Politechnika Wrocławska Wydział Chemiczny Zakład Materiałów Polimerowych i Węglowych. Analiza składu enancjomerów

Podobne dokumenty
4. Stereoizomeria. izomery. konstytucyjne różne szkielety węglowe, różne grupy funkcyjne różne położenia gr. funkcyjnych

7-9. Stereoizomeria. izomery. konstytucyjne różne szkielety węglowe, różne grupy funkcyjne różne położenia gr. funkcyjnych

RJC # Alk l a k ny n Ster St eoi er zom eoi er zom y er Slides 1 to 30

Chemia organiczna. Stereochemia. Zakład Chemii Medycznej Pomorskiego Uniwersytetu Medycznego

Stereochemia Ułożenie atomów w przestrzeni

Wpływ ilości modyfikatora na współczynnik retencji w technice wysokosprawnej chromatografii cieczowej

STEREOCHEMIA ORGANICZNA

Ilościowa analiza mieszaniny alkoholi techniką GC/FID

Stereochemia Jak przedstawiamy cząsteczkę z węglem tetraedrycznym:

Analiza GC alkoholi C 1 C 5. Ćwiczenie polega na oznaczeniu składu mieszaniny ciekłych związków, w skład

Techniki immunochemiczne. opierają się na specyficznych oddziaływaniach między antygenami a przeciwciałami

Jakościowa i ilościowa analiza mieszaniny alkoholi techniką chromatografii gazowej

Chemia organiczna. Stereochemia. Zakład Chemii Medycznej Pomorskiego Uniwersytetu Medycznego

Instrukcja do ćwiczeń laboratoryjnych

WPŁYW ILOŚCI MODYFIKATORA NA WSPÓŁCZYNNIK RETENCJI W TECHNICE WYSOKOSPRAWNEJ CHROMATOGRAFII CIECZOWEJ

CHROMATOGRAFIA CHROMATOGRAFIA GAZOWA

Badanie właściwości optycznych roztworów.

Pytania z Wysokosprawnej chromatografii cieczowej

Kinetyka reakcji hydrolizy sacharozy katalizowanej przez inwertazę

POLITECHNIKA BIAŁOSTOCKA

Instrukcja do ćwiczeń laboratoryjnych

Izomerię konstytucyjną można podzielić na podgrupy a) izomeria szkieletowa, która polega na różnej budowie szkieletu węglowego cząsteczek Przykład:

STEREOCHEMIA ORGANICZNA

Rys. 1. Chromatogram i sposób pomiaru podstawowych wielkości chromatograficznych

KINETYKA INWERSJI SACHAROZY

Węglowodany. Monosacharydy Oligosacharydy Polisacharydy. Skrobia Celuloza Glikogen. Aldopentozy (ryboza) Disacharydy. Ketopentozy (rybuloza)

POTWIERDZANIE TOŻSAMOSCI PRZY ZASTOSOWANIU RÓŻNYCH TECHNIK ANALITYCZNYCH

GraŜyna Chwatko Zakład Chemii Środowiska

Spis treści ELEMENTY STEREOCHEMII

Kolumnowa Chromatografia Cieczowa I. 1. Czym różni się (z punktu widzenia użytkownika) chromatografia gazowa od chromatografii cieczowej?

Repetytorium z wybranych zagadnień z chemii

LASERY I ICH ZASTOSOWANIE

Ćwiczenie 2 Przejawy wiązań wodorowych w spektroskopii IR i NMR

Ćwiczenie Nr 6 Skręcenie płaszczyzny polaryzacji

Laboratorium techniki laserowej. Ćwiczenie 5. Modulator PLZT

3. Jak zmienią się właściwości żelu krzemionkowego jako fazy stacjonarnej, jeśli zwiążemy go chemicznie z grupą n-oktadecylodimetylosililową?

Ćwiczenie 9 Wyznaczanie skręcalności właściwej sacharozy, glukozy i fruktozy (zjawisko inwersji)

JAK ZMIERZYĆ ILOŚĆ KWASÓW NUKLEINOWYCH PO IZOLACJI? JAK ZMIERZYĆ ILOŚĆ KWASÓW NUKLEINOWYCH PO IZOLACJI?

