Zjawisko indukcji elektromagnetycznej Faradaya
|
|
- Mariusz Feliks Janik
- 9 lat temu
- Przeglądów:
Transkrypt
1 Zjawisko indukcji elektromagnetycznej Faradaya Wprowadzenie Zjawisko indukcji elektromagnetycznej było przełomowym wydarzeniem w dziedzinie nauki o elektryczności i magnetyźmie na początku XIX w. Po odkryciach związanych z elektrycznością (Galvani, Volta) i powszechnie znanych obserwacjach własności magnesów trwałych udało się wykazać związek elektryczności z magnetyzmem na przykładzie elektromagnesu (Ampere). Wyzwaniem stało się uzyskanie efektu odwrotnego - uzyskanie źródła napięcia elektrycznego z magnesu trwałego. Wyzwania tego podjął się najzdolniejszy eksperymentator ówczesnych czasów, Michael Faraday. Dziś trudno uwierzyć, że badania te zajęły kilka lat życia tego genialnego uczonego-samouka. Początkowo efekt przyniosły próby z elektromagnesem, podczas których zaobserwował, że napięcie w obwodzie "wtórnym" pojawia się tylko podczas włączania i wyłączania obwodu elektromagnesu. Dalsze obserwacje już ponownie z użyciem magnesów stałych doprowadziły go do dobrze dziś znanych wniosków, że indukowane napięcie zależy od szybkości zmian pola magnetycznego obejmowanego przez obwód elektryczny (1831 r.). Ukoronowaniem prac związanych z elektrycznością i magnetyzmem było stworzenie teorii tych zjawisk przez szkockiego uczonego, Jamesa Maxwella w 1865 r. Cele ćwiczenia - Obsługa wielofunkcyjnej karty pomiarowej. Programowe kondycjonowanie sygnału. Analiza danych pomiarowych wykorzystując zaawansowane funkcje środowiska programistycznego, - Obserwacja zjawiska indukowania siły elektromotorycznej w cewkach przez spadający swobodnie magnes, - Pomiar zależności indukowanego napięcia (SEM) od prędkości ruchu magnesu (v) w kolejnych cewkach, Wyznaczenie wielkości strumienia indukcji magnetycznej (Φ(N) i Φ(S)) indukującego napięcie w cewkach pomiarowych, - Określenie odległości wzajemnej umownych biegunów magnesu o kształcie walca (d). Przyrządy Komputer PC z kartą pomiarową NI-USB6009, środowisko NI LabVIEW, układ cewek na rurce, magnes stały. Aparatura Zestaw ćwiczeniowy składa się z plastikowej rurki o długości 1,15 m oraz nawiniętych na nią 6 cewek o pomiarowych połączonych szeregowo. Rurka ustawiona jest pionowo. W odległości 7,5 cm od górnego jej końca znajduje się pierwsza cewka pomiarowa. Następne cewki nawinięte są co 20 cm. Każda cewka ma ok. 1 cm długości, średnicę wewnętrzną 1,5 cm a zewnętrzną 1,6 cm. Cewki są jednakowe i składają się z 17 zwojów drutu miedzianego o średnicy 0,5 mm. Końce drutu podłączone są do gniazd, Rys. 1. Układ pomiarowy 1
2 które przewodami łączy się z interfejsem pomiarowym. Wstęp teoretyczny Zjawisko indukcji elektromagnetycznej polega na tym, że w obwodzie elektrycznym powstaje siła elektromotoryczna (SEM) E wtedy gdy zmienia się w czasie strumień indukcji pola magnetycznej, B, obejmowany przez ten obwód. Siła ta jest proporcjonalna do szybkości zmian strumienia magnetycznego Φ: dφ E =. (1) dt Znak "-" wyraża regułę Lenza ustalającą kierunek indukowanego prądu tak, by efekty jego działania przeciwstawiały się przyczynie jego powstania. W przypadku magnesu przechodzącego przez cewkę o N zwojach całkowita wartość E wyniesie w przybliżeniu dφ E = N. (2) dt Pomiar E w funkcji czasu daje możliwość obliczenia pewnych wielkości związanych z polem magnetycznym spadającego magnesu. Rozważania te łatwiej jest prowadzić na modelu magnesu przedstawiającego go jako dipol magnetyczny, czyli - na zasadzie analogii z dipolem elektrycznym - dwa bieguny magnetyczne pozostające od siebie w stałej odległości d. Łatwo teraz intuicyjnie przewidzieć wartość i kierunek siły elektromotorycznej rozpatrując efekty wywoływane przez każdy z biegunów z osobna. Dla ułatwienia załóżmy, że magnes porusza się ruchem jednostajnym. Zbliżający się do cewki pierwszy biegun początkowo wywołuje niewielkie zmiany strumienia magnetycznego obejmowanego przez cewkę. Stopniowo jednak efekt ten rośnie ponieważ linie sił pola zagęszczają się, a także silnie zmienia się udział składowej indukcji pola skierowanej wzdłuż kierunku ruchu magnesu. Kierunek prądu jest taki, by opóźniać ruch magnesu, czyli nad cewką wytwarza się biegun identyczny z nadlatującym. Maksimum szybkości zmian pola następuje w momencie przejścia bieguna przez cewkę. Po drugiej stronie cewki reguła Lenza, wymagająca by powstrzymywać ruch magnesu, pozostawia bez zmian kierunek przepływu prądu, a szybkość zmian strumienia maleje symetrycznie do sytuacji z drugiej strony cewki. Zbliżający się drugi biegun powoduje powstanie efektów identycznych z tą tylko różnicą, że kierunek indukowanego prądu jest przeciwny. v v S v N I v Niewielka zazwyczaj odległość pomiędzy biegunami powoduje, że wpływy pochodzące od nich sumują się w momencie gdy magnes znajduje się w pobliżu cewki. Ilustruje to Rys. 2. 2
