Ćwiczenie 2 BUDOWA, WŁAŚCIWOŚCI I FUNKCJE BIAŁEK Część doświadczalna obejmuje: ilościowe oznaczanie białek metodą biuretową wytrącanie kazeiny w punkcie izoelektrycznym frakcjonowanie białek surowicy krwi metodą wysalania siarczanem amonu denaturację białek (termiczna, etanol o wyższym stężeniu, niektóre kationy i aniony) WPROWADZENIE Łączenie się aminokwasów wiązaniami amidowymi prowadzi do utworzenia liniowej makrocząsteczki polipeptydu. Łańcuchy polipeptydowe zawierające ponad 100 reszt aminokwasowych przyjęto określać jako białka. Wiązanie amidowe, nazywane również wiązaniem peptydowym, powstaje z grupy α-karboksylowej i grupy α-aminowej. Na Ryc. 1A przedstawiono dipeptyd (seryloalaninę) utworzony z seryny i alaniny. Wiązanie peptydowe jest stabilizowane mezomerycznie, gdyż wiązanie C N ma częściowo charakter wiązania podwójnego C=N (Ryc. 1B). To usztywnienie wiązania peptydowego powoduje, że we wszystkich ułożeniach przestrzennych białek grupy amidowe pozostają płaskie. Swobodna rotacja jest możliwa tylko wokół wiązania N C α i C α C, a obroty są opisywane przez wartości kątów torsyjnych ϕ (fi) i ψ (psi) (Ryc. 1A). Ryc. 1. Właściwości wiązania amidowego (peptydowego) (Koolman i Röhm 2005) 1
Ryc. 2. Struktury drugorzędowe białek (α-helisa, helisa kolagenu, pofałdowanej kartki, β-pętla) (Koolmani Röhm 2005) 2
Konformacja łańcucha peptydowego utworzona przez kilka kolejnych reszt aminokwasowych i stabilizowana wiązaniami wodorowymi pomiędzy atomami tlenu i azotu z ugrupowań peptydowych definiuje strukturę drugorzędową (Ryc. 2). Białka, ze względu na skład, dzieli się na białka proste i złożone. Białka proste zbudowane są tylko z aminokwasów, natomiast białka złożone zawierają szereg różnych komponentów nieaminokwasowych, których rodzaj jest podstawą podziału białek na: glikoproteiny białka zawierające cukry obojętne (galaktoza, mannoza, fukoza), aminocukry (N-acetyloglukozamina, N-acetylogalaktozamina) lub kwasy pochodne monosacharydów (kwas uronowy, kwas sjalowy) lipoproteiny zawierają fosfolipidy, cholesterol i inne związki lipidowe metaloproteiny zawierają jony metali związane jonowo lub koordynacyjnie fosfoproteiny reszty tyrozyny, treoniny lub seryny są zestryfikowane kwasem fosforowym nukleoproteiny zawierają RNA lub DNA chromoproteiny zawierają grupę prostetyczną, którą stanowią różne związki barwne Na Ryc. 3 pokazano potencjalne miejsca modyfikacji łańcucha polipeptydowego. Modyfikacjom ulegają zwykle polarne reszty aminokwasów, stanowiąc ważne źródło różnorodności białek. Ryc. 3. Potranslacyjne modyfikacje łańcucha polipeptydowego (Koolman i Röhm 2005) 3
Białka ze względu na pełnione funkcje można podzielić na: enzymatyczne najliczniejsza grupa białek (ponad 2000) o zróżnicowanej masie cząsteczkowej strukturalne są odpowiedzialne za mechaniczną stabilność narządów i tkanek (kolagen, elastyna, tubulina, aktyna, α-keratyna); do białek strukturalnych zalicza się także histony pełniące kluczową rolę w upakowaniu DNA w chromatynie transportujące np. hemoglobina uczestniczy w transporcie tlenu i CO 2, niektóre białka osocza (prealbumina) transportujące hormony, transferyna przenosząca żelazo, niektóre białka błonowe np. kanały jonowe pośredniczące