Wyświetlanie obrazu Techniki wyświetlania obrazu i ich zastosowanie w grach.

Podobne dokumenty
Grafika Komputerowa, Informatyka, I Rok

Wyświetlanie obrazu Bufor klatki, synchronizacja pionowa, pętla główna gry.

Bartosz Bazyluk SYNTEZA GRAFIKI 3D Grafika realistyczna i czasu rzeczywistego. Pojęcie sceny i kamery. Grafika Komputerowa, Informatyka, I Rok

Wyświetlanie obrazu Techniki wyświetlania obrazu i ich zastosowanie w grach.

Wyświetlanie obrazu Techniki wyświetlania obrazu komputerowego.

Grafika Komputerowa Wykład 4. Synteza grafiki 3D. mgr inż. Michał Chwesiuk 1/30

GRAFIKA CZASU RZECZYWISTEGO Podstawy syntezy grafiki 3D i transformacji geometrycznych

Grafika Komputerowa Wykład 5. Potok Renderowania Oświetlenie. mgr inż. Michał Chwesiuk 1/38

Animowana grafika 3D. Opracowanie: J. Kęsik.

GRAFIKA CZASU RZECZYWISTEGO Interakcja, ruch kamery, oświetlenie.

Bartosz Bazyluk WYŚWIETLANIE OBRAZU Techniki wyświetlania obrazu komputerowego. Grafika Komputerowa, Informatyka, I Rok

0. OpenGL ma układ współrzędnych taki, że oś y jest skierowana (względem monitora) a) w dół b) w górę c) w lewo d) w prawo e) w kierunku do

Bartosz Bazyluk WPROWADZENIE Wstęp do dwuwymiarowej grafiki komputerowej.

2 Przygotował: mgr inż. Maciej Lasota

Podstawy grafiki komputerowej

Grafika Komputerowa. Wykład 8. Przygotowanie do egzaminu. mgr inż. Michał Chwesiuk 1/32

Transformacje obiektów 3D

Gry Komputerowe Interaktywna kamera FPP

Funkcje trygonometryczne w trójkącie prostokątnym

Trójwymiarowa grafika komputerowa rzutowanie

Zaawansowana Grafika Komputerowa

Bartosz Bazyluk OpenGL Deferred shading. Pętla główna i jej implementacje. Debugowanie i analiza wydajności.

Rysunek 1: Okno timeline wykorzystywane do tworzenia animacji.

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora.

Plan wykładu. Akcelerator 3D Potok graficzny

8. TRYGONOMETRIA FUNKCJE TRYGONOMETRYCZNE KĄTA OSTREGO.

Grafika komputerowa i wizualizacja

3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas

GRAFIKA RASTROWA. WYKŁAD 1 Wprowadzenie do grafiki rastrowej. Jacek Wiślicki Katedra Informatyki Stosowanej

Grafika Komputerowa Wykład 3. Wyświetlanie. mgr inż. Michał Chwesiuk 1/24

TRYGONOMETRIA FUNKCJE TRYGONOMETRYCZNE KĄTA SKIEROWANEGO

Z ostatniego wzoru i zależności (3.20) można obliczyć n6. Otrzymujemy (3.23) 3.5. Transformacje geometryczne

Julia 4D - raytracing

Wykład 4. Rendering (1) Informacje podstawowe

Co należy zauważyć Rzuty punktu leżą na jednej prostej do osi rzutów x 12, którą nazywamy prostą odnoszącą Wysokość punktu jest odległością rzutu

Programowanie Procesorów Graficznych

Automatyczne tworzenie trójwymiarowego planu pomieszczenia z zastosowaniem metod stereowizyjnych

Monitory Opracował: Andrzej Nowak

Wprowadzenie do rysowania w 3D. Praca w środowisku 3D

Grafika komputerowa Wykład 4 Geometria przestrzenna

trygonometria Trygonometria to dział matematyki, który bada związki między bokami i kątami trójkątów.

Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem.

