Krzysztof Pawłowski Centrum Fizyki Teoretycznej PAN Warszawa. Magnetyczna latarka

Wielkość: px
Rozpocząć pokaz od strony:

Download "Krzysztof Pawłowski Centrum Fizyki Teoretycznej PAN Warszawa. Magnetyczna latarka"

Transkrypt

1 Logo designed by Armella Leung, Krzysztof Pawłowski Centrum Fizyki Teoretycznej PAN Warszawa Magnetyczna latarka Prawa Faradaya? Oj.. Relacja pomiędzy zmianą wartości strumienia magnetycznego przechodzącego przez..., Uczeń ma znać TREŚĆ definicji.... Przedstawiamy pomysł jak pogodzić wymagania programowe z efektywnym nauczeniem odwiecznej zmory uczniów jednym z praw Maxwella. Oczywiście receptą jest proste i efektowne doświadczenie. Tym razem pokażemy jak samemu zbudować migającą latarkę alias rowerowe dynamo. 1. Potrzebne materiały Do wykonania doświadczeń potrzebne będą: dwa magnesy neodymowe o średnicy ok. 15mm (do kupienia w wielu sklepach internetowych koszt do 5zł) plastikową tubkę o średnicy większej niż magnes, np ze strzykawki, probówki, opakowania po tabletkach musujących.., opakowanie po kliszy, diodę, drut miedziany, gumę do zamocowania drutu na tubce (na rysunku kawałek dętki rowerowej), nożyk do papieru, trochę waty. Rys. 1. Zestaw elementów niezbędnych do wykonania doświadczenia. 2. Wykonanie Na tubkę nawijamy około 300 zwojów drutu, tak jak pokazano na rysunku 2. Zadanie może ułatwić kawałek dętki lub gumki, która zabezpieczy drut przed zsuwaniem z tubki. Drut należy tak nawinąć, żeby oba jego końce miały długość co najmniej 40 cm. Po nawinięciu wszystkich zwojów należy zeskrobać izolację z obu jego końców rys. 3.

2 Rys. 2 Nawiń ok. 300 zwojów drutu na tubkę, dętką zabezpiecz drut przed zsuwaniem Rys. 3. Nożykiem do papieru zeskrob izolację z końcówek drutu. Aby łatwiej obserwować świecącą diodę można do niej wykonać obudowę. Najpierw z opakowania po kliszy odcinamy denko, jak na rys. 4. Następnie nacinamy w pokrywce od kliszy dwa małe otwory. Pozbawione izolacji końcówki drutu przewlekamy przez te otwory i owijamy wokół końcówek diody. Diodę można zamontować 'na stałe' w latarce wciskając jej końcówki w pokrywkę od kliszy. Tak przygotowana dioda przedstawiona jest na rysunku 5. Pokrywkę z diodą naciskamy na opakowanie od kliszy z uciętym denkiem. Rys. 4. Odetnij dno z opakowania po kliszy. Rys. 5. Zamontuj diodę w pokrywce opakowania od kliszy. Do tubki z nawiniętymi zwojami wrzucamy połączone biegunami magnesy i... gotowe. Teraz wystarczy potrząsać tubką ze zwojami. Dioda powinna migać tak jak na rysunku 6. Aby zabawka służyła dłużej należy przed oraz po wrzuceniu magnesu umieścić w tubce trochę waty. Wata wytłumi uderzenia magnesu o ścianki tubki i ochroni ją przed zniszczeniem.

3 Rys. 6. Potrząsamy tubką z magnesem w środku dioda zaczyna migać 3. Wytłumaczenie, dyskusja, ćwiczenia. Co się dzieje podczas potrząsania tubką? Magnes w środku jest wprawiany w ruch, a wraz z nim jego pole magnetyczne. Zmienne pole magnetyczne jest przyczyną powstawania prądu w drucie. Warto zwrócić uwagę, że dopóki nie poruszymy tubką dioda się nie zaświeci, czyli pole magnetyczne musi się zmieniać, żeby doszło do indukcji prądu. Uchroni nas to przed typowym wśród uczniów błędem, częstym zapominanie o słówku zmienne w treści prawa Faradaya. A czy latarka zadziała, jeśli magnes będzie na zewnątrz tubki? Np. magnes zrzucany w kierunku prostopadłym do osi latarki nie powoduje zaświecenia diody. Ale jeśli rzucimy go, tak aby spadał blisko tubki, równolegle do jej osi, latarka powinna się na chwilę zabłysnąć. W obu wypadkach pole zmienia się w ten sam sposób. Zasadnicza różnica polega na zmianie strumienia pola magnetycznego przez ramkę. W pierwszym przypadku strumień przez cały czas jest praktycznie równy zero i zmienia się nieznacznie. Gdybyśmy mieli nieskończenie cienką ramkę i rzucali magnes tak precyzyjnie, żeby ciągle leciał w kierunku ramki i w płaszczyźnie ramki taki strumień byłby po prostu równy zero.taka sytuacja jest schematycznie przedstawiona na rysunku 7.