Kreacja aromatów. Techniki przygotowania próbek. Identyfikacja składników. Wybór składników. Kreacja aromatu

Skręcenie płaszczyzny polaryzacji światła w cieczach (PF13)

Ćwiczenie 363. Polaryzacja światła sprawdzanie prawa Malusa. Początkowa wartość kąta 0..

Polarymetr służy do pomiaru skręcenia płaszczyzny polaryzacji światła w substancjach

SKUTECZNOŚĆ IZOLACJI JAK ZMIERZYĆ ILOŚĆ KWASÓW NUKLEINOWYCH PO IZOLACJI? JAK ZMIERZYĆ ILOŚĆ KWASÓW NUKLEINOWYCH PO IZOLACJI?

Polarymetryczne oznaczanie stężenia i skręcalności właściwej substancji optycznie czynnych

Spektroskopia. Spotkanie pierwsze. Prowadzący: Dr Barbara Gil

Izomeria cukrów prostych

Ćwiczenie 74. Zagadnienia kontrolne. 2. Sposoby otrzymywania światła spolaryzowanego liniowo. Inne rodzaje polaryzacji fali świetlnej.

SPEKTROSKOPIA NMR. No. 0

Pomiar kąta skręcenia polaryzacji światła oraz skręcalności właściwej roztworów sacharozy I. Wstęp, zastosowania metody w medycynie

PRODUKTY CHEMICZNE Ćwiczenie nr 3 Oznaczanie zawartości oksygenatów w paliwach metodą FTIR

EKSTRAHOWANIE KWASÓW NUKLEINOWYCH JAK ZMIERZYĆ ILOŚĆ KWASÓW NUKLEINOWYCH PO IZOLACJI? JAK ZMIERZYĆ ILOŚĆ KWASÓW NUKLEINOWYCH PO IZOLACJI?

Ćwiczenie 1 Analiza jakościowa w chromatografii gazowej Wstęp

Kryteria oceniania z chemii kl VII

OZNACZENIE JAKOŚCIOWE I ILOŚCIOWE w HPLC

Skręcenie wektora polaryzacji w ośrodku optycznie czynnym

5. WYZNACZENIE KRZYWEJ VAN DEEMTER a I WSPÓŁCZYNNIKA ROZDZIELENIA DLA KOLUMNY CHROMATOGRAFICZNEJ

Wysokosprawna chromatografia cieczowa w analizie jakościowej i ilościowej

Identyfikacja węglowodorów aromatycznych techniką GC-MS

ROZDZIELENIE OD PODSTAW czyli wszystko (?) O KOLUMNIE CHROMATOGRAFICZNEJ

Podstawy chromatografii i technik elektromigracyjnych / Zygfryd Witkiewicz, Joanna Kałużna-Czaplińska. wyd. 6-1 w PWN. Warszawa, cop.

Wskaż grupy reakcji, do których można zaliczyć proces opisany w informacji wstępnej. A. I i III B. I i IV C. II i III D. II i IV

1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej?

Węglowodany (Cukry) Część 1. Związki wielofunkcyjne

IZOMERIA Izomery - związki o takim samym składzie lecz różniące się budową

IM21 SPEKTROSKOPIA ODBICIOWA ŚWIATŁA BIAŁEGO

STEREOCHEMIA ORGANICZNA

Zestaw pytań egzaminu inŝynierskiego przeprowadzanego w Katedrze Fizykochemii i Technologii Polimerów dla kierunku CHEMIA

uczeń opanował wszystkie wymagania podstawowe i ponadpodstawowe

IZOMERIA OPTYCZNA. Znaczenie izomerii optycznej.

BADANIE WYMUSZONEJ AKTYWNOŚCI OPTYCZNEJ

Rozważania rozpoczniemy od fal elektromagnetycznych w próżni. Dla próżni równania Maxwella w tzw. postaci różniczkowej są następujące:

CHROMATOGRAFIA II 18. ANALIZA ILOŚCIOWA METODĄ KALIBRACJI

Podstawy chromatografii i technik elektromigracyjnych / Zygfryd Witkiewicz, Joanna Kałużna-Czaplińska. wyd. 5, 4 dodr. Warszawa, 2015.