Grafika rastrowa (bitmapa)-

Gry Komputerowe - laboratorium 2. Kamera FPP / TPP. mgr inż. Michał Chwesiuk 1/11. Szczecin, r

Plan wykładu. Wykład 3. Rzutowanie prostokątne, widoki, przekroje, kłady. Rzutowanie prostokątne - geneza. Rzutowanie prostokątne - geneza

KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ

MATEMATYKA 8. Funkcje trygonometryczne kąta ostrego (α < 90 ). Stosunki długości boków trójkąta prostokątnego nazywamy funkcjami trygonometrycznymi.

IRONCAD. TriBall IRONCAD Narzędzie pozycjonujące

Układy współrzędnych GUW, LUW Polecenie LUW

TRYGONOMETRIA. 1. Definicje i własności funkcji trygonometrycznych

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa

OPISY PRZESTRZENNE I PRZEKSZTAŁCENIA

Manipulatory i roboty mobilne AR S1 semestr 5

Transformacje. dr Radosław Matusik. radmat

Rzutowanie z 4D na 3D

gdzie (4.20) (4.21) 4.3. Rzut równoległy

PRZEDSTAWIAMY TECHNOLOGIĘ AMD FREESYNC

METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ

1. PODSTAWY TEORETYCZNE

Misja#3. Robimy film animowany.

FUNKCJA LINIOWA - WYKRES

Grafika Komputerowa Wykład 6. Teksturowanie. mgr inż. Michał Chwesiuk 1/23

PODSTAWY RACHUNKU WEKTOROWEGO

Wektory, układ współrzędnych

OpenGL : Oświetlenie. mgr inż. Michał Chwesiuk mgr inż. Tomasz Sergej inż. Patryk Piotrowski. Szczecin, r 1/23

GRAFIKA KOMPUTEROWA podstawy matematyczne. dr inż. Hojny Marcin pokój 406, pawilon B5 Tel.

Zad. 3: Rotacje 2D. Demonstracja przykładu problemu skończonej reprezentacji binarnej liczb

Ćwiczenie dodatkowe - Wybrane narzędzia modelowania Zadanie Przygotować model stołu z krzesłami jak na rysunku poniżej(rys. 1).

KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury

MECHANIKA 2. Wykład Nr 3 KINEMATYKA. Temat RUCH PŁASKI BRYŁY MATERIALNEJ. Prowadzący: dr Krzysztof Polko

WideoSondy - Pomiary. Trzy Metody Pomiarowe w jednym urządzeniu XL G3 lub XL Go. Metoda Porównawcza. Metoda projekcji Cienia (ShadowProbe)

Rachunek wektorowy - wprowadzenie. dr inż. Romuald Kędzierski

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ NA ROK SZKOLNY 2011/2012 DO PROGRAMU MATEMATYKA Z PLUSEM

Definicje funkcji trygonometrycznych kąta ostrego

Zad. 4: Rotacje 2D. 1 Cel ćwiczenia. 2 Program zajęć. 3 Opis zadania programowego

Przekształcenia widmowe Transformata Fouriera. Adam Wojciechowski

PODSTAWY > Figury płaskie (1) KĄTY. Kąt składa się z ramion i wierzchołka. Jego wielkość jest mierzona w stopniach:

Przekształcenia geometryczne w grafice komputerowej. Marek Badura

Podwójne buforowanie i animacje

Wstęp Pierwsze kroki Pierwszy rysunek Podstawowe obiekty Współrzędne punktów Oglądanie rysunku...

Przekształcenia geometryczne. Mirosław Głowacki Wydział Inżynierii Metali i Informatyki Przemysłowej

Funkcją sinus kąta α nazywamy stosunek przyprostokątnej leżącej naprzeciw kąta α do przeciwprostokątnej w trójkącie prostokątnym, i opisujemy jako:

Oświetlenie. Modelowanie oświetlenia sceny 3D. Algorytmy cieniowania.