3 SEM a) biegun I biegun II suma czas SEM b) czas biegun I biegun II suma Rys. 2. Przybliżony przebieg sygnału siły elektromotorycznej indukcji przy przejściu magnesu przez cewkę dla a) dużej i b) małej odległości między biegunami. Symulacje na rys. 2 sporządzono przybliżając rzeczywistą zależność za pomocą krzywej Gaussa. Umownie przyjęto za początek osi czasu moment przejścia środka magnesu przez cewkę. Analiza jakościowa rys. 2 prowadzi do następujących wniosków: 1. Skończona odległość pomiędzy biegunami umownymi powoduje deformację wewnętrznych zboczy krzywych dzwonowych będących efektem oddziaływania poszczególnych biegunów z cewką. 2. Deformacja ta może prowadzić do błędnej oceny położenia ekstremum krzywej dzwonowej. 3. Obliczanie całkowitego strumienia poszczególnych biegunów obejmowanych przez cewkę bezpośrednio z krzywej pomiarowej (linia ciągła) należy skorygować w taki sposób, by uzyskać takie krzywe symetryczne, których suma pokryje się z krzywą pomiarową. Alternatywnie, kształt krzywej w okolicy środka można interpretować jako skutek skupienia linii sił pola wewnątrz magnesu oraz w niewielkiej od niego odległości. Linie te w całości mieszczą się w obrębie cewki, nie wnosząc tym samym przyczynku do powstania siły elektromotorycznej. Wtedy do obliczenia strumienia pola magnetycznego bierzemy bezpośrednio krzywą pomiarową. Obie interpretacje są w zasadzie poprawne, a jedyną konsekwencją ich stosowania jest wybór stałej całkowania przy obliczaniu całkowitego strumienia indukcji pola magnetycznego magnesu obejmowanego przez cewkę. Niech R oznacza promień cewki, a kierunek ruchu magnesu pokrywa się z osią z układu współrzędnych. Jeśli magnes spada środkiem rurki, to dla konkretnej odległości l bieguna od cewki możemy obliczyć strumień indukcji magnetycznej obejmowany przez cewkę: R S (3) 0 Φ ( l) = B ds = B( l)2π rdr gdzie ds jest nieskończenie małym fragmentem pola S, które przecinają linie indukcji pola magnetycznego. Dla kołowej powierzchni cewki S=2πr, r to promień cewki. Zmianę w czasie strumienia wyznaczyć można szukając zmian w indukcji magnetycznej. Stosując regułę łańcuchową otrzymujemy db db dz =. (4) dt dz dt Łącząc równania (2), (3) i (4) dostajemy 3
4 R ( ) E( l) = Nv( l) db l 2π rdr, (5) dz 0 gdzie v(l) jest chwilową prędkością spadku magnesu. Warto zauważyć, że całka w równaniu (5) zależy jedynie od odległości l, czyli np. ma wartość identyczną dla sytuacji, w których magnes dociera do miejsc tak samo oddalonych od poszczególnych cewek. Wobec tego wartości siły elektromotorycznej E mierzone w poszczególnych cewkach w chwilach gdy magnes oddalony jest od nich o l są proporcjonalne do jego prędkości w tych momentach. Stwierdzenie to dotyczy w szczególności sytuacji przejścia obu biegunów przez cewki, odpowiadających w przybliżeniu położeniom ekstremów sygnału E(t). Można obliczyć stąd odległość d pomiędzy biegunami umownymi magnesu. Zakładając dla uproszczenia, że prędkości przejścia obu biegunów przez cewkę są identyczne, odległość d można obliczyć jako d = v t, (6) gdzie t jest odstępem czasu pomiędzy maksimum i minimum sygnału E(t), a v jest prędkością magnesu w chwili przechodzenia przez daną cewkę. Prędkość tę można obliczyć albo ze wzoru v = 2gz, (7) gdzie z jest drogą spadku, albo przy braku precyzyjnej kontroli miejsca początku spadku magnesu, można ekstrapolować do zerowej wartości zależność maksimów i minimów sygnału E(t) aby otrzymać moment początkowy spadku i wtedy można skorzystać ze wzoru v = gt. (8) 4
5 Przebieg ćwiczenia. 1) Podłącz złącza cewek do kanału analogowego AI0 karty pomiarowej NI-USB ) Rejestruj przebiegi czasowy napięcia na wybranym złączu analogowym wykorzystując funkcję DAQ Assistant umieszczonym w pętli WHILE. Paczki danych prezentuj na wykresie Waveform Graph a) Rejestracja analogowego sygnału napięciowego b) Wybrać kanał pomiarowy (AI0) c) Czułość karty NI-USB6009 jest wystarczająca aby zarejestrować indukowany sygnał SEM bez dodatkowego wzmacniania. Spodziewamy się indukowanych napięć na poziomi mniejszym niż 1V zatem zakres pomiarowy karty warto zmniejszyć domyślny zakres pomiarowy (z +/-10V na +/1V). W mierzonym sygnale mogą pojawiać się zakłócenia pochodzące z źródeł zewnętrznych (np. z sieci zasilającej). Aby zminimalizować zakłócenia pomiar odbywać powinien się w trybie różnicowym. 5
6 Ustalić warunki pomiaru: Signal input range: +/-1V; Acquisition mode: Continuous Samples; Terminal configuration: Differential; Rate: 40kS/s; Samples to Read 40k 3) Zrzucaj magnes aby przekonać się czy parametry rejestracji sygnału zostały ustawione poprawnie 4) Użyj funkcji Trigger and Gate aby zapamiętać zarejestrować i zatrzymać sygnał SEM indukowany w trakcie spadku magnesu. Znajdź właściwe wartości określające warunki rozpoczęcia wyzwalania (Start Trigger): Start Level, Pre samples oraz warunek końca wyzwalania (paleta Stop Trigger) Number of samples. Dobrze dobrane parametry funkcji powinny umożliwić zapamiętanie przebiegu SEM składającego się z 6 charakterystycznych przebiegów (rys.2) indukowanych przez magnes w każdej z 6 cewek. 6
7 5) Zauważ, że w mierzonym sygnale, U(t), występuje pewna stała wartość napięcia, U 0. Przed dalszą analizą mierzony sygnał powinien zostać skorygowany U(t) U 0. Wartość U 0 powinna zostać dobrana tak by sczytywany sygnał oscylował wokół zera przed zrzutem magnesu. Wartość U 0 może być dobrana ręcznie (podając odpowiednią wartość z kontrolki numerycznej) lub automatycznie stosując T U ( t) dt 0 U 0 = T 6) Udowodnij prawo indukcji Faraday a wykazując, że zależność SEM(v) jest liniowa. W tym celu określ czasy i wysokości maksimów oraz czasy i wysokości minimów w rejestrowanym sygnale SEM (rys2). Aby znaleźć chwilową wartości prędkości, v, wykorzystaj równanie (6), w którym t= t max -t min to odległość w czasie między maksimum a minimum, a d to odległość między biegunami magnesu (załóż stałą długość magnesu). Aby znaleźć wartości maksimów (i minimów) SEM oraz odpowiadających czasów użyj właściwości kursorów Waveform Graph (kursor typu single plot) Pary liczb (SEM, t) mogą być również wyznaczone automatycznie stosując funkcję Peak Detector. 7) Oblicz całkowity strumień indukcji pola magnetycznego stosując przekształcony wzór (2) t2 Φ SEM ( t) dt. t1 7
