Weryfikacja hipotez statystycznych



Podobne dokumenty
hipotez statystycznych

1 Weryfikacja hipotez statystycznych

Wykład 2 Hipoteza statystyczna, test statystyczny, poziom istotn. istotności, p-wartość i moc testu

Porównanie dwóch rozkładów normalnych

STATYSTYKA I DOŚWIADCZALNICTWO. Wykład 2

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r

Wnioskowanie statystyczne i weryfikacja hipotez statystycznych

WYKŁAD 8 TESTOWANIE HIPOTEZ STATYSTYCZNYCH

Estymacja parametrów rozkładu cechy

Badanie zgodności z określonym rozkładem. F jest dowolnym rozkładem prawdopodobieństwa. Test chi kwadrat zgodności. F jest rozkładem ciągłym

Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

SIGMA KWADRAT. Weryfikacja hipotez statystycznych. Statystyka i demografia CZWARTY LUBELSKI KONKURS STATYSTYCZNO-DEMOGRAFICZNY

Testowanie hipotez statystycznych

Testowanie hipotez statystycznych cd.

Statystyka matematyczna. w zastosowaniach

Statystyka matematyczna i ekonometria

TESTOWANIE HIPOTEZ Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas cechy.

Statystyka matematyczna i ekonometria

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 9 i 10 - Weryfikacja hipotez statystycznych

VI WYKŁAD STATYSTYKA. 9/04/2014 B8 sala 0.10B Godz. 15:15

TESTOWANIE HIPOTEZ STATYSTYCZNYCH Hipotezą statystyczną nazywamy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas cechy.

LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI

Weryfikacja hipotez statystycznych

STATYSTYKA MATEMATYCZNA WYKŁAD 4. WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH X - cecha populacji, θ parametr rozkładu cechy X.

Matematyka i statystyka matematyczna dla rolników w SGGW WYKŁAD 9. TESTOWANIE HIPOTEZ STATYSTYCZNYCH cd.

Statystyka matematyczna. Wykład IV. Weryfikacja hipotez statystycznych

STATYSTYKA wykład 8. Wnioskowanie. Weryfikacja hipotez. Wanda Olech

Wykład 3 Hipotezy statystyczne

Statystyka matematyczna dla leśników

Porównanie wielu rozkładów normalnych

Statystyka. #5 Testowanie hipotez statystycznych. Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik. rok akademicki 2016/ / 28

Wnioskowanie statystyczne Weryfikacja hipotez. Statystyka

Statystyczna analiza danych w programie STATISTICA (wykład 2) Dariusz Gozdowski

TESTOWANIE HIPOTEZ STATYSTYCZNYCH Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas

Hipotezy statystyczne

Zadanie 1 Odp. Zadanie 2 Odp. Zadanie 3 Odp. Zadanie 4 Odp. Zadanie 5 Odp.

LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI

Testowanie hipotez statystycznych. Wnioskowanie statystyczne

1.1 Wstęp Literatura... 1

TESTOWANIE HIPOTEZ STATYSTYCZNYCH

2.1 Przykład wstępny Określenie i konstrukcja Model dwupunktowy Model gaussowski... 7

a. opisać badaną cechę; cechą X jest pomiar średnicy kulki

Idea. θ = θ 0, Hipoteza statystyczna Obszary krytyczne Błąd pierwszego i drugiego rodzaju p-wartość

Hipotezy statystyczne

166 Wstęp do statystyki matematycznej

VII WYKŁAD STATYSTYKA. 30/04/2014 B8 sala 0.10B Godz. 15:15

Statystyka Matematyczna Anna Janicka

WERYFIKACJA HIPOTEZ STATYSTYCZNYCH

Wyniki badań reprezentatywnych są zawsze stwierdzeniami hipotetycznymi, o określonych granicach niepewności

Cechy X, Y są dowolnego typu: Test Chi Kwadrat niezależności. Łączny rozkład cech X, Y jest normalny: Test współczynnika korelacji Pearsona

), którą będziemy uważać za prawdziwą jeżeli okaże się, że hipoteza H 0

Uwaga. Decyzje brzmią różnie! Testy parametryczne dotyczące nieznanej wartości

Testowanie hipotez statystycznych

Testowanie hipotez statystycznych.

Wyniki badań reprezentatywnych są zawsze stwierdzeniami hipotetycznymi, o określonych granicach niepewności

Współczynnik korelacji. Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ

Weryfikacja hipotez statystycznych. KG (CC) Statystyka 26 V / 1

Weryfikacja hipotez statystycznych za pomocą testów statystycznych

Statystyka matematyczna

Wstęp do probabilistyki i statystyki. Wykład 4. Statystyki i estymacja parametrów

STATYSTYKA MATEMATYCZNA WYKŁAD 5. 2 listopada 2009

Testowanie hipotez statystycznych.