Politechnika Warszawska Wydział Mechatroniki Instytut Automatyki i Robotyki

KGGiBM GRAFIKA INŻYNIERSKA Rok III, sem. VI, sem IV SN WILiŚ Rok akademicki 2011/2012

GRAFIKA KOMPUTEROWA. Plan wykładu. 1. Początki grafiki komputerowej. 2. Grafika komputerowa a dziedziny pokrewne. 3. Omówienie programu przedmiotu

KMO2D. Kolizje między-obiektowe w 2D

Zajęcia z grafiki komputerowej Pov Ray część 2

1 Wstęp teoretyczny. Temat: Manipulowanie przestrzenią. Grafika komputerowa 3D. Instrukcja laboratoryjna Układ współrzędnych

Wybrane aspekty teorii grafiki komputerowej - dążenie do wizualnego realizmu. Mirosław Głowacki

1. Prymitywy graficzne

Zastosowanie stereowizji do śledzenia trajektorii obiektów w przestrzeni 3D

Gry komputerowe: efekty specjalne cz. 2

KONKURS ZOSTAŃ PITAGORASEM MUM. Podstawowe własności figur geometrycznych na płaszczyźnie

2) R stosuje w obliczeniach wzór na logarytm potęgi oraz wzór na zamianę podstawy logarytmu.

Architektura Procesorów Graficznych

3. PŁASKI STAN NAPRĘŻENIA I ODKSZTAŁCENIA

Systemy wirtualnej rzeczywistości. Podstawy grafiki 3D

Konrad Słodowicz sk30792 AR22 Zadanie domowe satelita

Grafika Komputerowa Materiały Laboratoryjne

Transkrypt:

Wyświetlanie obrazu Techniki wyświetlania obrazu i ich zastosowanie w grach. http://bazyluk.net/dydaktyka Gry komputerowe, Informatyka N1, III Rok, 2018 r.

WYŚWIETLANIE OBRAZU Współczesne wyświetlacze komputerowe traktują obraz jako raster Wyświetlacze działają ze stałą częstotliwością odświeżania (dawniej odchylania pionowego) Najczęściej spotykaną częstotliwością odświeżania jest obecnie 60Hz Dla obrazu stereoskopowego, będzie to dwa razy więcej Progresywne wyświetlanie klatki: 1/60s Źródło obrazu: http://www.wikipedia.org 2

WYŚWIETLANIE OBRAZU Karta graficzna odpowiada za stworzenie zawartości obrazu monitora, przechowywanie jej i wysłanie do monitora gdy ten będzie gotowy narysować kolejną klatkę Obraz do wyświetlenia przechowywany jest w buforze klatki (ang. framebuffer) w pamięci graficznej (współcześnie np. GDDR) Bufor klatki posiada takie same cechy, jak zwyczajny obraz: wymiary, liczbę kanałów i rozmiar piksela Obraz Program Obraz (bufor klatki) 3

WYŚWIETLANIE OBRAZU Komponowanie zawartości bufora klatki nie jest natychmiastowe. W grafice czasu rzeczywistego elementy sceny renderowane są jeden po drugim. Zatem dopóki nie zakończy się renderowanie wszystkich elementów sceny, bufor klatki może zawierać nieukończony obraz. Aby uniknąć migotania obrazu podczas jego przerysowywania gdy występuje konieczność jego akutalizacji, stosuje się technikę podwójnego buforowania (ang. double buffering) Mamy wówczas dwa bufory klatki: Bufor "przedni" (ang. front buffer) Bufor "tylny" (ang. back buffer) Jest wyświetlany Jest aktualizowany Gdy zakończy się aktualizacja back buffera, zamieniane są one miejscami (ang. buffer swap) Użycie podwójnego buforowania rozwiązuje ten problem. Dopóki nowa klatka nie zostanie ukończona, wyświetlana będzie poprzednia klatka. Front Front Back 4

WYŚWIETLANIE OBRAZU Komponowanie zawartości bufora klatki nie jest natychmiastowe. W grafice czasu rzeczywistego elementy sceny renderowane są jeden po drugim. Zatem dopóki nie zakończy się renderowanie wszystkich elementów sceny, bufor klatki może zawierać nieukończony obraz. Aby uniknąć migotania obrazu podczas jego przerysowywania gdy występuje konieczność jego akutalizacji, stosuje się technikę podwójnego buforowania (ang. double buffering) Mamy wówczas dwa bufory klatki: Bufor "przedni" (ang. front buffer) Bufor "tylny" (ang. back buffer) Jest wyświetlany Jest aktualizowany Gdy zakończy się aktualizacja back buffera, zamieniane są one miejscami (ang. buffer swap) Użycie podwójnego buforowania rozwiązuje ten problem. Dopóki nowa klatka nie zostanie ukończona, wyświetlana będzie poprzednia klatka. Back Front Front 5