8 Całka w powyższym równaniu oznacza pole powierzchni pod pikiem (lub doliną) w przebiegu czasowym SEM. Całkowity strumień indukcji pola magnetycznego zależy od właściwości magnesu (jego geometrii oraz materiału, z którego został wykonany) oraz geometrii cewek. Ponieważ obie te wielkości pozostają stałe w trakcie spadku, zatem całkowity strumień, wyznaczany z powyższego równania, powinien być identyczny dla dowolnego maksimum i taki sam jak ten otrzymany dla dowolnego minimum. W celu wycięcia części przebiegu czasowego poddawanego całkowaniu (od t 1 do t 2 ) wykorzystaj właściwości kursorów wskaźnika Waveform Graph. Zadbaj aby wskaźnik Waveform Graph posiadał dwa kursory typu single-plot. Użyj funkcji Kursory.vi z palety Functions->User Libraries. Stwórz referencje (reference) do wskaźnika i podepnij do odpowiedniego złącza funkcji. Funkcja Kursory zwróci część przebiegu znajdującego się między kursorami w postaci tablicy wartości SEM. Wykorzystaj funkcję Numeric Integration w celu obliczenia powyższej całki. 8) Sprawdź jak zmienia się przebieg SEM gdy wydłuży się magnes (połącz ze sobą 2 lub 3 magnesy). Skomentuj zmiany. 8
9 Zasady przygotowania raportu 1. Opisz krótko badane zjawisko, problem, podając niezbędne równania. 2. Podaj cele ćwiczenia. 3. W punktach pokaż realizację poszczególnych elementów ćwiczenia. W przypadku programu pokaż jego panel frontowy i diagram blokowy (lub chociaż najważniejszą jego część) oraz omów krótko najistotniejsze punkty programu wraz z ewentualnymi trudnościami napotkanymi w ich realizacji. 4. Wyniki pomiarów przedstawiaj w sposób umożliwiający ich łatwą ocenę: a. pojedyncze wyniki w postaci wyróżnionych liczb (pogrubienie, większy rozmiar czcionki itp), b. serie kilku(nastu) wyników przedstawiaj w postaci tabel lub list. Tam gdzie to wskazane, pokaż je też na wykresie. c. Długie serie pomiarowe obejmujące więcej punktów zawsze prezentuj na wykresach. Osie wykresów opisane, z jednostkami. W przypadku zamieszczania kilku przebiegów na jednym wykresie konieczna jest legenda lub opis pod wykresem. 5. Jeśli to konieczne, przedyskutuj poszczególne wyniki. 6. Napisz krótkie Podsumowanie/Wnioski zawierające streszczenie swoich dokonań (najlepiej w punktach) i ewentualne uwagi na temat ćwiczenia. 7. Struktura raportu a. Raport musi zawierać numer i tytuł ćwiczenia, datę wykonania, datę sporządzenia raportu, nazwisko studenta (pary studentów), nazwisko prowadzącego. Najlepiej w nagłówku. Tabelka nie jest obowiązkowa, choć ułatwia życie. W przypadku programów, elementem raportu są kody programów i pliki z wynikami. W raporcie powinna znaleźć się informacja o nazwie folderu zawierającego te dane. b. poszczególne części raportu powinny być wyraźnie wydzielone. Tytuły części piszemy pismem pogrubionym, części mogą (nie muszą) być ponumerowane. c. Wszystkie wzory powinny być ponumerowane (z prawej strony). d. Wszystkie tabelki powinny mieć swój numer i podpis. Dla tabel podpis zawsze NAD TABELĄ. e. Wszystkie rysunki powinny mieć swój numer i podpis. Dla rysunków numer i podpis zawsze POD RYSUNKIEM. Przez rysunki rozumiemy wszystkie obiekty graficzne (zrzuty ekranów, zdjęcia, wykresy, schematy, itp). f. do równań, tabel, rysunków odwołujemy się poprzez podanie numeru (unikamy takich sformułowań jak powyższy, poniższy, na poprzedniej stronie, pierwszy, ostatni itp.). 9
M104. Badanie spadku swobodnego i zsuwania się bryły po równi
M104. Badanie spadku swobodnego i zsuwania się bryły po równi Ze względu na sposób pomiaru prędkości, na wstępie kilka informacji o zjawisku indukcji elektromagnetycznej. Wprowadzenie Zjawisko indukcji
E103. Badanie prawa indukcji Faraday'a
E103. Badanie prawa indukcji Faraday'a Cele doświadczenia: Obserwacja zjawiska indukowania siły elektromotorycznej (SEM) w cewkach przez spadający swobodnie stały magnes. Pomiar zależności indukowanego
Badanie prawa indukcji Faraday'a
Badanie prawa indukcji Faraday'a Wprowadzenie Zjawisko indukcji elektromagnetycznej było przełomowym wydarzeniem w dziedzinie nauki o elektryczności i magnetyzmie na początki XIX w. Po odkryciach związanych
Badanie transformatora
Ćwiczenie 14 Badanie transformatora 14.1. Zasada ćwiczenia Transformator składa się z dwóch uzwojeń, umieszczonych na wspólnym metalowym rdzeniu. Do jednego uzwojenia (pierwotnego) przykłada się zmienne
Badanie transformatora
Ćwiczenie 14 Badanie transformatora 14.1. Zasada ćwiczenia Transformator składa się z dwóch uzwojeń, umieszczonych na wspólnym metalowym rdzeniu. Do jednego uzwojenia (pierwotnego) przykłada się zmienne
Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym
Ćwiczenie 11B Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym 11B.1. Zasada ćwiczenia Na zamkniętą pętlę przewodnika z prądem, umieszczoną w jednorodnym polu magnetycznym, działa skręcający
Indukcyjność. Autorzy: Zbigniew Kąkol Kamil Kutorasiński
Indukcyjność Autorzy: Zbigniew Kąkol Kamil Kutorasiński 2019 Indukcyjność Autorzy: Zbigniew Kąkol, Kamil Kutorasiński Powszechnie stosowanym urządzeniem, w którym wykorzystano zjawisko indukcji elektromagnetycznej
Wyznaczanie stosunku e/m elektronu
Ćwiczenie 27 Wyznaczanie stosunku e/m elektronu 27.1. Zasada ćwiczenia Elektrony przyspieszane w polu elektrycznym wpadają w pole magnetyczne, skierowane prostopadle do kierunku ich ruchu. Wyznacza się
RÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego?