w transporcie jonów, nośniki w transporcie metabolitów i jonów, pompy funkcjonujące w transporcie aktywnym jonów i metabolitów regulacyjne np. niektóre hormony (somatotropina, insulina), a także receptory uczestniczące w percepcji różnych cząsteczek sygnałowych; białkami regulatorowymi są także czynniki transkrypcyjne, regulujące ekspresję genów odpornościowe białka układu immunologicznego (np. immunoglobuliny) chronią organizm przed czynnikami chorobotwórczymi i ksenobiotykami (substancjami obcymi dla organizmu) motoryczne uczestniczą w procesach związanych z ruchem (aktyna, miozyna); kinezyna funkcjonuje w przemieszczaniu organelli w komórce zapasowe np. owoalbumina w białku jaja stanowi źródło aminokwasów dla rozwijającego się zarodka, ferrytyna wiąże żelazo w wątrobie, kazeina jest białkiem zapasowym mleka, niektóre białka budujące mięśnie mogą być wykorzystywane jako materiał energetyczny; także wiele białek roślinnych pełni funkcję zapasową Ze względu na rozpuszczalność i kształt, białka dzielą się na globularne (kuliste) i fibrylarne (włókienkowate, skleroproteiny). Do białek fibrylarnych należą: α-keratyny włosów, wełny, piór, paznokci, kolageny zawarte głównie w tkance łącznej, elastyny, fibroina jedwabiu. Białka globularne obejmują: białka obojętne (albuminy, globuliny), białka kwaśne (prolaminy, gluteiny) oraz białka zasadowe (histony, protaminy). Na Ryc. 4 przedstawiono półschematycznie, w około 1,5-milionowym powiększeniu, struktury kilku wewnątrz- i pozakomórkowych białek. 4
Ryc. 4. Strukturalne i funkcjonalne zróżnicowanie białek (półschematyczne struktury w około 1,5 mln powiększeniu; długość kolagenu w tym powiększeniu wynosi około 30 cm) (Koolman i Röhm 2005) 5
Rozpuszczalność białek globularnych Cząsteczki białka są amfoterami tworzącymi w roztworach wodnych koloidy. Fazę rozproszoną stanowią cząsteczki białka o wymiarach 5-100 nm i masach cząsteczkowych sięgających nawet miliona Daltonów (Da). Większość białek wykazuje duże powinowactwo do wody. Takie koloidy nazywamy hydrofilowymi. Białka, podobnie jak aminokwasy, posiadają ładunek, lecz w ph równym punktowi izoelektrycznemu (pi) są elektrycznie obojętne (Rys. 5). Różne białka mają różne wartości punktu izoelektrycznego. W ph powyżej i poniżej pi białka mają ładunek odpowiednio ujemny i dodatni, w wyniku czego białko zostaje otoczone dipolami wody (hydratacja). Zjawisko to warunkuje rozpuszczalność w wodzie tak dużych cząsteczek jak białka. Pozbawienie białek ładunku powoduje dezintegrację otoczki wodnej i utratę rozpuszczalności. Białka różniące się wartościami punktu izoelektrycznego w tym samym ph środowiska będą posiadały różny ładunek i różne powinowactwo do wody, co umożliwia ich frakcjonowanie i rozdział. Ryc. 5. Udział ładunku elektrycznego w procesach wytrącania białka w roztworze Z powyższego wynika, że wytrącanie białka zachodzi najłatwiej w punkcie izoelektrycznym. Jeśli proces ten będzie przebiegał w niskiej temperaturze (0-50 0 C), to uzyskane w osadzie białko, po rozpuszczeniu zachowa cechy charakterystyczne dla białka natywnego. Na Ryc. 6 pokazana jest zależność rozpuszczalności białka od ph w warunkach zróżnicowanego stężenia NaCl. Rozpuszczalność białka wyraźnie maleje w ph zbliżonym do pi. Największy spadek rozpuszczalności obserwuje się w warunkach niskiego stężenia soli (1 mm NaCl). 6