WYŚWIETLANIE OBRAZU Dla zachowania wrażenia płynności wyświetlanego ruchomego obrazu, należy upewnić się że kolejne klatki animacji będą docierać do monitora, gdy ten będzie gotowy je wyświetlić W tym celu stosuje się tzw. synchronizację pionową (ang. vertical synchronisation / VSync) Sterownik karty graficznej lub program czeka z zamianą buforów, aż monitor będzie gotowy wyświetlić kolejną klatkę W innym wypadku pomimo sprzętowej możliwości wygenerowania nawet większej liczby klatek na sekundę niż wyświetla monitor, obraz nie będzie płynny Artefakt nazywany tearing, wyświetlany obraz składający się z więcej niż jednej klatki 6

WYŚWIETLANIE OBRAZU Dla wyświetlaczy oferujących wyższą częstotliwość odświeżania ekranu niż 60Hz, czas cyklu będzie krótszy niż 1/60s. czas renderowania jednej klatki cykl odświeżenia obrazu na wyświetlaczu VSync Off max FPS swap interval = 0 Procesor graficzny czekając na gotowość wyświetlacza nie musi wykonywać operacji, podczas gdy bez użycia synchronizacji od razu zaczynałby renderować kolejną klatkę. VSync On swap interval = 1 VSync On swap interval = 2 (sleep) (sleep) (sleep) 1/60s Użycie synchronizacji pionowej może więc też prowadzić do zmniejszenia zużycia energii. (sleep) 60 FPS (sleep) 30 FPS 1/60s czas 7

WYŚWIETLANIE OBRAZU Synchronizacja pionowa wyłączona Synchronizacja pionowa włączona Artefakt tego rodzaju nazywa się często ang. słowem tearing. 8

WYŚWIETLANIE OBRAZU Technologia NVIDIA G-Sync Synchronizacja wyświetlacza z kartą graficzną czyli podejście odwrotne Wyświetlacz ma adaptacyjną częstotliwość odświeżania, dostosowującą się do aktualnej liczby klatek na sekundę Zakres 30-144 Hz, zależnie od sprzętu Podejście wbrew pozorom nie jest nowe, podobne rozwiązanie Adaptive Sync jest częścią standardu DisplayPort 1.2a zaimplementowane choćby przez AMD w ich FreeSync; różnice: G-Sync duplikuje klatki gdy ich częstotliwość poniżej minimum G-Sync zapobiega nadpisywaniu klatek Źródło obrazu: NVIDIA 9

Kamera w scenie 3D Pojęcie kamery. Implementacja interaktywnej kamery FPP. http://bazyluk.net/dydaktyka Gry komputerowe, Informatyka N1, III Rok, 2018 r.

Kamera Jest to wirtualny koncept opisujący sposób oglądania sceny przez obserwatora, dla którego renderujemy obraz Wyróżnia się dwa podstawowe rodzaje rzutowań: Rzut perspektywiczny Rzut prostokątny (ang. orthographic) 11

Kamera perspektywiczna Kamera musi być opisana w sposób matematyczny, aby możliwe było uwzględnienie jej cech w procesie renderowania Przede wszystkim musi posiadać zdefiniowane: Pozycję (punkt zaczepienia): p Kierunek widzenia: d d p 12

Kamera perspektywiczna Położenie w przestrzeni 3D jest po prostu 3-elementowym wektorem Zmiana położenia powoduje przemieszczenie naszego wirtualnego "aparatu fotograficznego" 13

Kamera perspektywiczna Kierunek w przestrzeni 3D również jest 3-elementowym wektorem Kierunek można rozumieć jako wektor leżący na półprostej łączącej punkt zaczepienia z miejscem, na które kamera ma być skierowana Kierunek zwyczajowo przechowuje się jako wektor jednostkowy ( d = 1 ) 14