Budowa atomu. Wiązania chemiczne

LASERY I ICH ZASTOSOWANIE W MEDYCYNIE

Różnorodny świat izomerów powtórzenie wiadomości przed maturą

Jakościowe i ilościowe oznaczanie alkoholi techniką chromatografii gazowej

Cz. 5. Podstawy instrumentalizacji chromatografii. aparatura chromatograficzna w skali analitycznej i modelowej - -- w części przypomnienie -

Chemia kryminalistyczna

ANALIZA WYNIKÓW MATURY 2017 Z CHEMII

WYMAGANIA NA POSZCZEGÓLNE STOPNIE SZKOLNE Z CHEMII klasa I

POMIAR NATURALNEJ AKTYWNOŚCI OPTYCZNEJ

Techniki analityczne. Podział technik analitycznych. Metody spektroskopowe. Spektroskopia elektronowa

Wykład 5 Widmo rotacyjne dwuatomowego rotatora sztywnego

Wysokosprawna chromatografia cieczowa dobór warunków separacji wybranych związków

dr hab. inż. Józef Haponiuk Katedra Technologii Polimerów Wydział Chemiczny PG

Budowa atomu Poziom: rozszerzony Zadanie 1. (2 pkt.)

Instrukcja do ćwiczeń laboratoryjnych

Wykład 17: Optyka falowa cz.2.

I KSZTAŁCENIA PRAKTYCZNEGO. Imię i nazwisko Szkoła Klasa Nauczyciel Uzyskane punkty

LCH 1 Zajęcia nr 60 Diagnoza końcowa. Zaprojektuj jedno doświadczenie pozwalające na odróżnienie dwóch węglowodorów o wzorach:

Spektroskopia molekularna. Spektroskopia w podczerwieni

Identyfikacja substancji pochodzenia roślinnego z użyciem detektora CORONA CAD

BADANIE ZAWARTOŚCI WIELOPIERŚCIENIOWYCH WĘGLOWODORÓW AROMATYCZNYCH (OZNACZANIE ANTRACENU W PRÓBKACH GLEBY).

OFERTA TEMATÓW PROJEKTÓW DYPLOMOWYCH (MAGISTERSKICH) do zrealizowania w Katedrze INŻYNIERII CHEMICZNEJ I PROCESOWEJ

CO_05_W: Stereochemia

CHEMIA klasa 1 Wymagania programowe na poszczególne oceny do Programu nauczania chemii w gimnazjum. Chemia Nowej Ery.

CIEPLNE I MECHANICZNE WŁASNOŚCI CIAŁ

4A. Chromatografia adsorpcyjna B. Chromatografia podziałowa C. Adsorpcyjne oczyszczanie gazów... 5

WYZNACZANIE ROZMIARÓW

Transkrypt:

Politechnika Wrocławska Wydział Chemiczny Zakład Materiałów Polimerowych i Węglowych Analiza składu enancjomerów Wrocław 2005