RÓWNANIA MAXWELLA Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego? Wykład 3 lato 2012 1 Doświadczenia Wykład 3 lato 2012 2 1
Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym
Ćwiczenie E6 Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym E6.1. Cel ćwiczenia Na zamkniętą pętlę przewodnika z prądem, umieszczoną w jednorodnym polu magnetycznym, działa skręcający moment
Podstawy fizyki sezon 2 5. Pole magnetyczne II
Podstawy fizyki sezon 2 5. Pole magnetyczne II Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Indukcja magnetyczna
Obwód składający się z baterii (źródła siły elektromotorycznej ) oraz opornika. r opór wewnętrzny baterii R- opór opornika
Obwód składający się z baterii (źródła siły elektromotorycznej ) oraz opornika r opór wewnętrzny baterii - opór opornika V b V a V I V Ir Ir I 2 POŁĄCZENIE SZEEGOWE Taki sam prąd płynący przez oba oporniki
Pole elektromagnetyczne
Pole elektromagnetyczne Pole magnetyczne Strumień pola magnetycznego Jednostką strumienia magnetycznego w układzie SI jest 1 weber (1 Wb) = 1 N m A -1. Zatem, pole magnetyczne B jest czasem nazywane gęstością
Fizyka współczesna. Zmienne pole magnetyczne a prąd. Zjawisko indukcji elektromagnetycznej Powstawanie prądu w wyniku zmian pola magnetycznego
Zmienne pole magnetyczne a prąd Zjawisko indukcji elektromagnetycznej Powstawanie prądu w wyniku zmian pola magnetycznego Zmienne pole magnetyczne a prąd Wnioski (które wyciągnęlibyśmy, wykonując doświadczenia
Badanie transformatora
Ćwiczenie E9 Badanie transformatora E9.1. Cel ćwiczenia Transformator składa się z dwóch uzwojeń, umieszczonych na wspólnym metalowym rdzeniu. W ćwiczeniu przykładając zmienne napięcie do uzwojenia pierwotnego
Podstawy fizyki sezon 2 6. Indukcja magnetyczna
Podstawy fizyki sezon 2 6. Indukcja magnetyczna Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Dotychczas
KOOF Szczecin: www.of.szc.pl
Źródło: LI OLIMPIADA FIZYCZNA (1/2). Stopień III, zadanie doświadczalne - D Nazwa zadania: Działy: Słowa kluczowe: Komitet Główny Olimpiady Fizycznej; Andrzej Wysmołek, kierownik ds. zadań dośw. plik;
Ćwiczenie: "Silnik prądu stałego"
Ćwiczenie: "Silnik prądu stałego" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: Zasada
autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 27 MAGNETYZM I ELEKTROMAGNETYZM. CZĘŚĆ 2
autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 27 MAGNETYZM I ELEKTROMAGNETYZM. CZĘŚĆ 2 Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania TEST JEDNOKROTNEGO WYBORU
Pole magnetyczne. Magnes wytwarza wektorowe pole magnetyczne we wszystkich punktach otaczającego go przestrzeni.
Pole magnetyczne Magnes wytwarza wektorowe pole magnetyczne we wszystkich punktach otaczającego go przestrzeni. naładowane elektrycznie cząstki, poruszające się w przewodniku w postaci prądu elektrycznego,
Indukcja elektromagnetyczna
ruge, elgium, May 2005 W-14 (Jaroszewicz) 19 slajdów Indukcja elektromagnetyczna Prawo indukcji Faraday a Indukcja wzajemna i własna Indukowane pole magnetyczna prawo Amper a-maxwella Dywergencja prądu
Wyznaczanie przenikalności magnetycznej i krzywej histerezy
Ćwiczenie 13 Wyznaczanie przenikalności magnetycznej i krzywej histerezy 13.1. Zasada ćwiczenia W uzwojeniu, umieszczonym na żelaznym lub stalowym rdzeniu, wywołuje się przepływ prądu o stopniowo zmienianej
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 41: Busola stycznych
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 41: Busola stycznych Cel ćwiczenia: Wyznaczenie składowej poziomej ziemskiego pola magnetycznego. Literatura [1] Kąkol Z., Fizyka dla inżynierów, OEN Warszawa,
Prądy wirowe (ang. eddy currents)
Prądy wirowe (ang. eddy currents) Prądy można indukować elektromagnetycznie nie tylko w przewodnikach liniowych, ale również w materiałach przewodzących o dowolnym kształcie i powierzchni, jeżeli tylko
Oddziaływanie wirnika
Oddziaływanie wirnika W każdej maszynie prądu stałego, pracującej jako prądnica lub silnik, może wystąpić taki szczególny stan pracy, że prąd wirnika jest równy zeru. Jedynym przepływem jest wówczas przepływ
Indukcja elektromagnetyczna. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Indukcja elektromagnetyczna Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Strumień indukcji magnetycznej Analogicznie do strumienia pola elektrycznego można
Ferromagnetyki, paramagnetyki, diamagnetyki.