Kamera perspektywiczna To jednak nie wystarczy, aby jednoznacznie określić sposób obserwacji sceny Oba poniższe przykłady zostały wyrenderowane z tego samego miejsca, w tym samym kierunku: 15

Kamera perspektywiczna Konieczne jest wprowadzenie dodatkowo wektora pionu (ang. up vector): u Najczęściej jest to (0, 1, 0) jeśli za drugą współrzędną przyjmiemy tę skierowaną ku górze świata u d p 16

Kamera perspektywiczna Dodatkowo kamerę określają: Kąt widzenia (najczęściej w stopniach) fov Jego zmiana odpowiada zmianie ogniskowej obiektywu (popularnie zwanej "zoomem" w aparacie fotograficznym) Nie jest tożsamy z przybliżeniem/oddaleniem kamery! Szeroki kąt Wąski kąt (krótka ogniskowa) (długa ogniskowa) 17

Kamera perspektywiczna Dodatkowo kamerę określają: Odległość płaszczyzn przycinania: bliskiej n i dalekiej f (ang. near/far clipping plane) Określają, od jakiej do jakiej odległości będzie renderowana scena Ma to związek z precyzją bufora głębokości Im większy zakres odległości jest renderowany, tym większa szansa powstania problemów typu z-fighting wartości powinny zostać dobrane odpowiednio do charakterystyki danej sceny f n 18

Test głębokości (ang. depth test) Algorytm malarza (ang. painter's algorithm) Nie jest dokonywany test głębokości Obiekty przykrywają się zgodnie z kolejnością rysowania To, co zostanie narysowane później, zawsze przykryje to, co było narysowane wcześniej Najpierw narysowano fioletowy sześcian Najpierw narysowano niebieski sześcian Źródło obrazu: http://aldream.net 19

Test głębokości (ang. depth test) Algorytm bufora Z Oprócz bufora koloru, tworzony jest też bufor głębokości (bufor Z) o odpowiadającym mu rozmiarze W buforze Z przechowywane są informacje o odległości od kamery tego fragmentu powierzchni obiektu, któremu odpowiada kolor znajdujący się w tym pikselu w buforze koloru Jeśli w wyniku renderowania kolejnego obiektu sceny okaże się, że w danym pikselu bufora już coś się wcześniej znalazło, wykonywany jest test głębokości: Jeśli odległość od kamery nowego fragmentu powierzchni obiektu jest mniejsza niż wartość w buforze głębokości, to nadpisujemy ją nową wartością i nadpisujemy kolor Bo nowy obiekt jest bliżej kamery, więc przysłania to, co wcześniej było w buforze koloru Jeśli odległość od kamery nowego fragmentu jest większa niż wartość w buforze głębokości, to pomijamy nową wartość Bo wcześniej już narysowaliśmy coś, co przysłania nasz nowy obiekt Źródło obrazu: Wikipedia 20

Test głębokości Bufor Z (ang. depth test) Jest jednokanałową mapą bitową, w której każdy na każdy piksel przeznaczono określoną liczbę bitów W związku z tym możliwe jest zapisanie jedynie skończonej liczby różnych wartości odległości od kamery Najczęściej 24 bity lub 32 bity np. wartości całkowite od 0 do 224-1 Prowadzi to do potencjalnych konfliktów d [m] 0 Źródło obrazu: Wikipedia 21

Test głębokości Precyzja bufora Z (ang. depth test) Zbyt mała precyzja prowadzi do konfliktów, które objawiają się artefaktem z-fighting Należy ograniczyć zakres odległości Poprzez użycie płaszczyzn odcinania Stosuje się nieliniowe mapowanie odległości na wartości bufora Z Najczęściej logarytmiczne Większa precyzja dla małych odległości, mniejsza dla dużych Mapowanie liniowe: 0 Źródło obrazu: GeeXLab, JEGX Mapowanie nieliniowe: d [m] 0 d [m] 22