1. Związki optycznie czynne. Zjawisko skręcania płaszczyzny drgań światła spolaryzowanego odkryto na początku 19 w. Zdolność skręcania płaszczyzny polaryzacji promieni świetlnych zaobserwowano najpierw w przypadku niektórych kryształów (pary kryształów enancjomorficznych, będących wzajemnymi odbiciami lustrzanymi), co wynika z ich specyficznej asymetrycznej struktury. Przeprowadzenie takiego kryształu w stan ciekły, przez stopienie lub rozpuszczenie wiąże się z zanikiem czynności optycznej. Czynność optyczna wykazują jednak niektóre związki nie tylko w stanie stałym a również ciekłym i gazowym. Za to jest już jednak odpowiedzialna asymetria struktury związków na poziomie mikroskopowym, molekularnym mówimy tu o izomerii optycznej, jednym z trzech rodzajów izomerii stereoizomerii (oprócz izomerii cis-trans i diastereoizomerii). Jakościowo zjawisko czynności optycznej cząsteczek możemy wyjaśnić następująco. Poprzeczne do kierunku rozchodzenia się, drgania fali elektromagnetycznej w płaszczyźnie spolaryzowanej liniowo wiązki, możemy rozłożyć na dwie fale składowe spolaryzowane kołowo w lewo i prawo. Te dwie składowe przechodząc przez optycznie asymetryczny ośrodek, przez różnice w oddziaływaniach z asymetrycznym polem generowanym przez elektrony, poruszają się z różną szybkością (lub różnią się współczynnikami załamania światła, co na jedno wychodzi). Po wyjściu z ośrodka, ponowne złożenie składowych promieniowania daje falę spolaryzowaną liniowo, ale w innej płaszczyźnie. I stąd obserwowane w skali makroskopowej skręcenie płaszczyzny światła spolaryzowanego. Optycznie czynne są cząsteczki posiadające swe nie nakładające się odbicie lustrzane. Z geometrycznego punktu widzenia warunek taki spełniają struktury nie posiadające ani środka inwersji (i), ani płaszczyzny symetrii (σ). Posługując się 2

nomenklaturą teorii grup, ogólnie cząsteczki, bez niewłaściwej osi obrotu S n, co jest warunkiem koniecznym i wystarczającym. W chemii, szczególnie organicznej, szeroko rozpowszechnione jest pojecie chiralnego atomu węgla, czyli atomu węgla z czterema różnymi podstawnikami. Struktura taka z reguły implikuje achiralność cząsteczki. Trzeba jednak zdawać sprawę, że to bardzo użyteczne pojęcie, nie jest w sensie ogólnym ani warunkiem koniecznym ani dostatecznym czynności optycznej cząsteczki. Posiadają chiralne węgle mezomery (proszę sobie przypomnieć co to jest!, i dlaczego tak jest!), a jednak nie tworzą par enancjomerów. Z drugiej strony czynność optyczną wykazują na przykład pochodne difenyli, węgli chiralnych nie posiadające. Ten ostatni przypadek rzadko omawiany zasługuje na kilka dodatkowych uwag. Odpowiednio duże podstawniki w cząsteczce difenylu w pozycjach 2,2,6,6 uniemożliwiają w niskich temperaturach swobodna rotację pierścieni fenylowych wokół wiązań C1-C1. Na przykład 2,3,6,2,3,4,6 -heptachlorodifenyl: Takie izomery, a ściśle biorąc konformery nazywane są tradycyjnie atropiizomerami. Dają się rozdzielić, nie ulegają racemizacji w temperaturze pokojowej i skręcają płaszczyznę światła spolaryzowanego. Gdyby jednak podejść do omawianej struktury związku w mniej formalny sposób, to można uznać, że atomy C1 i C2 rozpatrywane wspólnie są centrum asymetrii o czterech różnych podstawnikach. Niejako zastępują chiralny atom węgla. 3

Istnieje specjalny system, stworzony przez Cahna, Ingolda i Preloga, jednoznacznego określania absolutnej konfiguracji, czyli określania przestrzennego ułożenia atomów lub grup dookoła dyssymetrycznej części molekuły. Pozwala to przypisać każdemu enancjomerowi, korzystając z opracowanych reguł (warto je sobie przypomnieć!), absolutną konfigurację R (rectus prawy) lub S (sinister lewy). Konfiguracja R i S jest w gruncie rzeczy formalnym systemem nomenklatury i sensie ogólnym nie ma nic wspólnego z na przykład kierunkiem skręcalności płaszczyzny światła spolaryzowanego przez dany związek, co zależy od wielu czynników. Z kolei przypisanie rzeczywistej, fizycznej konfiguracji określonemu, enancjomerowi jest przedsięwzięcie złożonym, trudnym. Korzysta się w tym celu z zaawansowanych metod rentgenowskich, badając strukturę optycznie czynnych związków w postaci krystalicznej. Inne, liczne metody, zwykle charakterze półempirycznym, dają mniej pewne wyniki. Znaczenie występowania izomerii optycznej, szczególnie dla przyrody ożywionej ma trudne do przecenienia znaczenie. Optycznie czynne są białka, zarówno na poziomie ich podstawowego budulcowego monomeru, aminokwasów jak i struktur wyżej zorganizowanych. Podobnie określone enancjomery, a nie ich racemiczne mieszaniny, są podstawą budowy naturalnych węglowodanów, terpenów, alkaloidów i innych składników żywych organizmów. Enancjomery tego samego związku z reguły wysoce selektywnie podlegają procesom metabolicznym. Ten sam związek może być lekarstwem, trucizną lub tylko niepotrzebnym balastem, może mieć zapach miły lub odrażający, wszystko zależy od jego struktury, konfiguracji optycznej. Stad wielkie znaczenie enancjoselektywnych syntez różnych preparatów w nowoczesnym przemyśle farmaceutycznym, spożywczym, perfumeryjnym a nawet produkcji przyjaznych dla środowiska naturalnego insektycydów. 4