4 Rys. 7. Jeśli magnes leci z boku na ramkę (np. magnes zbliża się do ramki, ale porusza się w jej płaszczyźnie), to strumień pola magnetycznego jest bliski 0. W drugim przypadku zmiany strumienia mogą być duże. Ta sytuacja jest przedstawiona na rysunku 8. Rys. 8. Jeśli magnes nadlatuje w kierunku ramki, ale nie w jej płaszczyźnie, to strumień pola magnetycznego może być duży. Podsumowując aby wytworzyć prąd w ramce musimy dysponować zmiennym polem magnetycznym np. poruszającym się magnes, ostatecznie o tym czy prąd zostanie wyindukowany decyduje nie samo pole magnetyczne, ale jego strumień, np. magnes musi się poruszać w określonym kierunku w stosunku do ramki. Wszystkie własności są ukryte w prawie indukcji Faradaya: Ε = dφ/dt, gdzie E siła elektromotoryczna, czyli napięcie jakie indukuje się w ramce z przewodnika pod wpływem zmieniania pola magnetycznego, φ strumień pola magnetycznego przez powierzchnie ramki. Oznaczenie dφ/dt, to pochodna strumienia po czasie - wielkość, która

5 'mierzy' szybkość zmiany strumienia pola magnetycznego. Wzór pozwala obliczyć nie tylko wartość indukowanego napięcia, ale również, w którą stronę będą się poruszać elektrony w ramce. Program nauczania Szkoła ponadgimnazjalna Podstawa programowa: Elektryczność i magnetyzm. Tematy lekcji: Prawo Faradaya. Prądnica.

Prosty model prądnicy

Prosty model prądnicy Logo designed by Armella Leung, www.armella.fr.to Grzegorz F. Wojewoda I liceum Ogólnokształcące Bydgoszcz Prosty model prądnicy Bardzo często uczniowie mają problemy ze zrozumieniem zjawisk związanych

Bardziej szczegółowo

RÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego?

RÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego? RÓWNANIA MAXWELLA Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego? Wykład 3 lato 2012 1 Doświadczenia Wykład 3 lato 2012 2 1

Bardziej szczegółowo

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 27 MAGNETYZM I ELEKTROMAGNETYZM. CZĘŚĆ 2

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 27 MAGNETYZM I ELEKTROMAGNETYZM. CZĘŚĆ 2 autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 27 MAGNETYZM I ELEKTROMAGNETYZM. CZĘŚĆ 2 Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania TEST JEDNOKROTNEGO WYBORU

Bardziej szczegółowo

MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA. Zadania MODUŁ 11 FIZYKA ZAKRES ROZSZERZONY

MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA. Zadania MODUŁ 11 FIZYKA ZAKRES ROZSZERZONY MODUŁ MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA OPRACOWANE W RAMACH PROJEKTU: FIZYKA ZAKRES ROZSZERZONY WIRTUALNE LABORATORIA FIZYCZNE NOWOCZESNĄ METODĄ NAUCZANIA. PROGRAM NAUCZANIA FIZYKI Z ELEMENTAMI TECHNOLOGII

Bardziej szczegółowo

Obwód składający się z baterii (źródła siły elektromotorycznej ) oraz opornika. r opór wewnętrzny baterii R- opór opornika

Obwód składający się z baterii (źródła siły elektromotorycznej ) oraz opornika. r opór wewnętrzny baterii R- opór opornika Obwód składający się z baterii (źródła siły elektromotorycznej ) oraz opornika r opór wewnętrzny baterii - opór opornika V b V a V I V Ir Ir I 2 POŁĄCZENIE SZEEGOWE Taki sam prąd płynący przez oba oporniki

Bardziej szczegółowo

MAGNETYZM. PRĄD PRZEMIENNY

MAGNETYZM. PRĄD PRZEMIENNY Włodzimierz Wolczyński 47 POWTÓRKA 9 MAGNETYZM. PRĄD PRZEMIENNY Zadanie 1 W dwóch przewodnikach prostoliniowych nieskończenie długich umieszczonych w próżni, oddalonych od siebie o r = cm, płynie prąd.

Bardziej szczegółowo

Indukcja elektromagnetyczna. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Indukcja elektromagnetyczna. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Indukcja elektromagnetyczna Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Strumień indukcji magnetycznej Analogicznie do strumienia pola elektrycznego można

Bardziej szczegółowo

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 26 MAGNETYZM I ELEKTROMAGNETYZM. CZĘŚĆ 1

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 26 MAGNETYZM I ELEKTROMAGNETYZM. CZĘŚĆ 1 autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 26 MAGNETYZM I ELEKTROMAGNETYZM. CZĘŚĆ 1 Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania Zadanie 1 1 punkt TEST JEDNOKROTNEGO

Bardziej szczegółowo

Wykład 15: Indukcja. Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok

Wykład 15: Indukcja. Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok Wykład 15: Indukcja Dr inż. Zbigniew zklarski Katedra Elektroniki, paw. -1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.zklarski/ 1 Pole magnetyczne a prąd elektryczny Do tej pory omawiano skutki

Bardziej szczegółowo

Temat XXIV. Prawo Faradaya

Temat XXIV. Prawo Faradaya Temat XXIV Prawo Faradaya To co do tej pory Prawo Faradaya Wiemy już, że prąd powoduje pojawienie się pola magnetycznego a ramka z prądem w polu magnetycznym może obracać się. Czy z drugiej strony można