Test widoczności (ang. visibility test) Istotny problem w środowiskach 3D: Renderowanie tylko tych powierzchni, które są widoczne Idea bufora Z przez wiele lat była niemożliwa do użycia w czasie rzeczywistym Podejście oparte na wysyłaniu promieni (ang. ray casting) Jeśli poruszamy się tylko po płaszczyźnie, wystarczy tylko tyle promieni, ile mamy pikseli w poziomie w buforze klatki Perspektywa: na podstawie odległości rysujemy pionową linię o proporcjonalnej wysokości Źródła obrazów: Fabien Sanglard, WIkipedia 23

Test widoczności (ang. visibility test) Podejście oparte na wysyłaniu promieni (ang. ray casting) Za głównego popularyzatora ray castingu jako narzędzia służącego do renderowania ścian pseudo-trójwymiarowej sceny uważa się Johna Carmacka, założyciela id Software. Pierwsze użycie tego podejścia miało miejsce w grze Hovertank 3D. Podejście to, wzbogacone o mapowanie tekstur i proste oświetlenie, zostało użyte w bardzo popularnej w swoich czasach grze Wolfenstein 3D. Źródła obrazów: id Software, Wikipedia 24

Test głębokości (ang. depth test) Można stosować komponowanie klatki za pomocą zarówno testu głębokości, jak i algorytmu malarza. Interfejs użytkownika zwykle nanosimy na wyrenderowaną wizualizację świata bez użycia testu głębokości Kiedyś stosowano uproszczenia w celu przyspieszenia renderowania, np. samochód gracza mógł być rysowany na tle otoczenia, bo rzadko kiedy dochodzi do sytuacji w której miałby być czymś przysłonięty Źródło obrazu: Virgin Interactive 25

Kamera perspektywiczna Dodatkowo kamerę określają: Proporcje boków podstawy ściętego ostrosłupa (ang. frustum) Stosunek szerokości do wysokości 4:3, 16:9, 16:10,... 26

Kamera perspektywiczna Podsumowując, do jednoznacznego opisania kamery potrzebne są wartości następujących atrybutów: Cechy widoku: Położenie Kierunek Wektor pionu Cechy projekcji: Kąt widzenia Odległości płaszczyzn przycinania Proporcje 27

Kamera w OpenGL Aby opisać jednoznacznie położenie kamery, należy określić: Pozycję p Kierunek widzenia d Wektor pionu u Każdy z tych elementów w przestrzeni 3D jest 3-elementowym wektorem u d p 28

Kamera w OpenGL Aby łatwo uzyskać w OpenGL macierz transformacji odpowiadającą kamerze umieszczonej w zadanym punkcie, patrzącą w zadanym kierunku i o zadanym wektorze pionu, najlepiej posłużyć się funkcją: glulookat( eyex, eyey, eyez, lookatx, lookaty, lookatz, upx, upy, upz ) eye* - współrzędne XYZ punktu zaczepienia kamery lookat* - współrzędne XYZ punktu, na który ma spoglądać kamera up* - współrzędne XYZ wektora pionu W dalszych rozważaniach dla uproszczenia przyjmiemy, że wektor pionu zawsze będzie równy (0;1;0) 29

Kamera w OpenGL Należy zwrócić uwagę, że glulookat() nie przyjmuje kierunku widzenia kamery, a punkt na który kamera ma spoglądać Jest to szczególnie istotne, gdy naszym zadaniem jest zaprogramowanie interaktywnej kamery pierwszoosobowej W takim przypadku dużo wygodniej jest przechowywać kierunek widzenia jako wektor jednostkowy Na podstawie pozycji kamery o raz kierunku można łatwo uzyskać współrzędne punktu, który można przekazać do glulookat(). d p 30

Kamera w OpenGL Należy zwrócić uwagę, że glulookat() nie przyjmuje kierunku widzenia kamery, a punkt na który kamera ma spoglądać Jest to szczególnie istotne, gdy naszym zadaniem jest zaprogramowanie interaktywnej kamery pierwszoosobowej W takim przypadku dużo wygodniej jest przechowywać kierunek widzenia jako wektor jednostkowy Na podstawie pozycji kamery o raz kierunku można łatwo uzyskać współrzędne punktu, który można przekazać do glulookat(). d p 31