Weryfikacja przypuszczeń odnoszących się do określonego poziomu cechy w zbiorowości (grupach) lub jej rozkładu w populacji generalnej,

STATYSTYKA MATEMATYCZNA WYKŁAD 4. Testowanie hipotez Estymacja parametrów

Wydział Matematyki. Testy zgodności. Wykład 03

Testowanie hipotez. Marcin Zajenkowski. Marcin Zajenkowski () Testowanie hipotez 1 / 25

Statystyka. Rozkład prawdopodobieństwa Testowanie hipotez. Wykład III ( )

Weryfikacja przypuszczeń odnoszących się do określonego poziomu cechy w zbiorowości (grupach) lub jej rozkładu w populacji generalnej,

ZMIENNE LOSOWE. Zmienna losowa (ZL) X( ) jest funkcją przekształcającą przestrzeń zdarzeń elementarnych w zbiór liczb rzeczywistych R 1 tzn. X: R 1.

Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych.

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory

Wykład 12 Testowanie hipotez dla współczynnika korelacji

Weryfikacja hipotez statystycznych za pomocą testów statystycznych

Wykład 12 Testowanie hipotez dla współczynnika korelacji

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI. Test zgodności i analiza wariancji Analiza wariancji

Podstawy wnioskowania statystycznego

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2

Teoria Estymacji. Do Powyżej

Prawdopodobieństwo i statystyka

... i statystyka testowa przyjmuje wartość..., zatem ODRZUCAMY /NIE MA POD- STAW DO ODRZUCENIA HIPOTEZY H 0 (właściwe podkreślić).

ESTYMACJA. Przedział ufności dla średniej

RACHUNEK PRAWDOPODOBIEŃSTWA I STATYSTYKA MATEMATYCZNA

TEST STATYSTYCZNY. Jeżeli hipotezę zerową odrzucimy na danym poziomie istotności, to odrzucimy ją na każdym większym poziomie istotności.

Wykład 3 Testowanie hipotez statystycznych o wartości średniej. średniej i wariancji z populacji o rozkładzie normalnym

STATYSTYKA MATEMATYCZNA

Test lewostronny dla hipotezy zerowej:

LABORATORIUM Populacja Generalna (PG) 2. Próba (P n ) 3. Kryterium 3σ 4. Błąd Średniej Arytmetycznej 5. Estymatory 6. Teoria Estymacji (cz.

1 Estymacja przedziałowa

Testowanie hipotez statystycznych

Testowanie hipotez statystycznych. Wprowadzenie

Statystyka opisowa. Robert Pietrzykowski.

Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT. Anna Rajfura 1

W2. Zmienne losowe i ich rozkłady. Wnioskowanie statystyczne.

1. szereg wyliczający (szczegółowy) - wyniki są uporządkowane wyłącznie według wartości badanej cechy, np. od najmniejszej do największej

Weryfikacja hipotez statystycznych

Statystyka. #6 Analiza wariancji. Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik. rok akademicki 2015/ / 14

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 11 i 12 - Weryfikacja hipotez statystycznych

Testowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4.

Transkrypt:

Weryfikacja hipotez statystycznych Przykład. Producent pewnych detali twierdzi, że wadliwość jego produkcji nie przekracza 2%. Odbiorca pewnej partii tego produktu chce sprawdzić, czy może wierzyć producentowi. W jaki sposób ma to zrobić? Krok 1. Zakładamy, że partia ma wadliwość 2%. Krok 2. Pobierana jest próba elementów z partii towaru (np. 100 elementów). k P {X = k} P {X k} 0 0.135335 1.000000 1 0.270671 0.864665 2 0.270670 0.593994 3 0.180447 0.323324 4 0.090224 0.142877 5 0.036089 0.052653 6 0.012030 0.016564 7 0.004297 0.004534 8 0.000191 0.000237 W Z Statystyka 4.1

Krok 3 (wnioskowanie). Zaobserwowano k = 7 wadliwych: 1. Przypuszczenie jest słuszne i próba pechowa lub 2. Próba jest dobra, a przypuszczenie złe. Uznać twierdzenie producenta za nieprawdziwe! Zaobserwowano co najmniej siedem wadliwych Wnioski jak wyżej Ostatecznie: Po zaobserwowaniu więcej niż sześciu wadliwych elementów raczej uznać twierdzenie producenta za nieprawdziwe. W przeciwnym przypadku można uznać twierdzenie producenta za uzasadnione. W Z Statystyka 4.2