Bardziej szczegółowo

Pole magnetyczne Ziemi. Pole magnetyczne przewodnika z prądem

Pole magnetyczne Ziemi. Pole magnetyczne przewodnika z prądem Pole magnetyczne Własność przestrzeni polegającą na tym, że na umieszczoną w niej igiełkę magnetyczną działają siły, nazywamy polem magnetycznym. Pole takie wytwarza ruda magnetytu, magnes stały (czyli

Bardziej szczegółowo

pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania fizyka, wzory fizyka, matura fizyka

pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania fizyka, wzory fizyka, matura fizyka 7. Pole magnetyczne zadania z arkusza I 7.8 7.1 7.9 7.2 7.3 7.10 7.11 7.4 7.12 7.5 7.13 7.6 7.7 7. Pole magnetyczne - 1 - 7.14 7.25 7.15 7.26 7.16 7.17 7.18 7.19 7.20 7.21 7.27 Kwadratową ramkę (rys.)

Bardziej szczegółowo

Zad. 2 Jaka jest częstotliwość drgań fali elektromagnetycznej o długości λ = 300 m.

Zad. 2 Jaka jest częstotliwość drgań fali elektromagnetycznej o długości λ = 300 m. Segment B.XIV Prądy zmienne Przygotowała: dr Anna Zawadzka Zad. 1 Obwód drgający składa się z pojemności C = 4 nf oraz samoindukcji L = 90 µh. Jaki jest okres, częstotliwość, częstość kątowa drgań oraz

Bardziej szczegółowo

Wykład 14: Indukcja. Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok

Wykład 14: Indukcja. Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok Wykład 14: Indukcja Dr inż. Zbigniew zklarski Katedra Elektroniki, paw. -1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.zklarski/ Pole magnetyczne a prąd elektryczny Do tej pory omawiano skutki

Bardziej szczegółowo

A. istnieniu siły elektrodynamicznej C. zjawisku indukcji elektromagnetycznej B. zjawisku indukcji magnetycznej D. namagnesowaniu zwojnicy

A. istnieniu siły elektrodynamicznej C. zjawisku indukcji elektromagnetycznej B. zjawisku indukcji magnetycznej D. namagnesowaniu zwojnicy PRĄD PRZEMIENNY Grupa A Imię i nazwisko... Klasa... 1. Prądnica działa dzięki: A. istnieniu siły elektrodynamicznej C. zjawisku indukcji elektromagnetycznej B. zjawisku indukcji magnetycznej D. namagnesowaniu

Bardziej szczegółowo

Podstawy fizyki sezon 2 6. Indukcja magnetyczna

Podstawy fizyki sezon 2 6. Indukcja magnetyczna Podstawy fizyki sezon 2 6. Indukcja magnetyczna Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Dotychczas

Bardziej szczegółowo

Elektromagnetyzm. pole magnetyczne prądu elektrycznego

Elektromagnetyzm. pole magnetyczne prądu elektrycznego Elektromagnetyzm pole magnetyczne prądu elektrycznego Doświadczenie Oersteda (1820) 1.Jeśli przez przewodnik płynie prąd, to wokół tego przewodnika powstaje pole magnetyczne. 2.Obecność oraz kierunek linii

Bardziej szczegółowo

Materiały pomocnicze 11 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej

Materiały pomocnicze 11 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej Materiały pomocnicze 11 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Magnetyzm to zjawisko przyciągania kawałeczków stali przez magnesy. 2. Źródła pola magnetycznego. a. Magnesy

Bardziej szczegółowo

Podstawy fizyki sezon 2 5. Pole magnetyczne II

Podstawy fizyki sezon 2 5. Pole magnetyczne II Podstawy fizyki sezon 2 5. Pole magnetyczne II Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Indukcja magnetyczna

Bardziej szczegółowo

30P4 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - IV POZIOM PODSTAWOWY

30P4 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - IV POZIOM PODSTAWOWY 30P4 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - IV Magnetyzm POZIOM PODSTAWOWY Indukcja elektromagnetyczna Prąd przemienny Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod

Bardziej szczegółowo

Magnetostatyka. Bieguny magnetyczne zawsze występują razem. Nie istnieje monopol magnetyczny - samodzielny biegun północny lub południowy.

Magnetostatyka. Bieguny magnetyczne zawsze występują razem. Nie istnieje monopol magnetyczny - samodzielny biegun północny lub południowy. Magnetostatyka Nazwa magnetyzm pochodzi od Magnezji w Azji Mniejszej, gdzie już w starożytności odkryto rudy żelaza przyciągające żelazne przedmioty. Chińczycy jako pierwsi (w IIIw n.e.) praktycznie wykorzystywali