Ryc. 6. Wpływ ph i niewielkich stężeń NaCl na rozpuszczalność β-laktoglobuliny w 25 0 C (Lehninger 1979) Wpływ stężenia soli na rozpuszczalność białek Rozpuszczalność jest funkcją zarówno stężenia soli obojętnej, jak też ilości ładunków wszystkich rodzajów jonów znajdujących się w roztworze. Wartości te określają siłę jonową roztworu: µ = 1/2Σc i z 2 i (c stężenie jonów, z ładunek jonów). Rozpuszczalność białka w wodzie destylowanej jest bardzo mała, natomiast rośnie wraz ze wzrostem siły jonowej, gdyż rośnie liczba jonów nieorganicznych na powierzchni białka zapobiegających ich agregacji. Zjawisko to nazywa się wsalaniem lub zasalaniem (Ryc. 7). Przy odpowiednio dużej sile jonowej, sól odciąga cząsteczki wody od powierzchni białek i doprowadza do ich agregacji (wysalanie białka) (Ryc. 7). Białko(a) wysolone rozpuszcza się ponownie po usunięciu soli lub po rozcieńczeniu roztworu. Zdolność wysalająca soli zależy zarówno od charakteru kationu, jak i anionu. Ze względu na siłę wysalającą można uszeregować kationy i aniony w następujący sposób: Aniony: cytrynian3- > winian2-> siarczan2- > octan- > chlorek- > azotan- > rodanek- Kationy: Th 3+ > Al 2+ > Se 2+ > Sr 2+ > Ca 2+ > Mg 2+ > NH 4+ > Na + > Li + Szeregi te noszą nazwę szeregów liotropowych lub szeregów Hofmeistera. 7
Ryc. 7. Zasalanie (wsalanie) i wytrącanie białek (wysalanie) w warunkach rosnącej siły jonowej roztworu (Koolman i Röhm 2005) Rozpuszczalność białek jest także funkcją stałej dielektrycznej środowiska, gdyż w warunkach nie zmieniającego się ph i siły jonowej maleje po dodaniu rozpuszczalników o niskiej stałej dielektrycznej takich jak: etanol, aceton, glikol etylenowy. Białka w takich warunkach agregują, gdyż dodany rozpuszczalnik zmniejsza stopień uwodnienia grup jonowych przez zmniejszenie ilości dipoli wodnych na powierzchni cząsteczki białka. Obniżenie stałej dielektrycznej roztworu przez dodanie rozpuszczalnika powoduje wzrost siły przyciągania pomiędzy przeciwnie naładowanymi grupami. Rozpuszczalność większości białek zwiększa się w ograniczonym zakresie (0-40 0 C) wraz ze wzrostem temperatury. W temperaturze powyżej 40-50 0 C większość białek zaczyna tracić trwałość i ulega denaturacji. Białka mogą także denaturować w szczególnie drastycznych warunkach tj. skrajne ph, wysoka temperatura, promieniowanie jonizujące. Denaturacja pociąga trwałą utratę funkcji biologicznych i wiąże się ze zmianami w strukturze drugo-, trzecio- i czwartorzędowej białka. 8
WYKONANIE Kolorymetryczne oznaczanie białek metodą biuretową Zasada metody: Metoda polega na oznaczaniu natężenia barwy powstałej w wyniku wytworzenia związków kompleksowych białek z jonami miedzi (II) w środowisku zasadowym, z maksimum absorbancji przy λ = 540 nm. Intensywność barwy w reakcji biuretowej jest proporcjonalna do liczby wiązań peptydowych. Zależność ta jest wykorzystywana do ilościowego oznaczania białek. Czułość metody 0,1 mg/ml. Nazwa reakcji pochodzi od biuretu, związku powstającego w wyniku kondensacji dwóch cząsteczek mocznika, zawierającego w swej cząsteczce wiązania amidowe: 9