Kamera w OpenGL Należy zwrócić uwagę, że glulookat() nie przyjmuje kierunku widzenia kamery, a punkt na który kamera ma spoglądać Jest to szczególnie istotne, gdy naszym zadaniem jest zaprogramowanie interaktywnej kamery pierwszoosobowej Punkt o współrzędnych p+d bez wątpienia znajduje się na osi widzenia kamery znajdującej się w punkcie p, skoro wektor d wskazuje jej kierunek widzenia. W takim przypadku dużo wygodniej jest przechowywać kierunek widzenia jako wektor jednostkowy Na podstawie pozycji kamery o raz kierunku można łatwo uzyskać współrzędne punktu, który można przekazać do glulookat(). d p+d p 32

Stan kamery Reprezentacja stanu kamery w pamięci Strukturę/klasę przechowującą dane wektora wygodnie jest rozbudować o przydatne metody (np. długość, normalizacja, iloczyn wektorowy) i przeciążone operatory dla częstych operacji arytmetycznych. Podejść do implementacji kamery jest wiele. Przytoczone tutaj jest wygodne dla prostych scen i stosunkowo łatwe w zrozumieniu. Poszukując rozwiązania bardziej uniwersalnego, warto przyjrzeć się podejściu opartemu na kwaternionach. Wygodne jest zapamiętanie trzech wektorów 3-elementowych: Położenia Kierunku patrzenia Pionu Sugerowane jest utworzenie struktury przechowującej trzy składowe XYZ: struct vec3 { float x, y, z; }; Wówczas stan kamery można przedstawić następująco: struct SCameraState { vec3 pos; vec3 dir; vec3 up; }; 33

Stan kamery Jako że dla uproszczenia przyjęliśmy, że wektor pionu jest stały, możemy go pominąć Przydatne może okazać się przechowanie aktualnej prędkości przesuwania kamery Np. w celu płynnego wygaszania ruchu Zatem struktura stanu kamery może przyjąć następującą postać: struct SCameraState { vec3 pos; vec3 dir; float speed; }; Na potrzeby zadania utworzymy globalną instancję tej struktury i nazwiemy ją player SCameraState player; 34

Stan kamery W takiej sytuacji, możemy każdorazowo zasilać wywołanie glulookat() następującymi danymi: glulookat( player.pos.x, player.pos.y, player.pos.z, player.pos.x + player.dir.x, player.pos.y + player.dir.y, player.pos.z + player.dir.z, 0, 1, 0 ); 35

Ruch kamery w przód/tył Aby zrealizować taki ruch, trzeba zmodyfikować położenie kamery kierunek i pion pozostaną bez zmian "Przód" w danym momencie odpowiada wektorowi kierunku kamery Pozycję po przesunięciu obliczamy w prosty sposób: p ' = p+ speed d d p d p' p p' Mała prędkość (mnożnik) Duża prędkość (mnożnik) 36

Ruch kamery w bok Aby uwzględnić kierunek widzenia kamery, ruszając się na boki należy poruszać się po kierunku prostopadłym W założeniu mamy poruszać się tylko po płaszczyźnie XZ e p' d p p ' = p+ speed e, e d Jak wyznaczyć wektor prostopadły do danego? () ( ) dx d= d y dz d z e= 0 dx 37

Obrót kamery Obrót kamery jest zmianą kierunku jej widzenia, bez wpływu na punkt zaczepienia W założeniu mamy poruszać się tylko po płaszczyźnie XZ Rezultatem jest wektor kierunku obrócony o zadany kąt Jak wyliczyć jego współrzędne? d p d' 38

Obrót wektora kierunku w 2D y Dla uproszczenia sprowadźmy problem do dwóch wymiarów. d Będziemy dokonywać obrotu tylko w obrębie jednej płaszczyzny, którą roboczo nazwiemy x/y. x Chcąc poruszać się po płaszczyźnie x/z układu współrzędnych OpenGL należy odpowiednio zmienić oznaczenie osi! 39