2. Oznaczanie składu enancjomerów. Pamiętajmy jedna podstawową zasadę! Enancjomer od jego lustrzanego odbicia można odróżnić tylko za pomocą optycznie czynnego narzędzia. I to zarówno w sensie enancjoselektywnej syntezy, analizy, dowolnej chemicznej przemiany czy też detekcji metodami czysto fizycznymi. Optycznie nieczynna skarpetka nie jest przypisana formalnie ani do nogi lewej ani prawej. W zasadzie lewa i prawa są nierozróżnialne. Rękawiczkę prawą od lewej bez trudu rozróżnimy i po ciemku. Podobnie selektywnie reaguje nasz optycznie czynny organizm (jego szlaki metaboliczne, zmysły: smak, zapach) różnicując związki optycznie czynne. 2.1. Pomiar skręcalności optycznej. Kierunek skręcalności płaszczyzny światła spolaryzowanego przez dany związek zależy od temperatury, długości fali światła i rodzaju rozpuszczalnika. Pomiarów dokonuje się polarymetrem. Zmiana któregoś z tych parametrów może nawet zmienić znak kąta skręcalności. Nie jest więc to w żadnym razie właściwość bezwzględna, przypisana danej substancji. Charakteryzując pod tym względem określony związek posługujemy się skręcalnością właściwą [α], która określa skręcalność powodowana przez 1g substancji w zawartej w 1ml roztworu wypełniającego rurkę polarymetru o długości 10 cm. Wyniki pomiaru należy uzupełnić podaniem informacji o rodzaju użytego rozpuszczalnika, stężenia substancji, długości fali użytego światła i temperaturze pomiaru Dokonując pomiaru kąta skręcalności płaszczyzny światła spolaryzowanego, w ściśle określonych warunkach i znając skręcalność właściwą analizowanego 5

enancjomeru, możemy obliczyć jego stężenie, a ściśle nadmiar w porównaniu do drugiego enancjomeru, definiowany jak niżej. ee = [A] [B] /[A] + [B] gdzie: [A], [B] to stężenia poszczególnych enancjomerów ee, nadmiar enancjomeru lub czystość optyczna (enantiomeric excess) Bez trudu też, o ile wartość ta jest stabelaryzowana można określić konfigurację absolutną związku. 2.2. Oznaczanie czystości optycznej związku. Nie zawsze niestety próbując oznaczyć wzajemny stosunek poszczególnych enancjomerów możemy skorzystać z polarymetru. Problemy pojawiają się gdy analizowana próbka substancji jest bardzo mała, skręcalność płaszczyzny światła spolaryzowanego bliska 0 (duże błędy pomiaru) czy wręcz brak wartości standardowej skręcalności właściwej. Wtedy można skorzystać z innych technik pomiarowych. Spektroskopia NMR. Metoda najczęściej stosowana w przypadku optycznie czynnych alkoholi, które przeprowadza się w pary enancjomerow z pochodnymi kwasu migdałowego (kwas fenylohydroksyoctowy odczynnik Moshera). W takim układzie pojawiają się różnice w przesunięciu chemicznym określonych protonów enancjomerow R i S, spowodowane różnicami ich przesłaniania przez najbliższe otoczenie (m. in. różna podatność na tworzenie wiązań wodorowych spowodowana przeszkodami sterycznymi). Generalnie jest to technika trudna i użyteczna tylko w specyficznych przypadkach. 6

