka finansowa

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. XLIX Egzamin dla Aktuariuszy z 6 kwietnia 2009 r.

LXIV Egzamin dla Aktuariuszy z 17 czerwca 2013 r.

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część I

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA

XXXVII Egzamin dla Aktuariuszy z 5 grudniaa 2005 r.

Rok akademicki: 2013/2014 Kod: AMA MN-s Punkty ECTS: 6. Kierunek: Matematyka Specjalność: Matematyka w naukach technicznych i przyrodniczych

LIII Egzamin dla Aktuariuszy z 31 maja 2010 r.

Ogólnopolska Konferencja Aktuarialna Zagadnienia aktuarialne teoria i praktyka Warszawa, IE SGH 2009

Zastosowanie modelu regresji logistycznej w ocenie ryzyka ubezpieczeniowego. Łukasz Kończyk WMS AGH

Hipotezy proste. (1 + a)x a, dla 0 < x < 1, 0, poza tym.

Lista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. L Egzamin dla Aktuariuszy z 5 października 2009 r.

XLIV Egzamin dla Aktuariuszy z 3 grudnia 2007 r.

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r.

z przedziału 0,1. Rozważmy trzy zmienne losowe:..., gdzie X

XLVII Egzamin dla Aktuariuszy z 6 października 2008 r.

LXI Egzamin dla Aktuariuszy z 1 października 2012 r.

L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 3 ZADANIA - ZESTAW 3

Kwantyle. Kwantyl rzędu p rozkładu prawdopodobieństwa to taka liczba x p. , że. Możemy go obliczyć z dystrybuanty: P(X x p.

Ubezpieczenia majątkowe

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXIX Egzamin dla Aktuariuszy z 8 grudnia 2014 r. Część I

zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXV Egzamin dla Aktuariuszy z 30 września 2013 r.

Transkrypt:

Zadanie. W pewnej populacji każde ryzyko charakteryzuje się trzema parametrami q, b oraz v, o następującym znaczeniu: parametr q to prawdopodobieństwo, że do szkody dojdzie (może zajść co najwyżej jedna szkoda), jeśli już do szkody dojdzie, to rozkład jej wartości ma wartość oczekiwaną równą b i wariancję równą. Parametr dla wszystkich ryzyk z populacji przyjmuje tę samą wartość równą. Niejednorodność populacji znajduje wyraz w zróżnicowanych wartościach pozostałych dwóch parametrów. Wartości parametrów (q,b) losowo dobranego ryzyka z tej populacji to realizacja pary zmiennych losowych (Q,B), o której wiemy, że: ( ), ( ), ( ) ( ), zmienne Q i B są niezależne. Niech oznacza łączną wartość szkód z portfela liczącego n ryzyk niezależnie wylosowanych z tej populacji. Liczba n, dla której zachodzi: wynosi: ( ) ( ), 400 350 300 250

Zadanie 2. Pewien podmiot maksymalizuje wartość oczekiwaną funkcji użyteczności o postaci: u( x) exp( x). Tymczasem majątek tego podmiotu wynosi w, może on jednak zostać zredukowany o stratę w wysokości, co może nastąpić z prawdopodobieństwem q. Od ryzyka tej straty można się na rynku ubezpieczyć. Rynek oferuje kontrakty z udziałem własnym ubezpieczonego, z parametrem 0,, takie że: składka za kontrakt wynosi ( ) q, odszkodowanie w razie zajścia szkody wyniesie Jeśli założymy, że zaś, wtedy podmiot, o którym mowa, osiągnie maksimum oczekiwanej użyteczności wybierając kontrakt z pokryciem równym (wybierz najlepsze przybliżenie): 69% 72% 75% 78% 8% 2

Zadanie 3. Zmienna losowa X jest sumą trzech niezależnych zmiennych losowych o rozkładach złożonych Poissona z parametrami odpowiednio ( ), ( ), oraz ( ). Wartości parametrów częstotliwości to,,, oraz dystrybuanty dane są wzorami: ( ) dla ( ) dla ( ) dla 2 0 0,2 2 0 0,4 3 0 0,8 Przy tych założeniach parametr a wzoru: ( ) ( ) wynosi: 3

Zadanie 4. Rozważamy klasyczny proces nadwyżki z zerową nadwyżką początkową: ( ) ( ), gdzie: ct jest sumą składek zgromadzonych do momentu t, ( ) jest procesem Poissona z parametrem intensywności wartości szkód Y, Y2, Y3,... są i.i.d, niezależne od procesu ( ). O rozkładzie wartości pojedynczej szkody wiemy tylko tyle, że: PrY 0,, EY / 5. Wiemy też, że c. 5 Wobec tego wartość oczekiwana deficytu w momencie ruiny (pod warunkiem że do ruiny dojdzie) może przyjmować różne wartości. Przedział, który zawiera wszystkie te wartości (i nic ponadto) jest postaci:, 0, 5, 5, 0, 5 5 3 5 2 2 4

Zadanie 5. W modelu nadwyżki ubezpieczyciela z czasem dyskretnym nadwyżka początkowa wynosi 2.5, składka roczna wynosi 2, a łączne wartości szkód w kolejnych latach W, W2, W3,... są niezależnymi zmiennymi losowymi o tym samym rozkładzie danym wzorem: k Pr( W k) 0.6 0. 4, k,2,3,... Prawdopodobieństwo ruiny wynosi: 8 27 8 27 6 8 6 8 2 3 2 3 32 243 5