Metoda biuretowa nie nadaje się do oznaczania białek w obecności soli amonowych, gdyż jon amonu daje również barwne kompleksy z jonami miedzi (II). W reakcji przeszkadza także siarczan (VI) magnezu, ponieważ wytrącający się w środowisku nierozpuszczalny wodorotlenek magnezu maskuje właściwy odczyn. Odczynniki: 1. Standardowy roztwór albuminy 10 mg/ml w 0,9% NaCl 2. Odczynnik biuretowy 1,5 g 5hydratu CuSO4 i 6,0 g winianu sodu i potasu rozpuścić w 500 ml wody dest. w kolbie miarowej na 1000 ml. Następnie małymi porcjami stale mieszając dodać 300 ml 10% NaOH i uzupełnić objętość wodą dest. do 1 l. Dodać 2g KJ. Odczynnik jest stabilny. Wykonanie krzywej standardowej i oznaczenie stężenia białek w surowicy krwi Do suchych probówek odmierzyć kolejno pipetą podane w tabeli objętości standardowego roztworu albuminy, wody i odczynnika biuretowego. Każdą próbę wykonać w dwóch powtórzeniach. Nr próby 1 2 3 4 5 6 Stężenie albuminy (mg/próbę) 1 2 3 4 5 0 Roztwór standardowy (ml) 0,1 0,2 0,3 0,4 0,5 0 Woda destylowana (ml) 0,4 0,3 0,2 0,1 0 0,5 Odczynnik biuretowy (ml) 2,0 2,0 2,0 2,0 2,0 2,0 A 1 A 540nm A 2 A śr K = mg albuminy w próbie A 540 nm 10
Równocześnie należy oznaczyć zawartość białka w 10-krotnie rozcieńczonej surowicy krwi. Do oznaczeń pobrać 0,5 ml surowicy (w dwóch powtórzeniach) i dodać 2 ml odczynnika biuretowego. Po upływie 30 minut zmierzyć absorbancję wszystkich prób przy długości fali λ = 540 nm w 1 cm kuwetach. Pomiaru dokonać względem próby zerowej nie zawierającej białka (próba 6). Zapisać wyniki w tabeli i obliczyć współczynnik kierunkowy K. Narysować krzywą wzorcową (zależność wartości absorbancji od stężenia białka w próbie). Przy obliczaniu ilości białka w próbie stosować obliczony współczynnik K. Z oznaczonej w próbie zawartości białka obliczyć stężenie białka w surowicy. Wytrącanie i denaturacja białek Wytrącanie białek w punkcie izoelektrycznym Do 1 ml 0,1% roztworu kazeiny, rozpuszczonej w 50 mm roztworze octanu sodu, dodawać bardzo powoli pipetą Pasteura, cały czas delikatnie wytrząsając, około 1,5 ml 0,5 M roztworu kwasu octowego. Obserwować pojawianie się zmętnienia pochodzącego od wytrącającego się białka, które powinno rosnąć z upływem czasu. Po 5 min dodać porcjami jeszcze około 1,5 ml 0,5 M roztworu kwasu octowego i obserwować czy wytrącona w pi kazeina rozpuszcza się po obniżeniu ph roztworu (wartość pi kazeiny wynosi 4,7) Frakcjonowanie białek surowicy krwi metodą wysalania siarczanem amonu Do wysalania białek stosujemy najczęściej związki o wysokim powinowactwie do wody tj. siarczan (VI) amonu lub siarczan (VI) sodu. Ćwiczenie należy wykonać w probówkach wirówkowych. Do 2 ml surowicy (10-krotnie rozcieńczonej 0,9% roztworem NaCl) dodać 2 ml nasyconego roztworu (NH 4 ) 2 SO 4. Po zmieszaniu roztworów uzyskuje się półnasycenie (50% nasycenie) siarczanu (VI) amonu. Agregujące globuliny odwirować w wirówce stołowej, a następnie zlać klarowny supernatant do suchej probówki wirówkowej. Do osadu globulin dodać niewielką ilość wody destylowanej do całkowitego rozpuszczenia białek. Do przelanego supernatantu dodawać, cały czas wytrząsając, kryształki (NH 4 ) 2 SO 4, tak by uzyskać roztwór nasycony (kryształki siarczanu amonu przestają się rozpuszczać). Wzrost siły jonowej roztworu powoduje wytrącanie się frakcji albumin. 11