Hipotezą statystyczną nazywamy dowolne przypuszczenie dotyczące rozkładu prawdopodobieństwa cechy w populacji. Oznaczenie H 0 Testem hipotezy statystycznej nazywamy postępowanie mające na celu odrzucenie lub nie odrzucenie hipotezy statystycznej. Statystyką testową nazywamy funkcję próby na podstawie której wnioskuje się o odrzuceniu lub nie hipotezy statystycznej. Rzeczywistość: Wniosek o hipotezie H 0 hipoteza H 0 nie odrzucać odrzucić prawdziwa prawidłowy nieprawidłowy nieprawdziwa nieprawidłowy prawidłowy W Z Statystyka 4.3

Błędem I rodzaju nazywamy błąd wnioskowania polegający na odrzuceniu hipotezy, gdy w rzeczywistości jest ona prawdziwa. Błędem II rodzaju nazywamy błąd wnioskowania polegający na nieodrzuceniu hipotezy, gdy w rzeczywistości jest ona fałszywa. Poziomem istotności nazywamy dowolną liczbę z przedziału (0, 1) określającą prawdopodobieństwo popełnienia błędu I rodzaju. Oznaczenie: α Mocą testu nazywamy prawdopodobieństwo odrzucenia testowanej hipotezy, gdy jest ona nieprawdziwa, czyli prawdopodobieństwo nie popełnienia błędu II rodzaju. Oznaczenie: 1 β W Z Statystyka 4.4

Rozkład normalny Porównanie z normą H 0 : µ = µ 0 Cecha X ma rozkład normalny N(µ, σ 2 ) Średnia µ oraz wariancja σ 2 są nieznane Test Studenta (poziom istotności α) Próba: X 1,..., X n Statystyka testowa t emp = X µ 0 S Wartość krytyczna t(α; n 1) n. Jeżeli t emp > t(α; n 1), to hipotezę H 0 : µ = µ 0 odrzucamy. W Z Statystyka 4.5

Przykład. Przypuszczenie: maszyna pakująca kostki masła nastawiona na jednostkową masę 250 g uległa po pewnym czasie rozregulowaniu. W celu weryfikacji tego przypuszczenia z bieżącej produkcji pobrano próbę otrzymując wyniki 254, 269, 254, 248, 263, 256, 258, 261, 264, 258. Czy można na tej podstawie sądzić, że maszyna uległa rozregulowaniu? Populacja: paczkowane kostki masła Cecha X: masa kostki masła Założenie: cecha X ma rozkład normalny N(µ, σ 2 ) Formalizacja: Rozregulowanie maszyny może być interpretowane jako odejście od nominalnej wagi. Zatem należy zbadać, czy średnia µ wynosi 250, czyli weryfikujemy hipotezę H 0 : µ = 250 W Z Statystyka 4.6

Technika statystyczna: test Studenta (test t) poziom istotności α = 0.05 Obliczenia x = 258.5, s 2 = 36.05, t emp = 4.47 Wartość krytyczna: t(0.05; 9) = 2.2622 Odpowiedź: hipotezę odrzucamy Wniosek: maszyna uległa rozregulowaniu W Z Statystyka 4.7

Moc testu Moc testu = 1 P {błąd II rodzaju} Moc testu = P {odrzucenie nieprawdziwej H 0 } Moc testu Studenta hipotezy H 0 : µ = µ 0 M(µ) = P { t emp > t(α; n 1) X N(µ, σ 2 )} M(µ 0 ) = α n = 10 n = 20 n = 30 W Z Statystyka 4.8

Przedział ufności a test hipotezy H 0 : µ = µ 0 Cecha X N(µ, σ 2 ) H 0 : µ = µ 0 H 0 nie odrzucamy na poziomie istotności α µ 0 t emp < t(α; n 1) t(α; n 1) < X µ 0 S ( n < t(α; n 1) X t(α; n 1) S n, X + t(α; n 1) S n ) µ 0 należy do przedziału ufności na poziomie ufności 1 α W Z Statystyka 4.9

H 0 : µ µ 0 Cecha X ma rozkład normalny N(µ, σ 2 ) Średnia µ oraz wariancja σ 2 są nieznane Test Studenta (poziom istotności α) Próba: X 1,..., X n Statystyka testowa t emp = X µ 0 S Wartość krytyczna t(2α; n 1) n. Jeżeli t emp > t(2α; n 1), to hipotezę H 0 : µ µ 0 odrzucamy. W Z Statystyka 4.10

H 0 : σ 2 = σ 2 0 Cecha X ma rozkład normalny N(µ, σ 2 ) Średnia µ oraz wariancja σ 2 są nieznane Test chi kwadrat (poziom istotności α) Próba: X 1,..., X n Statystyka testowa χ 2 emp = varx σ 2 0 Wartości krytyczne χ 2 ( 1 α 2 ; n 1) oraz χ 2 ( α 2 ; n 1) Jeżeli χ 2 emp < χ 2 ( 1 α 2 ; n 1) lub χ 2 emp > χ 2 ( α 2 ; n 1), to hipotezę H 0 : σ 2 = σ 2 0 odrzucamy. W Z Statystyka 4.11