Obrót wektora kierunku w 2D y Chcemy dokonać obrotu kamery o zadany kąt α. α Miara tego kąta może być rozumiana jako krok wykonany podczas tej jednej operacji obracania. d x 40

Obrót wektora kierunku w 2D y d' Naszym wynikiem powinien być nowy wektor kierunku d', uzyskany po obróceniu pierwotnego wektora d wokół początku układu współrzędnych. α d x 41

Obrót wektora kierunku w 2D y d' = (xd'; yd') d = (xd; yd) Można przyjąć, że wektory zaczepione w początku układu współrzędnych to położenia punktów znajdujących się na ich końcach. α x 42

Obrót wektora kierunku w 2D y d' = (xd'; yd') d = (xd; yd) Rozpatrzmy najpierw samą współrzędną x. α Znamy xd xd' xd x Znamy miarę kąta α Nie znamy natomiast xd 43

Obrót wektora kierunku w 2D y d' = (xd'; yd') d = (xd; yd) yd' Analogiczna sytuacja zachodzi dla współrzędnej y. yd Znamy yd α xd' xd x Znamy miarę kąta α Nie znamy natomiast yd 44

Obrót wektora kierunku w 2D y d' = (xd'; yd') yd' Dodatkowo wiemy, że długości wektorów d i d są równe 1 ponieważ przyjęliśmy takie założenie odnośnie wektora d, a także chcemy aby nasz d zachował tę własność. yd 1 α xd' 1 xd d = (xd; yd) x 45

Obrót wektora kierunku w 2D y yd' 1 Warto zwrócić uwagę, że mamy tu do czynienia z dwoma trójkątami prostokątnymi. α xd' 1.. xd yd x { xd, xd, yd, yd } są długościami kolejnych przyprostokątnych, zaś przeciwprostokątne mają długość 1. 46

Obrót wektora kierunku w 2D y yd' 1 Gdyby znać miarę kąta α+β, znając długość przeciwprostokątnej (jest równa 1), możliwe byłoby wyznaczenie długości przyprostokątnej czerwonego trójkąta (czyli xd lub yd ) z pomocą odpowiednich funkcji trygonometrycznych. α xd' 1 yd β xd x 47

Obrót wektora kierunku w 2D y yd' 1 Miarę kąta β możemy znaleźć posługując się znanymi długościami boków zielonego trójkąta. α xd' tan (β)= 1 yd β xd x yd xd 48

Obrót wektora kierunku w 2D y Najwygodniej, z uwagi na możliwość wystąpienia kąta w dowolnej ćwiartce układu współrzędnych, posłużyć się funkcją atan2. Funkcja cyklometryczna atan2 jest dwuargumentową odmianą funkcji arcus tangens, biorącą pod uwagę ćwiartkę układu w której znajduje się zadany kąt. yd' 1 α xd' tan (β)= yd xd 1 yd β xd x β=atan 2( y d, x d ) [http://en.wikipedia.org/wiki/atan2] 49

Obrót wektora kierunku w 2D Kiedy już znamy miarę kąta β, możemy przystąpić do obliczania długości przyprostokątnych czerwonego trójkąta korzystając z funkcji trygonometrycznych sinus i cosinus. y yd' 1 α xd' tan (β)= yd xd 1 yd β xd x β=atan 2( y d, x d ) xd ' =cos(β+α) d ' yd ' =sin (β+α) d ' 50

Obrót wektora kierunku w 2D y d' = (xd'; yd') Pamiętamy, że długość przeciwprostokątnych jest równa 1, co dodatkowo upraszcza obliczenia. W ten sposób otrzymujemy ostateczne współrzędne punktu d po obrocie punktu d o kąt α wokół początku układu współrzędnych. yd' 1 α xd' tan (β)= yd xd 1 d = (xd; yd) yd β xd x β=atan 2( y d, x d ) x d ' =cos(β+α) y d ' =sin (β+α) 51

Kamera w scenie 3D Pojęcie kamery. Implementacja interaktywnej kamery FPP. http://bazyluk.net/dydaktyka Gry komputerowe, Informatyka N1, II Rok, 2018 r.