Bardziej szczegółowo

SCENARIUSZ ZAJĘĆ SZKOLNEGO KOŁA NAUKOWEGO Z PRZEDMIOTU FIZYKA PROWADZONEGO W RAMACH PROJEKTU AKADEMIA UCZNIOWSKA

SCENARIUSZ ZAJĘĆ SZKOLNEGO KOŁA NAUKOWEGO Z PRZEDMIOTU FIZYKA PROWADZONEGO W RAMACH PROJEKTU AKADEMIA UCZNIOWSKA SCENARIUSZ ZAJĘĆ SZKOLNEGO KOŁA NAUKOWEGO Z PRZEDMIOTU FIZYKA PROWADZONEGO W RAMACH PROJEKTU AKADEMIA UCZNIOWSKA Temat lekcji Czy różne przedmioty mogą działać jak magnes? Na podstawie pracy Agaty Rogackiej

Bardziej szczegółowo

Pole elektromagnetyczne

Pole elektromagnetyczne Pole elektromagnetyczne Pole magnetyczne Strumień pola magnetycznego Jednostką strumienia magnetycznego w układzie SI jest 1 weber (1 Wb) = 1 N m A -1. Zatem, pole magnetyczne B jest czasem nazywane gęstością

Bardziej szczegółowo

SCENARIUSZ LEKCJI FIZYKI Z WYKORZYSTANIEM FILMU Elektryczny silnik liniowy

SCENARIUSZ LEKCJI FIZYKI Z WYKORZYSTANIEM FILMU Elektryczny silnik liniowy SCENARIUSZ LEKCJI FIZYKI Z WYKORZYSTANIEM FILMU Elektryczny silnik liniowy SPIS TREŚCI: I. Wprowadzenie II. Części lekcji 1. Część wstępna 2. Część realizacji 3. Część podsumowująca III. Karty pracy 1.

Bardziej szczegółowo

Badanie transformatora

Badanie transformatora Ćwiczenie 14 Badanie transformatora 14.1. Zasada ćwiczenia Transformator składa się z dwóch uzwojeń, umieszczonych na wspólnym metalowym rdzeniu. Do jednego uzwojenia (pierwotnego) przykłada się zmienne

Bardziej szczegółowo

Ć W I C Z E N I E N R E-8

Ć W I C Z E N I E N R E-8 NSTYTUT FZYK WYDZAŁ NŻYNER PRODUKCJ TECHNOOG ATERAŁÓW POTECHNKA CZĘSTOCHOWSKA PRACOWNA EEKTRYCZNOŚC AGNETYZU Ć W C Z E N E N R E-8 NDUKCJA WZAJENA Ćwiczenie E-8: ndukcja wzajemna. Zagadnienia do przestudiowania.

Bardziej szczegółowo

Wykład 14: Indukcja cz.2.

Wykład 14: Indukcja cz.2. Wykład 14: Indukcja cz.. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. -1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 10.05.017 Wydział Informatyki, Elektroniki i 1 Przykład

Bardziej szczegółowo

Proste modele silnika elektrycznego

Proste modele silnika elektrycznego www.pl.euhou.net Logo designed by Armella Leung, www.armella.fr.to Maria Dobkowska Zespół Szkół Integrcyjnych nr 62 im. Raoula Wallenberga Warszawa, Polska Arvind Gupta ArvindGuptaToys, India http://www.arvindguptatoys.com/

Bardziej szczegółowo

Badanie prądnicy prądu stałego

Badanie prądnicy prądu stałego POLTECHNKA ŚLĄSKA WYDZAŁ NŻYNER ŚRODOWSKA ENERGETYK NSTYTUT MASZYN URZĄDZEŃ ENERGETYCZNYCH LABORATORUM ELEKTRYCZNE Badanie prądnicy prądu stałego (E 18) Opracował: Dr inż. Włodzimierz OGULEWCZ 3 1. Cel

Bardziej szczegółowo

Nazwa magnetyzm pochodzi od Magnezji w Azji Mniejszej, gdzie już w starożytności odkryto rudy żelaza przyciągające żelazne przedmioty.

Nazwa magnetyzm pochodzi od Magnezji w Azji Mniejszej, gdzie już w starożytności odkryto rudy żelaza przyciągające żelazne przedmioty. Magnetostatyka Ryszard J. Barczyński, 2017 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Magnetyzm Nazwa magnetyzm pochodzi od Magnezji

Bardziej szczegółowo

Wyznaczanie stosunku e/m elektronu

Wyznaczanie stosunku e/m elektronu Ćwiczenie 27 Wyznaczanie stosunku e/m elektronu 27.1. Zasada ćwiczenia Elektrony przyspieszane w polu elektrycznym wpadają w pole magnetyczne, skierowane prostopadle do kierunku ich ruchu. Wyznacza się

Bardziej szczegółowo

Badanie transformatora

Badanie transformatora Ćwiczenie 14 Badanie transformatora 14.1. Zasada ćwiczenia Transformator składa się z dwóch uzwojeń, umieszczonych na wspólnym metalowym rdzeniu. Do jednego uzwojenia (pierwotnego) przykłada się zmienne

Bardziej szczegółowo

Wykłady z Fizyki. Elektromagnetyzm

Wykłady z Fizyki. Elektromagnetyzm Wykłady z Fizyki 08 Zbigniew Osiak Elektromagnetyzm OZ ACZE IA B notka biograficzna C ciekawostka D propozycja wykonania doświadczenia H informacja dotycząca historii fizyki I adres strony internetowej