Ferromagnetyki, paramagnetyki, diamagnetyki https://www.youtube.com/watch?v=u36qppveh2c Materiały magnetyczne Do tej pory rozważaliśmy przewody z prądem umieszczone w powietrzu lub w próżni. Jednak w praktycznych
Katedra Elektroniki ZSTi. Lekcja 12. Rodzaje mierników elektrycznych. Pomiary napięći prądów
Katedra Elektroniki ZSTi Lekcja 12. Rodzaje mierników elektrycznych. Pomiary napięći prądów Symbole umieszczone na przyrządzie Katedra Elektroniki ZSTiO Mierniki magnetoelektryczne Budowane: z ruchomącewkąi
Ć W I C Z E N I E N R E-8
NSTYTUT FZYK WYDZAŁ NŻYNER PRODUKCJ TECHNOOG ATERAŁÓW POTECHNKA CZĘSTOCHOWSKA PRACOWNA EEKTRYCZNOŚC AGNETYZU Ć W C Z E N E N R E-8 NDUKCJA WZAJENA Ćwiczenie E-8: ndukcja wzajemna. Zagadnienia do przestudiowania.
PRAWO OHMA DLA PRĄDU PRZEMIENNEGO
ĆWICZENIE 53 PRAWO OHMA DLA PRĄDU PRZEMIENNEGO Cel ćwiczenia: wyznaczenie wartości indukcyjności cewek i pojemności kondensatorów przy wykorzystaniu prawa Ohma dla prądu przemiennego; sprawdzenie prawa
Pracownia pomiarów i sterowania Ćwiczenie 4 Badanie ładowania i rozładowywania kondensatora
Małgorzata Marynowska Uniwersytet Wrocławski, I rok Fizyka doświadczalna II stopnia Prowadzący: dr M. Grodzicki Data wykonania ćwiczenia: 17.03.2015 Pracownia pomiarów i sterowania Ćwiczenie 4 Badanie
Efekt Halla. Cel ćwiczenia. Wstęp. Celem ćwiczenia jest zbadanie efektu Halla. Siła Loretza
Efekt Halla Cel ćwiczenia Celem ćwiczenia jest zbadanie efektu Halla. Wstęp Siła Loretza Na ładunek elektryczny poruszający się w polu magnetycznym w kierunku prostopadłym do linii pola magnetycznego działa
MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA. Zadania MODUŁ 11 FIZYKA ZAKRES ROZSZERZONY
MODUŁ MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA OPRACOWANE W RAMACH PROJEKTU: FIZYKA ZAKRES ROZSZERZONY WIRTUALNE LABORATORIA FIZYCZNE NOWOCZESNĄ METODĄ NAUCZANIA. PROGRAM NAUCZANIA FIZYKI Z ELEMENTAMI TECHNOLOGII
Badanie prądnicy prądu stałego
POLTECHNKA ŚLĄSKA WYDZAŁ NŻYNER ŚRODOWSKA ENERGETYK NSTYTUT MASZYN URZĄDZEŃ ENERGETYCZNYCH LABORATORUM ELEKTRYCZNE Badanie prądnicy prądu stałego (E 18) Opracował: Dr inż. Włodzimierz OGULEWCZ 3 1. Cel
Zad. 2 Jaka jest częstotliwość drgań fali elektromagnetycznej o długości λ = 300 m.
Segment B.XIV Prądy zmienne Przygotowała: dr Anna Zawadzka Zad. 1 Obwód drgający składa się z pojemności C = 4 nf oraz samoindukcji L = 90 µh. Jaki jest okres, częstotliwość, częstość kątowa drgań oraz
Gromadzenie danych. Przybliżony czas ćwiczenia. Wstęp. Przegląd ćwiczenia. Poniższe ćwiczenie ukończysz w czasie 15 minut.
Gromadzenie danych Przybliżony czas ćwiczenia Poniższe ćwiczenie ukończysz w czasie 15 minut. Wstęp NI-DAQmx to interfejs służący do komunikacji z urządzeniami wspomagającymi gromadzenie danych. Narzędzie
Krzysztof Pawłowski Centrum Fizyki Teoretycznej PAN Warszawa. Magnetyczna latarka
Logo designed by Armella Leung, www.armella.fr.to Krzysztof Pawłowski Centrum Fizyki Teoretycznej PAN Warszawa Magnetyczna latarka Prawa Faradaya? Oj.. Relacja pomiędzy zmianą wartości strumienia magnetycznego
Wyznaczanie przenikalności magnetycznej i krzywej histerezy
Ćwiczenie E8 Wyznaczanie przenikalności magnetycznej i krzywej histerezy E8.1. Cel ćwiczenia Celem ćwiczenia jest pomiar zależności B(I) dla cewki z rdzeniem stalowym lub żelaznym, wykreślenie krzywej
Podstawy budowy wirtualnych przyrządów pomiarowych
Podstawy budowy wirtualnych przyrządów pomiarowych Problemy teoretyczne: Pomiar parametrów napięciowych sygnałów za pomocą karty kontrolno pomiarowej oraz programu LabVIEW (prawo Shanona Kotielnikowa).
Zwój nad przewodzącą płytą METODA ROZDZIELENIA ZMIENNYCH
METODA ROZDZIELENIA ZMIENNYCH (2) (3) (10) (11) Modelowanie i symulacje obiektów w polu elektromagnetycznym 1 Rozwiązania równań (10-11) mają ogólną postać: (12) (13) Modelowanie i symulacje obiektów w
LIV OLIMPIADA FIZYCZNA 2004/2005 Zawody II stopnia
LIV OLIMPIADA FIZYCZNA 004/005 Zawody II stopnia Zadanie doświadczalne Masz do dyspozycji: cienki drut z niemagnetycznego metalu, silny magnes stały, ciężarek o masie m=(100,0±0,5) g, statyw, pręty stalowe,
3.5 Wyznaczanie stosunku e/m(e22)
Wyznaczanie stosunku e/m(e) 157 3.5 Wyznaczanie stosunku e/m(e) Celem ćwiczenia jest wyznaczenie stosunku ładunku e do masy m elektronu metodą badania odchylenia wiązki elektronów w poprzecznym polu magnetycznym.
