Wypromieniowanie fal elektromagnetycznych przez ciała Promieniowanie cieplne (termiczne) Luminescencja Chemiluminescencja Elektroluminescencja Katodoluminescencja Fotoluminescencja
Emitowanie fal elektromagnetycznych kosztem energii wewnętrznej ciał. Promieniowanie cieplne emitowane jest w każdej temperaturze, jednak w niewielkich temperaturach, emitowane są jedynie długie fale elektromagnetyczne ( podczerwień).
Barwne mapy termiczne zdjęcia -wykonano na kliszach czułych na podczerwień. Podobne można uzyskać z kamery termowizyjnej. Skala temperatury prowadzi od bieli (tu jest najgoręcej), przez żółty, pomarańczowy, czerwony, purpurowy, po niebieski. Termogram
Termogram: Dziecko pije zimny napój tu kolor czarny odpowiada 18C Zdjęcia: Focus nr 6 (2003)
Zastosowanie termografii
Strumień energii R λ emitowanej w przedziale długości fal od λ do λ+ λ z elementarnej powierzchni ciała S, charakteryzujemy poprzez spektralną zdolność emisyjną ciała r λ. r λ λ. R λ = S λ Stopień absorpcji fali elektromagnetycznej charakteryzujemy spektralną zdolnością absorpcyjną a λ, : zdefiniowaną jako stosunek strumienia energii Φ λ absorbowanej w zakresie spektralnym od λ do λ+ λ do strumienia energii Φ 0λ padającej na daną powierzchnię w tym samym zakresie spektralnym, czyli Φλ aλ = Φ 0 λ
Ciało doskonale czarne jest to ciało całkowicie pochłaniające promieniowanie elektromagnetyczne padające na jego powierzchnię.
Prawo Wiena Prawo Wiena. Ze wzrostem temperatury widmo promieniowania ciała doskonale czarnego przesuwa się w stronę fal krótszych. Oznacza to, że ze wzrostem temperatury długość fali, dla której spektralna zdolność emisyjna jest maksymalna przesuwa się w kierunku niższych wartości. λ T = 2898 µ m max K
T 1 T 2 T 1 < T 2 Prawo Wiena: λ T = 2898 µ m max K
Widmowa zdolność emisyjna: Wzór Rayleigha-Janasa 8ππ R = λ λ 4 kt Metoda nie budziła wątpliwości z punktu widzenia teorii fizyki klasycznej Efekt: Katastrofa w nadfiolecie
Prawo Kirchoffa Prawo Kirchoffa. Stosunek spektralnej zdolności emisyjnej do spektralnej zdolności absorpcyjnej nie zależy od rodzaju ciała i jest on dla wszystkich ciał jednakową, uniwersalną funkcją φ( λ,t) długości fali i temperatury równą spektralnej zdolności emisyjnej ciała doskonale czarnego. 1 2 3 c. c r λ rλ rλ rλ c. c = = = = r 1 2 3 c. c λ λ aλ aλ aλ a
Założenia Maxa Plancka - energia zawarta w fali jest całkowitą wielokrotnością hc/λ : E n hc = n, gdzie n = 1, λ 2,3... - promieniowanie elekromagnetyczne jest emitowane oraz absorbowane w postaci osobnych porcji energii ( kwantów ) o wartości E = hc/λ, gdzie λ jest długością emitowanej ( absorbowanej ) fali. Stała Plancka h = 6.626 10 34 Js
Konsekwencje założeń Plancka poziomy energetyczne molekuł muszą być dyskretne zmiana energii musi być wielokrotnością hc/λ fala elektromagnetyczna jest skwantowana
Widmowa zdolność emisyjna Ciała doskonale czarnego Prawo Plancka R 2πc 2 ( λ, T) = λ 5 λ exp h hc 1 kt λ Długość emitowanej fali elektromagnetycznej
Przez scałkowanie R λ względem λ otrzymujemy wyrażenie na całkowitą zdolność emisyjną: R 2 * = π 5 15h 3 k c 4 2 T 4 Prawo Stefana-Boltzmana
Prawo Stefana-Boltzmana R * = σt 4 Temperatura Całkowita zdolność emisyjna ciała 8 W σ = 5.7 10 doskonale czarnego 2 4 m K Prawo Stefana - Boltzmana. Strumień energii R* emitowany w całym zakresie spektralnym z jednostki powierzchni ciała doskonale czarnego (tzw. całkowita zdolność emisyjna) jest proporcjonalny do czwartej potęgi temperatury T w skali Kelvina.