H 0 : σ 2 σ 2 0 Cecha X ma rozkład normalny N(µ, σ 2 ) Średnia µ oraz wariancja σ 2 są nieznane Test chi kwadrat (poziom istotności α) Próba: X 1,..., X n Statystyka testowa χ 2 emp = varx σ 2 0 Wartość krytyczna χ 2 (α; n 1) Jeżeli χ 2 emp > χ 2 (α; n 1), to hipotezę H 0 : σ 2 σ 2 0 odrzucamy. W Z Statystyka 4.12

Przykład. Na podstawie obserwacji prowadzonych przez długi okres czasu stwierdzono, że dzienny udój uzyskiwany w pewnym stadzie krów jest wielkością losową, zaś przeciętny dzienny udój mleka wyraża sie liczbą z przedziału (900, 1200). Rachunek finansowy pokazał, że produkcja mleka jest opłacalna, jeżeli całkowity dzienny udój będzie wynosił nie mniej niż d = 700 l mleka przez co najmniej 280 dni w roku. W jaki sposób można zbadać, czy produkcja mleka jest opłacalna? Populacja: Cecha: całkowity dzienny udój Założenia: Cecha X ma rozkład N(µ, σ 2 ) µ d = 900 µ µ g = 1200 W Z Statystyka 4.13

Formalizacja problemu P {X d} p = 280 350 P {X d} = 1 F ( ) d µ σ 1 F ( ) d µd σ 1 F ( ) d µd σ 1 p F ( ) d µd σ 1 p d µ d σ d, µ d oraz p są ustalone, więc F 1 (1 p) = u 1 p σ 2 σ 2 0 = ( ) 2 d µd = 56472 u 1 p Produkcja mleka jest opłacalna, jeżeli wariancja σ 2 dziennych udojów jest większa niż σ 2 0 = 56472. H 0 : σ 2 56472 W Z Statystyka 4.14

Rozkład dwupunktowy Porównanie z normą H 0 : p = p 0 Cecha X ma rozkład D(p) Próba: X 1,..., X n (X i = 0 lub = 1) Statystyka testowa Y = n i=1 X i Jeżeli Y k 1 lub Y k 2, to hipotezę H 0 : p = p 0 należy odrzucić. Liczby k 1 oraz k 2 dobrane są tak, że jeżeli Y jest zmienną losową o rozkładzie B(n, p 0 ), to P {Y k 1 lub Y k 2 } α W Z Statystyka 4.15

H 0 : p = p 0 Test przybliżony (poziom istotności α) Przypadek: n duże Statystyka testowa u emp = Y np 0 np0 (1 p 0 ) Wartość krytyczna u 1 α/2 Jeżeli u emp > u 1 α/2, to H 0 : p = p 0 odrzucamy W Z Statystyka 4.16

H 0 : p p 0 Test przybliżony (poziom istotności α) Przypadek: n duże Statystyka testowa u emp = Y np 0 np0 (1 p 0 ) Wartość krytyczna u 1 α Jeżeli u emp > u 1 α, to H 0 : p p 0 odrzucamy W Z Statystyka 4.17

Przykład. W swojej ofercie sprzedaży stawu rybnego jego właściciel podaje, iż w stawie żyje co najmniej tysiąc karpi. Potencjalny nabywca zainteresowany jest sprawdzeniem prawdziwości tego twierdzenia. W tym celu wyłowiono sto karpi i po zaobrączkowaniu ich wpuszczono je z powrotem do stawu. Po jakimś czasie ponownie odłowiono sto ryb i stwierdzono, że wśród nich jest piętnaście zaobrączkowanych. Czy w świetle uzyskanych wyników można reklamę uznać za prawdziwą? Populacja: ryby w stawie Cecha: zaobrączkowanie ryby Założenia: Cecha X ma rozkład D(p) W Z Statystyka 4.18

Formalizacja problemu Jeżeli w stawie żyje co najmniej N ryb, to odsetek zaobrączkowanych jest co najwyżej 100/N. Zgodnie z twierdzeniem właściciela, N 1000, czyli odsetek ryb zaobrączkowanych nie przekracza 0.1. Technika statystyczna Przybliżony test hipotezy H 0 : p 0.1 Poziom istotności: α = 0.05 Obliczenia u emp = Y = 15 n = 100 Y np 0 np0 (1 p 0 ) = 15 10 = 1.6667 100 0.1 0.9 Wartość krytyczna: u 1 0.05 = 1.6449 Odpowiedź: hipotezę odrzucamy Wniosek: należy uznać, że ogólna liczb ryb w stawie jest mniejsza niż podana w ofercie W Z Statystyka 4.19