Zadanie 6. W pewnym ubezpieczeniu mamy do czynienia z ciągłym, stopniowym wzrostem liczby ryzyk w portfelu, co wyraża założenie, iż zmienna T 0, oznaczająca moment zajścia losowo wybranej szkody z tego portfela w ciągu roku (o ile oczywiście do szkody dojdzie) ma rozkład dany gęstością: ( ) ( ) ( ( ) ) Niech T 2 oznacza odstęp w czasie od momentu zajścia szkody do jej likwidacji. Zmienna ta ma rozkład wykładniczy z wartością oczekiwaną równą (rok). Zakładamy że zmienne losowe T oraz T 2 są niezależne. Prawdopodobieństwo, iż szkoda, do której doszło w ciągu roku, pozostanie nie-zlikwidowana na koniec tego roku, z dobrym przybliżeniem wynosi: 64% 67% 70% 73% 77% 6

Zadanie 7. Rozważamy klasyczny model procesu nadwyżki ubezpieczyciela z czasem ciągłym: skumulowana wartość szkód jest procesem złożonym Poissona, w którym intensywność pojawiania się szkód wynosi 300, zaś pojedyncze szkody są niezależne od siebie i od procesu pojawienia się szkód, i mają rozkład dany na półosi dodatniej gęstością: ( ) ( ) ( ) intensywność składki (napływającej w sposób ciągły) wynosi 3600. Wiadomo, że przy takich założeniach funkcja prawdopodobieństwa ruiny (jako funkcja wysokości nadwyżki początkowej u) jest postaci: ( ) ( ) ( ) Suma parametrów tego wzoru ( ) wynosi: 7

Zadanie 8. Rozważamy łączną wartość szkód z pewnego portfela ryzyk w roku ubiegłym:, oraz w roku nadchodzącym:. Wiemy, że i są niezależnymi zmiennymi losowymi o rozkładzie Poissona( ). O zmiennych wiemy, że są przy danej wartości parametru ryzyka warunkowo niezależne, niezależne także od zmiennych i, oraz mają identyczny (warunkowy) rozkład o momentach pierwszych dwóch rzędów danych wzorami: ( ), ( ). Parametr ryzyka jest zmienną losową. Przyjmijmy oznaczenia: ( ) ( ). Zakładamy, że znamy wartości parametrów, oraz iż zaobserwowaliśmy za rok ubiegły realizacje oraz. Okazuje się, że najlepszy liniowy nieobciążony predyktor łącznej wartości szkód w roku nadchodzącym można uprościć do postaci: ( ) ( ), gdzie współczynnik a jest następującą funkcją znanych parametrów: ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) 8

Zadanie 9. Modelujemy przebiegający w czasie proces likwidacji szkód przez ubezpieczyciela. Niech T oznacza zmienną losową oznaczającą czas, jaki upływa od momentu zgłoszenia szkody do jej likwidacji. Niech: ( ) ( ) ( ),, oznacza natężenie procesu likwidacji (gęstość likwidacji tych szkód, które do momentu t pozostają jeszcze nie zlikwidowane). Występujące we wzorze symbole,, oraz oznaczają odpowiednio funkcję gęstości, dystrybuantę oraz funkcję hazardu zmiennej T. Załóżmy, że natężenie procesu likwidacji dane jest funkcją hazardu określoną na półosi dodatniej następująco: ( ). Wtedy wartość oczekiwana czasu likwidacji ( ) wynosi: 2 3 4 8 9

Zadanie 0. W pewnym ubezpieczeniu szkody zawsze likwidowane są nie później, niż w roku następującym po roku zajścia. Niech X t, 0 oraz X t, oznaczają łączną wartość szkód zaistniałych w roku t, a likwidowanych w tym samym roku oraz w roku następnym, odpowiednio. Mamy w dyspozycji próbkę obserwacji z lat t,2,..., n : X X, X, X,..., X n X.,0,, 2,0 2,,0, n, Zakładamy, że wszystkie powyższe zmienne są niezależne, i mają rozkłady Gamma o parametrach: X (, ), t,2,..., n, t, 0 ~ 0 t, ~ (, ) X, t,2,..., n. Nie znamy wartości parametrów,, ), w istocie jednak interesuje nas jedynie ( 0 parametr : 0 Rozważamy dwa estymatory tego parametru: ˆ : X n t, n t X t,0 X t,, oraz ˆ : n t n t ( X Stosunek wariancji tych estymatorów: var( ˆ ) var( ˆ ) wynosi: X t,0 t, X t, ) 0

Egzamin dla Aktuariuszy z października 202 r. Matematyka ubezpieczeń majątkowych Arkusz odpowiedzi * Imię i nazwisko... K L U C Z O D P O W I E D Z I... Pesel... Zadanie nr Odpowiedź Punktacja A 2 D 3 E 4 D 5 C 6 A 7 E 8 B 9 C 0 B * Oceniane są wyłącznie odpowiedzi umieszczone w Arkuszu odpowiedzi. Wypełnia Komisja Egzaminacyjna.