Funkcja liniowa - podsumowanie
Funkcja liniowa - podsumowanie 1. Funkcja - wprowadzenie Założenie wyjściowe: Rozpatrywana będzie funkcja opisana w dwuwymiarowym układzie współrzędnych X. Oś X nazywana jest osią odciętych (oś zmiennych
30P4 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - IV POZIOM PODSTAWOWY
30P4 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - IV Magnetyzm POZIOM PODSTAWOWY Indukcja elektromagnetyczna Prąd przemienny Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod
Badanie rozkładu pola magnetycznego przewodników z prądem
Ćwiczenie E7 Badanie rozkładu pola magnetycznego przewodników z prądem E7.1. Cel ćwiczenia Prąd elektryczny płynący przez przewodnik wytwarza wokół niego pole magnetyczne. Ćwiczenie polega na pomiarze
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 9: Swobodne spadanie
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 9: Swobodne spadanie Cel ćwiczenia: Obserwacja swobodnego spadania z wykorzystaniem elektronicznej rejestracji czasu przelotu kuli przez punkty pomiarowe. Wyznaczenie
Materiały pomocnicze 11 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej
Materiały pomocnicze 11 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Magnetyzm to zjawisko przyciągania kawałeczków stali przez magnesy. 2. Źródła pola magnetycznego. a. Magnesy
Ćwiczenie nr 43: HALOTRON
Wydział PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko 1. 2. Temat: Data wykonania Data oddania Zwrot do popr. Rok Grupa Zespół Nr ćwiczenia Data oddania Data zaliczenia OCENA Ćwiczenie nr 43: HALOTRON Cel
Ćwiczenie 4 WYZNACZANIE INDUKCYJNOŚCI WŁASNEJ I WZAJEMNEJ
Ćwiczenie 4 WYZNCZNE NDUKCYJNOŚC WŁSNEJ WZJEMNEJ Celem ćwiczenia jest poznanie pośrednich metod wyznaczania indukcyjności własnej i wzajemnej na podstawie pomiarów parametrów elektrycznych obwodu. 4..
Wykład FIZYKA II. 5. Magnetyzm. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA II 5. Magnetyzm Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka2.html MAGNESY Pierwszymi poznanym magnesem był magnetyt
Indukcja elektromagnetyczna Faradaya
Indukcja elektromagnetyczna Faradaya Ryszard J. Barczyński, 2017 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Po odkryciu Oersteda zjawiska
E107. Bezpromieniste sprzężenie obwodów RLC
E7. Bezpromieniste sprzężenie obwodów RLC Cel doświadczenia: Pomiar amplitudy sygnału w rezonatorze w zależności od wzajemnej odległości d cewek generatora i rezonatora. Badanie wpływu oporu na tłumienie
MOMENT MAGNETYCZNY W POLU MAGNETYCZNYM
Ćwiczenie nr 16 MOMENT MAGNETYCZNY W POLU MAGNETYCZNYM Aparatura Zasilacze regulowane, cewki Helmholtza, multimetry cyfrowe, dynamometr torsyjny oraz pętle próbne z przewodnika. X Y 1 2 Rys. 1 Układ pomiarowy
Indukcja własna i wzajemna. Prądy wirowe
Indukcja własna i wzajemna. Prądy wirowe Indukcja własna (samoindukcja) Warunkiem wzbudzenia SEM indukcji w obwodzie jest przenikanie przez ten obwód zmiennego strumienia magnetycznego, przy czym sposób
PRĄDNICE I SILNIKI. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego
PRĄDNICE I SILNIKI Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Prądnice i silniki (tzw. maszyny wirujące) W każdej maszynie można wyróżnić: - magneśnicę
30R4 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - IV POZIOM ROZSZERZONY
30R4 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - IV POZIOM ROZSZERZONY Magnetyzm Indukcja elektromagnetyczna Prąd przemienny Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod
WYDZIAŁ.. LABORATORIUM FIZYCZNE
W S E i Z W WASZAWE WYDZAŁ.. LABOATOUM FZYCZNE Ćwiczenie Nr 10 Temat: POMA OPOU METODĄ TECHNCZNĄ. PAWO OHMA Warszawa 2009 Prawo Ohma POMA OPOU METODĄ TECHNCZNĄ Uporządkowany ruch elektronów nazywa się
2 K A T E D R A F I ZYKI S T O S O W AN E J
2 K A T E D R A F I ZYKI S T O S O W AN E J P R A C O W N I A P O D S T A W E L E K T R O T E C H N I K I I E L E K T R O N I K I Ćw. 2. Łączenie i pomiar pojemności i indukcyjności Wprowadzenie Pojemność
Co się stanie, gdy połączymy szeregowo dwie żarówki?
Różne elementy układu elektrycznego można łączyć szeregowo. Z wartości poszczególnych oporów, można wyznaczyć oporność całkowitą oraz całkowite natężenie prądu. Zadania 1. Połącz szeregowo dwie identyczne
Temat XXIV. Prawo Faradaya
Temat XXIV Prawo Faradaya To co do tej pory Prawo Faradaya Wiemy już, że prąd powoduje pojawienie się pola magnetycznego a ramka z prądem w polu magnetycznym może obracać się. Czy z drugiej strony można
Wykład FIZYKA II. 4. Indukcja elektromagnetyczna. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA II 4. Indukcja elektromagnetyczna Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ PRAWO INDUKCJI FARADAYA SYMETRIA W FIZYCE
( L ) I. Zagadnienia. II. Zadania
( L ) I. Zagadnienia 1. Pole magnetyczne: indukcja i strumień. 2. Pole magnetyczne Ziemi i magnesów trwałych. 3. Własności magnetyczne substancji: ferromagnetyki, paramagnetyki i diamagnetyki. 4. Prąd
Indukcja magnetyczna pola wokół przewodnika z prądem. dr inż. Romuald Kędzierski
Indukcja magnetyczna pola wokół przewodnika z prądem dr inż. Romuald Kędzierski Pole magnetyczne wokół pojedynczego przewodnika prostoliniowego Założenia wyjściowe: przez nieskończenie długi prostoliniowy
POLE MAGNETYCZNE Magnetyzm. Pole magnetyczne. Indukcja magnetyczna. Siła Lorentza. Prawo Biota-Savarta. Prawo Ampère a. Prawo Gaussa dla pola
POLE MAGNETYCZNE Magnetyzm. Pole magnetyczne. Indukcja magnetyczna. Siła Lorentza. Prawo iota-savarta. Prawo Ampère a. Prawo Gaussa a pola magnetycznego. Prawo indukcji Faradaya. Reguła Lenza. Równania
MAGNETYZM. PRĄD PRZEMIENNY
Włodzimierz Wolczyński 47 POWTÓRKA 9 MAGNETYZM. PRĄD PRZEMIENNY Zadanie 1 W dwóch przewodnikach prostoliniowych nieskończenie długich umieszczonych w próżni, oddalonych od siebie o r = cm, płynie prąd.