Bardziej szczegółowo

Pole magnetyczne Wykład LO Zgorzelec 13-01-2016

Pole magnetyczne Wykład LO Zgorzelec 13-01-2016 Pole magnetyczne Igła magnetyczna Pole magnetyczne Magnetyzm ziemski kompas Biegun północny geogr. Oś obrotu deklinacja Pole magnetyczne Ziemi pochodzi od dipola magnetycznego. Kierunek magnetycznego momentu

Bardziej szczegółowo

Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym

Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym Ćwiczenie 11A Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym 11A.1. Zasada ćwiczenia W ćwiczeniu mierzy się przy pomocy wagi siłę elektrodynamiczną, działającą na odcinek przewodnika

Bardziej szczegółowo

Temat: POLE MAGNETYCZNE PROSTOLINIOWEGO PRZEWODNIKA Z PRĄDEM

Temat: POLE MAGNETYCZNE PROSTOLINIOWEGO PRZEWODNIKA Z PRĄDEM Temat: POLE MAGNETYCZNE PROSTOLINIOWEGO PRZEWODNIKA Z PRĄDEM Klasa: III Gb Prowadzący lekcje studenci Uniwersytetu Szczecińskiego: M. Małolepsza, K. Pawlik pod kierunkiem nauczyciela fizyki- B.Sacharskiej

Bardziej szczegółowo

Ferromagnetyki, paramagnetyki, diamagnetyki.

Ferromagnetyki, paramagnetyki, diamagnetyki. Ferromagnetyki, paramagnetyki, diamagnetyki https://www.youtube.com/watch?v=u36qppveh2c Materiały magnetyczne Do tej pory rozważaliśmy przewody z prądem umieszczone w powietrzu lub w próżni. Jednak w praktycznych

Bardziej szczegółowo

Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym

Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym Ćwiczenie 11B Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym 11B.1. Zasada ćwiczenia Na zamkniętą pętlę przewodnika z prądem, umieszczoną w jednorodnym polu magnetycznym, działa skręcający

Bardziej szczegółowo

1. Połącz w pary: 3. Aluminiowy pierścień oddala się od nieruchomego magnesu w stronę wskazaną na rysunku przez strzałkę. Imię i nazwisko... Klasa...

1. Połącz w pary: 3. Aluminiowy pierścień oddala się od nieruchomego magnesu w stronę wskazaną na rysunku przez strzałkę. Imię i nazwisko... Klasa... PRĄD PRZEMIENNY Grupa A Imię i nazwisko... Klasa... 1. Połącz w pary: A. Transformator B. Zjawisko indukcji elektromagnetycznej C. Generator w elektrowni D. Dynamo I. wykorzystuje się w wielu urządzeniach,

Bardziej szczegółowo

Zadania / dział: Magnetyzm. Lp Polecenie: Rozwiązanie: 1 a) W którym punkcie: A, B czy C pole magnetyczne jest najsilniejsze? b) Jak to uzasadnić?

Zadania / dział: Magnetyzm. Lp Polecenie: Rozwiązanie: 1 a) W którym punkcie: A, B czy C pole magnetyczne jest najsilniejsze? b) Jak to uzasadnić? Zadania / dział: Magnetyzm Lp Polecenie: Rozwiązanie: 1 a) W którym punkcie: A, B czy C pole magnetyczne jest najsilniejsze? b) Jak to uzasadnić? 2 Jak zachowa się pinezka, jeśli magnesem będziemy przesuwać

Bardziej szczegółowo

Scenariusz lekcji. I. Cele lekcji

Scenariusz lekcji. I. Cele lekcji Scenariusz lekcji I. Cele lekcji 1) Wiadomości Uczeń wie: co to jest pole magnetyczne; jak oddziałują na siebie bieguny magnetyczne; co to jest magnes trwały; jaki kształt mają linie pola magnetycznego;

Bardziej szczegółowo

Fizyka współczesna. Zmienne pole magnetyczne a prąd. Zjawisko indukcji elektromagnetycznej Powstawanie prądu w wyniku zmian pola magnetycznego

Fizyka współczesna. Zmienne pole magnetyczne a prąd. Zjawisko indukcji elektromagnetycznej Powstawanie prądu w wyniku zmian pola magnetycznego Zmienne pole magnetyczne a prąd Zjawisko indukcji elektromagnetycznej Powstawanie prądu w wyniku zmian pola magnetycznego Zmienne pole magnetyczne a prąd Wnioski (które wyciągnęlibyśmy, wykonując doświadczenia

Bardziej szczegółowo

Powtórka 5. między biegunami ogniwa przepłynął ładunek 13,5 C. Oblicz pracę wykonaną przez ogniwo podczas przemieszczania ładunku między biegunami.

Powtórka 5. między biegunami ogniwa przepłynął ładunek 13,5 C. Oblicz pracę wykonaną przez ogniwo podczas przemieszczania ładunku między biegunami. owtórka 5 1. Do ogniwa o sile elektromotorycznej 12 V podłączono odbiornik o oporze 50 W. W czasie minuty między biegunami ogniwa przepłynął ładunek 13,5 C. Oblicz pracę wykonaną przez ogniwo podczas przemieszczania

Bardziej szczegółowo

MAGNETYZM. 1. Pole magnetyczne Ziemi i magnesu stałego.