Wytrącanie białek surowicy krwi etanolem Do 0,5 ml surowicy 10x rozcieńczonej 0,9% roztworem NaCl i oziębionej w lodzie dodać 1 ml 96% etanolu. Powstaje zmętnienie, które znika po natychmiastowym rozcieńczeniu 0,9% NaCl lub wodą. Denaturacja białek Termin ten dotyczy wszystkich zmian w strukturze cząsteczki białka, w wyniku których białko traci swoje biologiczne właściwości. Denaturacja następuje wówczas, gdy pod wpływem czynników fizycznych lub chemicznych ulega zniszczeniu struktura IV-, III- lub IIrzędowa. Denaturacja cieplna białek 2 ml 1% roztworu albuminy lub 1% roztworu białka jaja kurzego ogrzać do zagotowania. Tworzy się biały osad wytrąconego białka. Denaturacja białek etanolem Rozpuszczalniki organiczne (etanol, aceton, eter) i detergenty działają na strukturę przestrzenną cząsteczki białka, osłabiając wiązanie hydrofobowe, reagują bezpośrednio z naładowanymi grupami na powierzchni cząsteczki i dezorganizują płaszcz wodny cząsteczki. Działanie denaturujące etanolu objawia się dopiero przy większych jego stężeniach, po dłuższym czasie działania i w wyższej temperaturze (20-30 0 C). Do probówki dodać 1 ml 1% albuminy i 1 ml 96% etanolu. Po godzinie rozcieńczyć zawartość probówki wodą. Osad nie rozpuszcza się. Porównać z ćwiczeniem, w którym białka były wytrącane etanolem. Strącanie białek za pomocą kationów Białka w ph wyższym od pi posiadają ładunek ujemny i mogą reagować z kationami. Kationy metali alkalicznych dają sole dobrze dysocjujące i rozpuszczalne w wodzie, natomiast kationy metali ciężkich (Fe 2+, Cu 2+, Hg 2+, Pb 2+, Ag + ) tworzą sole nierozpuszczalne. Do 0,5 ml 1% roztworu albuminy dodać parę kropel 1% roztworu FeCl 3. Wytrąca się osad białczanu żelaza (III). Wykonać analogiczną próbę z HgCl 2, Pb(CH 3 COO) 2 oraz AgNO 3. 12
Strącanie białek kwasem sulfosalicylowym i trójchlorooctowym COOH Cl OH Cl C COOH HO 3 S Kwas sulfosalicylowy Cl Kwas trójchlorooctowy Do 0,5 ml 1% roztworu albuminy dodać 0,5 ml 10% roztworu kwasu trójchlorooctowego. Końcowe stężenie kwasu niezbędne do odbiałczania nie powinno być niższe niż 5%. Do 0,5 ml 1% roztworu albuminy dodać kilka kropel 20% roztworu kwasu sulfosalicylowego. Zagadnienia do przygotowania: budowa i właściwości wiązania amidowego (peptydowego) struktury drugorzędowe białek (wiązania stabilizujące strukturę) wiązania stabilizujące III- i IV- rzędową strukturę białek podział białek ze względu na funkcję (przykłady) kolorymetria (zasada ilościowego oznaczania białek metodą biuretową) właściwości białek w roztworze (zależność rozpuszczalności białek od ph, siły jonowej, stałej dielektrycznej rozpuszczalnika, temperatury) zasada wytrącania białek w pi, wytrącania przez wysalanie lub obniżenie stałej dielektrycznej roztworu denaturacją białek (termiczna, wyższe stężenie etanolu, kationy metali ciężkich, niektóre kwasy organiczne) Literatura: Biochemia JM Berg, JL Tymoczko, L Stryer PWN, Warszawa, 2005 Biochemia AL. Lehninger PWR i L, Warszawa, 1979 Ćwiczenia z biochemii pod redakcją L. Kłyszejko-Stefanowicz, PWN, Warszawa, 2005 Biochemia. Ilustrowany przewodnik J Koolman, K-H Röhm, PZWL, Warszawa 2005 13