POLE MAGNETYCZNE Własności pola magnetycznego. Źródła pola magnetycznego
POLE MAGNETYCZNE Własności pola magnetycznego. Źródła pola magnetycznego Pole magnetyczne magnesu trwałego Pole magnetyczne Ziemi Jeśli przez przewód płynie prąd to wokół przewodu jest pole magnetyczne.
Badanie charakterystyki prądowo-napięciowej opornika, żarówki i diody półprzewodnikowej z wykorzystaniem zestawu SONDa
Badanie charakterystyki prądowo-napięciowej opornika, żarówki i diody półprzewodnikowej z wykorzystaniem zestawu SONDa Celem doświadczenia jest wyznaczenie charakterystyk prądowo-napięciowych oraz zależności
Pole magnetyczne Wykład LO Zgorzelec 13-01-2016
Pole magnetyczne Igła magnetyczna Pole magnetyczne Magnetyzm ziemski kompas Biegun północny geogr. Oś obrotu deklinacja Pole magnetyczne Ziemi pochodzi od dipola magnetycznego. Kierunek magnetycznego momentu
BADANIE AMPEROMIERZA
BADANIE AMPEROMIERZA 1. Cel ćwiczenia Celem ćwiczenia jest poznanie metod pomiaru prądu, nabycie umiejętności łączenia prostych obwodów elektrycznych, oraz poznanie warunków i zasad sprawdzania amperomierzy
Metodę poprawnie mierzonego prądu powinno się stosować do pomiaru dużych rezystancji, tzn. wielokrotnie większych od rezystancji amperomierza: (4)
OBWODY JEDNOFAZOWE POMIAR PRĄDÓW, NAPIĘĆ. Obwody prądu stałego.. Pomiary w obwodach nierozgałęzionych wyznaczanie rezystancji metodą techniczną. Metoda techniczna pomiaru rezystancji polega na określeniu
Ćwiczenie: "Silnik indukcyjny"
Ćwiczenie: "Silnik indukcyjny" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: Zasada
Wykłady z Fizyki. Elektromagnetyzm
Wykłady z Fizyki 08 Zbigniew Osiak Elektromagnetyzm OZ ACZE IA B notka biograficzna C ciekawostka D propozycja wykonania doświadczenia H informacja dotycząca historii fizyki I adres strony internetowej
Ćwiczenie ELE. Jacek Grela, Łukasz Marciniak 3 grudnia Rys.1 Schemat wzmacniacza ładunkowego.
Ćwiczenie ELE Jacek Grela, Łukasz Marciniak 3 grudnia 2009 1 Wstęp teoretyczny 1.1 Wzmacniacz ładunkoczuły Rys.1 Schemat wzmacniacza ładunkowego. C T - adaptor ładunkowy, i - źródło prądu reprezentujące
Ile wynosi całkowite natężenie prądu i całkowita oporność przy połączeniu równoległym?
Domowe urządzenia elektryczne są często łączone równolegle, dzięki temu każde tworzy osobny obwód z tym samym źródłem napięcia. Na podstawie poszczególnych rezystancji, można przewidzieć całkowite natężenie
Lekcja 69. Budowa przyrządów pomiarowych.
Lekcja 69. Budowa przyrządów pomiarowych. Metrologia jest jednym z działów nauki zajmująca się problemami naukowo-technicznymi związanymi z pomiarami, niezależnie od rodzaju wielkości mierzonej i od dokładności
PL 196881 B1. Trójfazowy licznik indukcyjny do pomiaru nadwyżki energii biernej powyżej zadanego tg ϕ
RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 196881 (13) B1 (21) Numer zgłoszenia: 340516 (51) Int.Cl. G01R 11/40 (2006.01) G01R 21/00 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22)
Rozkład materiału nauczania
1 Rozkład materiału nauczania Temat lekcji i główne treści nauczania Liczba godzin na realizację Osiągnięcia ucznia R treści nadprogramowe Praca eksperymentalno-badawcza Przykłady rozwiązanych zadań (procedury
E1. OBWODY PRĄDU STAŁEGO WYZNACZANIE OPORU PRZEWODNIKÓW I SIŁY ELEKTROMOTORYCZNEJ ŹRÓDŁA
E1. OBWODY PRĄDU STŁEGO WYZNCZNIE OPORU PRZEWODNIKÓW I SIŁY ELEKTROMOTORYCZNEJ ŹRÓDŁ tekst opracowała: Bożena Janowska-Dmoch Prądem elektrycznym nazywamy uporządkowany ruch ładunków elektrycznych wywołany
Wykład FIZYKA II. 5. Magnetyzm
Wykład FIZYKA II 5. Magnetyzm Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska http://www.if.pwr.wroc.pl/~wozniak/fizyka2.html ELEKTRYCZNOŚĆ I MAGNETYZM q q magnetyczny???
Magnetyzm cz.ii. Indukcja elektromagnetyczna Równania Maxwella Obwody RL,RC
Magnetyzm cz.ii Indukcja elektromagnetyczna Równania Mawella Obwody RL,RC 1 Indukcja elektromagnetyczna Prawo indukcji Faraday a Co się stanie gdy przewodnik elektryczny umieścimy w zmiennym polu magnetycznym?