MAGNETYZM. 1. Pole magnetyczne Ziemi i magnesu stałego. MAGNETYZM 1. Pole magnetyczne Ziemi i magnesu stałego. Źródła pola magnetycznego: Ziemia, magnes stały (sztabkowy, podkowiasty), ruda magnetytu, przewodnik, w którym płynie prąd. Każdy magnes posiada dwa

Bardziej szczegółowo

Strumień Prawo Gaussa Rozkład ładunku Płaszczyzna Płaszczyzny Prawo Gaussa i jego zastosowanie

Strumień Prawo Gaussa Rozkład ładunku Płaszczyzna Płaszczyzny Prawo Gaussa i jego zastosowanie Problemy elektrodynamiki. Prawo Gaussa i jego zastosowanie przy obliczaniu pól ładunku rozłożonego w sposób ciągły. I LO im. Stefana Żeromskiego w Lęborku 19 marca 2012 Nowe spojrzenie na prawo Coulomba

Bardziej szczegółowo

Prawa Maxwella. C o p y rig h t b y p lec iu g 2.p l

Prawa Maxwella. C o p y rig h t b y p lec iu g 2.p l Prawa Maxwella Pierwsze prawo Maxwella Wyobraźmy sobie sytuację przedstawioną na rysunku. Przewodnik kołowy i magnes zbliżają się do siebie z prędkością v. Sytuację tę można opisać z punktu widzenia dwóch

Bardziej szczegółowo

Zwój nad przewodzącą płytą METODA ROZDZIELENIA ZMIENNYCH

Zwój nad przewodzącą płytą METODA ROZDZIELENIA ZMIENNYCH METODA ROZDZIELENIA ZMIENNYCH (2) (3) (10) (11) Modelowanie i symulacje obiektów w polu elektromagnetycznym 1 Rozwiązania równań (10-11) mają ogólną postać: (12) (13) Modelowanie i symulacje obiektów w

Bardziej szczegółowo

Pole magnetyczne. Magnes wytwarza wektorowe pole magnetyczne we wszystkich punktach otaczającego go przestrzeni.

Pole magnetyczne. Magnes wytwarza wektorowe pole magnetyczne we wszystkich punktach otaczającego go przestrzeni. Pole magnetyczne Magnes wytwarza wektorowe pole magnetyczne we wszystkich punktach otaczającego go przestrzeni. naładowane elektrycznie cząstki, poruszające się w przewodniku w postaci prądu elektrycznego,

Bardziej szczegółowo

1. Nienamagnesowaną igłę zawieszoną na nici, zbliżono do magnesu sztabkowego.

1. Nienamagnesowaną igłę zawieszoną na nici, zbliżono do magnesu sztabkowego. 1. Nienamagnesowaną igłę zawieszoną na nici, zbliżono do magnesu sztabkowego. A) Igła przylgnie do każdego z końców sztabki. B) Igła przylgnie do sztabki w każdym miejscu. C) Igła przylgnie do sztabki

Bardziej szczegółowo

POLE MAGNETYCZNE Własności pola magnetycznego. Źródła pola magnetycznego

POLE MAGNETYCZNE Własności pola magnetycznego. Źródła pola magnetycznego POLE MAGNETYCZNE Własności pola magnetycznego. Źródła pola magnetycznego Pole magnetyczne magnesu trwałego Pole magnetyczne Ziemi Jeśli przez przewód płynie prąd to wokół przewodu jest pole magnetyczne.

Bardziej szczegółowo

Badanie rozkładu pola magnetycznego przewodników z prądem

Badanie rozkładu pola magnetycznego przewodników z prądem Ćwiczenie E7 Badanie rozkładu pola magnetycznego przewodników z prądem E7.1. Cel ćwiczenia Prąd elektryczny płynący przez przewodnik wytwarza wokół niego pole magnetyczne. Ćwiczenie polega na pomiarze

Bardziej szczegółowo

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 41: Busola stycznych

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 41: Busola stycznych Nazwisko i imię: Zespół: Data: Ćwiczenie nr 41: Busola stycznych Cel ćwiczenia: Wyznaczenie składowej poziomej ziemskiego pola magnetycznego. Literatura [1] Kąkol Z., Fizyka dla inżynierów, OEN Warszawa,

Bardziej szczegółowo

Szczegółowe kryteria oceniania z fizyki w gimnazjum kl. II

Szczegółowe kryteria oceniania z fizyki w gimnazjum kl. II Szczegółowe kryteria oceniania z fizyki w gimnazjum kl. II Semestr I Elektrostatyka Ocenę dopuszczającą otrzymuje uczeń, który: Wie że materia zbudowana jest z cząsteczek Wie że cząsteczki składają się

Bardziej szczegółowo

30R4 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - IV POZIOM ROZSZERZONY

30R4 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - IV POZIOM ROZSZERZONY 30R4 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - IV POZIOM ROZSZERZONY Magnetyzm Indukcja elektromagnetyczna Prąd przemienny Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod

Bardziej szczegółowo

str. 1 Temat: Uzwojenia maszyn prądu stałego. 1. Uzwojenia maszyn prądu stałego. W jednej maszynie prądu stałego możemy spotkać trzy rodzaje uzwojeń:

str. 1 Temat: Uzwojenia maszyn prądu stałego. 1. Uzwojenia maszyn prądu stałego. W jednej maszynie prądu stałego możemy spotkać trzy rodzaje uzwojeń: Temat: Uzwojenia maszyn prądu stałego. 1. Uzwojenia maszyn prądu stałego. W jednej maszynie prądu stałego możemy spotkać trzy rodzaje uzwojeń: a) uzwojenie biegunów głównych jest uzwojeniem wzbudzającym

Bardziej szczegółowo

26 MAGNETYZM. Włodzimierz Wolczyński. Indukcja magnetyczna a natężenie pola magnetycznego. Wirowe pole magnetyczne wokół przewodnika prostoliniowego

26 MAGNETYZM. Włodzimierz Wolczyński. Indukcja magnetyczna a natężenie pola magnetycznego. Wirowe pole magnetyczne wokół przewodnika prostoliniowego Włodzimierz Wolczyński 26 MAGETYZM Indukcja magnetyczna a natężenie pola magnetycznego B indukcja magnetyczna H natężenie pola magnetycznego μ przenikalność magnetyczna ośrodka dla paramagnetyków - 1 1,

Bardziej szczegółowo

Prosty model silnika elektrycznego

Prosty model silnika elektrycznego Prosty model silnika elektrycznego Program: Coach 6 Projekt: komputer H : C:\Program Files (x86)\cma\coach6\full.en\cma Coach Projects\PTSN Coach 6\Elektronika\Silniczek2.cma Cel ćwiczenia Pokazanie zasady

Bardziej szczegółowo

Wykład FIZYKA II. 4. Indukcja elektromagnetyczna. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA II. 4. Indukcja elektromagnetyczna.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA II 4. Indukcja elektromagnetyczna Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ PRAWO INDUKCJI FARADAYA SYMETRIA W FIZYCE

Bardziej szczegółowo

5. (2 pkt) Uczeń miał za zadanie skonstruował zwojnicę do wytwarzania pola magnetycznego o wartości indukcji

5. (2 pkt) Uczeń miał za zadanie skonstruował zwojnicę do wytwarzania pola magnetycznego o wartości indukcji Magnetyzm Dane ogólne do zadań: ładunek elektronu: masa elektronu: masa protonu: masa neutronu: 1,6 19 9,11 C 31 1,67 1,675 kg 7 7 kg kg Własności magnetyczne substancji 1. (1 pkt). ( pkt) 3. ( pkt) Jaka

Bardziej szczegółowo

O różnych urządzeniach elektrycznych

O różnych urządzeniach elektrycznych O różnych urządzeniach elektrycznych Ryszard J. Barczyński, 2017 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Nie tylko prądnica Choć prądnice

Bardziej szczegółowo

Podstawy fizyki sezon 2 5. Indukcja Faradaya

Podstawy fizyki sezon 2 5. Indukcja Faradaya Podstawy fizyki sezon 2 5. Indukcja Faradaya Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Prawo Gaussa dla

Bardziej szczegółowo

Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym

Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym Ćwiczenie E6 Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym E6.1. Cel ćwiczenia Na zamkniętą pętlę przewodnika z prądem, umieszczoną w jednorodnym polu magnetycznym, działa skręcający moment

Bardziej szczegółowo

POLE MAGNETYCZNE Magnetyzm. Pole magnetyczne. Indukcja magnetyczna. Siła Lorentza. Prawo Biota-Savarta. Prawo Ampère a. Prawo Gaussa dla pola

POLE MAGNETYCZNE Magnetyzm. Pole magnetyczne. Indukcja magnetyczna. Siła Lorentza. Prawo Biota-Savarta. Prawo Ampère a. Prawo Gaussa dla pola POLE MAGNETYCZNE Magnetyzm. Pole magnetyczne. Indukcja magnetyczna. Siła Lorentza. Prawo iota-savarta. Prawo Ampère a. Prawo Gaussa a pola magnetycznego. Prawo indukcji Faradaya. Reguła Lenza. Równania

Bardziej szczegółowo

SCENARIUSZ LEKCJI FIZYKI Z WYKORZYSTANIEM FILMU WSZYSTKO JEST MAGNETYCZNE.

SCENARIUSZ LEKCJI FIZYKI Z WYKORZYSTANIEM FILMU WSZYSTKO JEST MAGNETYCZNE. SCENARIUSZ LEKCJI FIZYKI Z WYKORZYSTANIEM FILMU WSZYSTKO JEST MAGNETYCZNE. SPIS TREŚCI: I. Wprowadzenie. II. Części lekcji. 1. Część wstępna. 2. Część realizacji. 3. Część podsumowująca. III. Karty pracy.