Wykres widmowej zdolności emisyjnej ciała doskonale czarnego Według teorii: 1-Wiena, 2- Rayleigha-Janasa, 3-Plancka
Zjawisko fotoelektryczne. K - katoda A - anoda Kw okienko kwarcowe
Zjawisko fotoelektryczne.
Zjawisko fotoelektryczne. I Natężenie oświetlenia Zależność natężenia prądu fotoelektrycznego od natężenia oświetlenia badanej próbki.
Zjawisko fotoelektryczne. Zależność prądu fotoelektrycznego od częstotliwości promieniowania Progowa częstotliwość promieniowania Promieniowanie od częstotliwości mniejszej od progowej nie wywołuje efektu fotoelektrycznego Progowa częstotliwość promieniowania zależy od rodzaju naświetlanej substancji.
Zjawisko fotoelektryczne. Prąd nasycenia 1 - silniejsze oświetlenie powierzchni niż 2 U h - potencjał hamowania Zależność prądu fotoelektrycznego od różnicy potencjałów, przyłożonej między elektrody
Zjawisko fotoelektryczne. U h ν 0 - Częstotliwość progowa ν 0 ν Zależność potencjału hamowania od częstotliwości promieniowania
Zjawisko fotoelektryczne. Właściwości fotoefektu Elektrony emitowane są jedynie pod wpływem oświetlenia falą o częstotliwości większej od pewnej minimalnej Maksymalna wartość energii kinetycznej emitowanych elektronów jest tym większa im większa jest częstotliwość fali, nie zależy jednak od natężenia oświetlenia Natężenie fotoprądu jest proporcjonalne do wartości strumienia padającej fali Elektrony emitowane są natychmiast
Zjawisko fotoelektryczne. Przewidywania modelu falowego: -Dla odpowiednio dużego natężenia oświetlenia fale elekromagnetyczna o dowolnej długości powinna wywołać fotoefekt. Własność nie obserowana -Maksymalna energia kinetyczna elektronów powinna zależeć jedynie od natężenia oświetlenia, a nie od częstotliwości padającej fali. Własność nie obserowana
Zjawisko fotoelektryczne. E - + + + + + + + + + + + + Aby elektron mógł opuścić metal należy dostarczyć mu pewną minimalną wartość energii którą nazywamy pracą wyjścia. Energia ta może być uzyskana np. poprzez absorpcję energii fali elektromagnetycznej. Dla większości metali wartość pracy wyjścia jest bliska 4 ev.
Zjawisko fotoelektryczne. Założenie Einsteina: Fala elektromagnetyczna o częstotliwości ν jest strumieniem cząstek ( fotonów) o energii E=hν, każdy. Wyjaśnienie: W wyniku absorpcji fotonu przez elektron uzyskuje on energię E=hν. Jeżeli energia ta jest większa od pracy wyjścia A, elektron może opuścić powierzchnię katody i w układzie płynie fotoprąd. Wraz ze wzrostem oświetlenia powierzchni katody ( tzn. wzrostem ilości fotonów padających w jednostce czasu na jednostkę powierzchni katody) rośnie ilość elektronów emitowanych z powierzchni, a tym samym wartość fotoprądu nasycenia. Różnicę energii pomiędzy energią fotonu a pracą wyjścia elektron unosi w postaci jego energii kinetycznej. h ν = A + E k, max
Doświadczenie Bothego. F - cienka metalowa folia L - liczniki Geigera M - mechanizm stawiający Znaczniki na poruszającej się taśmie T. Doświadczenie wykazało istnienie oddzielnych cząstek światła- FOTONÓW
Fotony Energia fotonu określona jest przez jego częstość: E =hω Masa spoczynkowa fotonu jest równa zeru; Foton zawsze porusza się z prędkością światła c; Pęd fotonu: p = E c = hω c