PRAWO OHMA DLA PRĄDU PRZEMIENNEGO
ĆWICZENIE 53 PRAWO OHMA DLA PRĄDU PRZEMIENNEGO Cel ćwiczenia: wyznaczenie wartości indukcyjności cewek i pojemności kondensatorów przy wykorzystaniu prawa Ohma dla prądu przemiennego; sprawdzenie prawa
Powtórka 5. między biegunami ogniwa przepłynął ładunek 13,5 C. Oblicz pracę wykonaną przez ogniwo podczas przemieszczania ładunku między biegunami.
owtórka 5 1. Do ogniwa o sile elektromotorycznej 12 V podłączono odbiornik o oporze 50 W. W czasie minuty między biegunami ogniwa przepłynął ładunek 13,5 C. Oblicz pracę wykonaną przez ogniwo podczas przemieszczania
INSTRUKCJA LABORATORIUM ELEKTROTECHNIKI BADANIE TRANSFORMATORA. Autor: Grzegorz Lenc, Strona 1/11
NSTRKCJA LABORATORM ELEKTROTECHNK BADANE TRANSFORMATORA Autor: Grzegorz Lenc, Strona / Badanie transformatora Celem ćwiczenia jest poznanie zasady działania transformatora oraz wyznaczenie parametrów schematu
Wykład 14: Indukcja. Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok
Wykład 14: Indukcja Dr inż. Zbigniew zklarski Katedra Elektroniki, paw. -1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.zklarski/ Pole magnetyczne a prąd elektryczny Do tej pory omawiano skutki
RÓWNANIA RÓŻNICZKOWE WYKŁAD 4
RÓWNANIA RÓŻNICZKOWE WYKŁAD 4 Obszar określoności równania Jeżeli występująca w równaniu y' f ( x, y) funkcja f jest ciągła, to równanie posiada rozwiązanie. Jeżeli f jest nieokreślona w punkcie (x 0,
cz. 2. dr inż. Zbigniew Szklarski
Wykład 14: Pole magnetyczne cz.. dr inż. Zbigniew zklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.zklarski/ Prąd elektryczny jako źródło pola magnetycznego - doświadczenie Oersteda Kiedy przez
Niższy wiersz tabeli służy do wpisywania odpowiedzi poprawionych; odpowiedź błędną należy skreślić. a b c d a b c d a b c d a b c d
Jak rozwiązać test? Każde pytanie ma podane cztery możliwe odpowiedzi oznaczone jako a, b, c, d. Należy wskazać czy dana odpowiedź, w świetle zadanego pytania, jest prawdziwa czy fałszywa, lub zrezygnować
Podstawy fizyki sezon 2 5. Indukcja Faradaya
Podstawy fizyki sezon 2 5. Indukcja Faradaya Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Prawo Gaussa dla
MAGNETYZM. 1. Pole magnetyczne Ziemi i magnesu stałego.
MAGNETYZM 1. Pole magnetyczne Ziemi i magnesu stałego. Źródła pola magnetycznego: Ziemia, magnes stały (sztabkowy, podkowiasty), ruda magnetytu, przewodnik, w którym płynie prąd. Każdy magnes posiada dwa
( F ) I. Zagadnienia. II. Zadania
( F ) I. Zagadnienia 1. Pole magnetyczne: indukcja i strumień. 2. Pole magnetyczne Ziemi i magnesów trwałych. 3. Własności magnetyczne substancji: ferromagnetyki, paramagnetyki i diamagnetyki. 4. Prąd
Ćwiczenie nr 254. Badanie ładowania i rozładowywania kondensatora. Ustawiony prąd ładowania I [ ma ]: t ł [ s ] U ł [ V ] t r [ s ] U r [ V ] ln(u r )
Nazwisko... Data... Wydział... Imię... Dzień tyg.... Godzina... Ćwiczenie nr 254 Badanie ładowania i rozładowywania kondensatora Numer wybranego kondensatora: Numer wybranego opornika: Ustawiony prąd ładowania
FUNKCJA LINIOWA. A) B) C) D) Wskaż, dla którego funkcja liniowa określona wzorem jest stała. A) B) C) D)
FUNKCJA LINIOWA 1. Funkcja jest rosnąca, gdy 2. Wskaż, dla którego funkcja liniowa jest rosnąca Wskaż, dla którego funkcja liniowa określona wzorem jest stała. 3. Funkcja liniowa A) jest malejąca i jej
Ćwiczenie: "Obwody ze sprzężeniami magnetycznymi"
Ćwiczenie: "Obwody ze sprzężeniami magnetycznymi" Opracowane w ramach projektu: "Informatyka mój sposób na poznanie i opisanie świata realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia:
PODSTAWY METROLOGII ĆWICZENIE 7 TEMPERATURA Międzywydziałowa Szkoła Inżynierii Biomedycznej 2009/2010 SEMESTR 3
PODSTAWY METROLOGII ĆWICZENIE 7 TEMPERATURA Międzywydziałowa Szkoła Inżynierii Biomedycznej 2009/2010 SEMESTR 3 Rozwiązania zadań nie były w żaden sposób konsultowane z żadnym wiarygodnym źródłem informacji!!!
SILNIK INDUKCYJNY KLATKOWY
SILNIK INDUKCYJNY KLATKOWY 1. Budowa i zasada działania silników indukcyjnych Zasadniczymi częściami składowymi silnika indukcyjnego są nieruchomy stojan i obracający się wirnik. Wewnętrzną stronę stojana
LABORATORIUM ELEKTRONIKI ĆWICZENIE 4 POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH
LABORATORIUM ELEKTRONIKI ĆWICZENIE 4 Parametry statyczne tranzystorów polowych złączowych Cel ćwiczenia Podstawowym celem ćwiczenia jest poznanie statycznych charakterystyk tranzystorów polowych złączowych
Zwój nad przewodzącą płytą
Zwój nad przewodzącą płytą Z potencjału A można też wyznaczyć napięcie u0 jakie będzie się indukować w pojedynczym zwoju cewki odbiorczej: gdzie: Φ strumień magnetyczny przenikający powierzchnię, której
Indukcja wzajemna. Transformator. dr inż. Romuald Kędzierski
Indukcja wzajemna Transformator dr inż. Romuald Kędzierski Do czego służy transformator? Jest to urządzenie (zwane też maszyną elektryczną), które wykorzystując zjawisko indukcji elektromagnetycznej pozwala
FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH
FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH PROPORCJONALNOŚĆ PROSTA Proporcjonalnością prostą nazywamy zależność między dwoma wielkościami zmiennymi x i y, określoną wzorem: y = a x Gdzie a jest