HPLC (High Performance Liquid Chromatography) wysokosprawna chromatografia cieczowa. Pozwala rozdzielać pary enanacjomerów w temperaturze pokojowej (ważne bo w wielu przypadkach podwyższona temperatura racemizuje związki). Można tym sposobem analizować substancje o niskiej lotności. HPLC preparatywna pozwala uzyskiwać próbki rozdzielonych enancjomerów, podobnie jak stosowana jeszcze niekiedy w tym celu klasyczna chromatografia cienkowarstwowa. Podstawą możliwości stosowanie metod chromatograficznych, również w fazie gazowej, jest stosowanie optycznie czynnej fazy aktywnej. Najczęściej wykorzystuje się w tym celu cyklodekstryny, pierścieniowe oligomery glukozy, otrzymywane na drodze specyficznej, enzymatycznej degradacji skrobi. α-cyklodekstryna ma pierścień zbudowany z 6, β-cyklodekstryna z 7 a γ-cyklodekstryna z 8 cząsteczek monosacharydu. β - cyklodekstryna Dlaczego chromatograficzna faza aktywna zawierająca optycznie czynne cyklodekstryny może rozdzielać enancjomery? jest chyba przynajmniej jakościowo, intuicyjnie zrozumiałe. GC chromatografia gazowa. Ta techniką można w wielu przypadkach skutecznie analizować stężenie poszcególnych enancjomerów, o ile dysponujemy odpowiednią, 7

optycznie czynną kolumną. Ograniczeniem chromatografii gazowej jest niewątpliwie możliwość stosowania do związków lotnych i trwałych w temperaturze pomiaru. GC stosowana do rozdziału enancjomerów ma natomiast liczne zalety, w porównaniu do innych metod: pozwala analizować próbki o masie nawet 10-2 µg nie wymaga przygotowania próbek, wydzielania analizowanych związków jest technicznie prosta i szybka bardzo precyzyjna tania Łatwo jest metodą GC oznaczyć nadmiar określonego enancjomeru, ale by stwierdzić, który jest który trzeba posiadać próbkę jednego z enancjomerów. 3. Przebieg ćwiczenia. 3.1. Zadania analityczne Student otrzymuje dwie próbki optycznie czynnych związków, rozpuszczonych w inertnym optycznie, węglowodorowym rozpuszczalniku, z czym są związane dwa zadania analityczne. Próbka 1. Zawiera racemiczną mieszaninę związku. Zadaniem jest znalezienie możliwie najwyższej temperatury kolumny, w której następuje dostateczne (całkowite) rozdzielenie enancjomerów. Maksymalna temperatura pomiaru, dla danego związku, zostanie podana. Kolejne analizy należy wykonywać w temperaturach niższych co 15 o C. Proszę notować czasy retencji, dla poszczególnych temperatur i obserwowany kształt sygnałów! Próbka 2. Zawiera nierównomolowa mieszaninę enancjomerów. Korzystając z parametrów pracy chromatografu, ustalonymi w 1 części ćwiczenia, należy poddać 8

próbkę analizie. Uzyskane wyniki pozwolą obliczyć czystość optyczną związku, co kończy ćwiczenie. 3.2. Struktura analizowanych związków. OH R/S-1-fenylopropan-1-ol, T max = 170 o C OH. R/S-1-fenylopropan-2-ol, T max = 150 o C. OH R/S-linalol, T max =? o C 9

3.3. Parametry pracy chromatografu. Dozownik: - objętość dozowanej próbki 1 µl - gaz nośny: azot - split: 1:50 - temperatura dozownika: 250 o C Kolumna: - HP-Chiral, 25m, ID 0,32 mm - stałe ciśnienie 10 psi Program temperaturowy: - pomiar w stałej temperaturze Detektor: - temperatura 280 o C - przepływ H 2 30ml/min - przepływ N 2 25ml/min - przepływ powietrza 400ml/min 10