Bardziej szczegółowo

Egzamin z fizyki Informatyka Stosowana

Egzamin z fizyki Informatyka Stosowana Egzamin z fizyki Informatyka Stosowana 1) Dwie kulki odległe od siebie o d=8m wystrzelono w tym samym momencie czasu z prędkościami v 1 =4m/s i v 2 =8m/s, jak pokazano na rysunku. v 1 8 m v 2 α a) kulka

Bardziej szczegółowo

Indukcja elektromagnetyczna Faradaya

Indukcja elektromagnetyczna Faradaya Indukcja elektromagnetyczna Faradaya Ryszard J. Barczyński, 2017 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Po odkryciu Oersteda zjawiska

Bardziej szczegółowo

WIROWYCH. Ćwiczenie: ĆWICZENIE BADANIE PRĄDÓW ZAKŁ AD ELEKTROENERGETYKI. Opracował: mgr inż. Edward SKIEPKO. Warszawa 2000

WIROWYCH. Ćwiczenie: ĆWICZENIE BADANIE PRĄDÓW ZAKŁ AD ELEKTROENERGETYKI. Opracował: mgr inż. Edward SKIEPKO. Warszawa 2000 SZKOŁA GŁÓWNA SŁUŻBY POŻARNICZEJ KATEDRA TECHNIKI POŻARNICZEJ ZAKŁ AD ELEKTROENERGETYKI Ćwiczenie: ĆWICZENIE BADANIE PRĄDÓW WIROWYCH Opracował: mgr inż. Edward SKIEPKO Warszawa 000 Wersja 1.0 www.labenergetyki.prv.pl

Bardziej szczegółowo

turkus czerwony żółty Trwałość przy 100V czerwony 80 V RMS 100 V RMS 120 V RMS

turkus czerwony żółty Trwałość przy 100V czerwony 80 V RMS 100 V RMS 120 V RMS ZASADA DZIAŁANIA Elektroluminescencyjne przewody składają się z szeregu koncentrycznych warstw z których każda spełnia inne zadanie. W samym środku jest drut miedziany. Drut miedziany jest pokryty elektroluminescencyjnym

Bardziej szczegółowo

Pole magnetyczne - powtórka

Pole magnetyczne - powtórka ole magnetyczne - powtórka 1. Sztabkowy magnes trwały przełamano w połowie (patrz rysunek 1), a następnie złożono w sposób przedstawiony na rysunku 2. Zaznacz poprawne dokończenie zdania. o złożeniu magnesu

Bardziej szczegółowo

Indukcyjność. Autorzy: Zbigniew Kąkol Kamil Kutorasiński

Indukcyjność. Autorzy: Zbigniew Kąkol Kamil Kutorasiński Indukcyjność Autorzy: Zbigniew Kąkol Kamil Kutorasiński 2019 Indukcyjność Autorzy: Zbigniew Kąkol, Kamil Kutorasiński Powszechnie stosowanym urządzeniem, w którym wykorzystano zjawisko indukcji elektromagnetycznej

Bardziej szczegółowo

Indukcja elektromagnetyczna

Indukcja elektromagnetyczna ruge, elgium, May 2005 W-14 (Jaroszewicz) 19 slajdów Indukcja elektromagnetyczna Prawo indukcji Faraday a Indukcja wzajemna i własna Indukowane pole magnetyczna prawo Amper a-maxwella Dywergencja prądu

Bardziej szczegółowo

Badanie wyników nauczania z fizyki w klasie 3 gimnazjum.

Badanie wyników nauczania z fizyki w klasie 3 gimnazjum. Badanie wyników nauczania z fizyki w klasie 3 gimnazjum. Wersja A Opracowała: mrg Teresa Ostropolska-Kurcek 1. Laskę ebonitową pocieramy o sukno, w wyniku, czego laska i sukno elektryzują się różnoimienne

Bardziej szczegółowo

Magnetyzm cz.i. Oddziaływanie magnetyczne Siła Lorentza Prawo Biote a Savart a Prawo Ampera

Magnetyzm cz.i. Oddziaływanie magnetyczne Siła Lorentza Prawo Biote a Savart a Prawo Ampera Magnetyzm cz.i Oddziaływanie magnetyczne Siła Lorentza Prawo Biote a Savart a Prawo Ampera 1 Magnesy Zjawiska magnetyczne (naturalne magnesy) były obserwowane i badane już w starożytnej Grecji 2500 lat

Bardziej szczegółowo

KOOF Szczecin: www.of.szc.pl

KOOF Szczecin: www.of.szc.pl Źródło: LI OLIMPIADA FIZYCZNA (1/2). Stopień III, zadanie doświadczalne - D Nazwa zadania: Działy: Słowa kluczowe: Komitet Główny Olimpiady Fizycznej; Andrzej Wysmołek, kierownik ds. zadań dośw. plik;

Bardziej szczegółowo

Podstawy fizyki sezon 2 5. Pole magnetyczne II

Podstawy fizyki sezon 2 5. Pole magnetyczne II Podstawy fizyki sezon 2 5. Pole magnetyczne II Agnieszka Obłąkowska-Mucha opracowane na podstawie: Halliday & Resnick, J. Walker Fundamentals of Physics extended 10th Edition, John Wiley & Sons, Inc. AGH,

Bardziej szczegółowo

Powtórzenie wiadomości z klasy II. Elektromagnetyzm pole magnetyczne prądu elektrycznego

Powtórzenie wiadomości z klasy II. Elektromagnetyzm pole magnetyczne prądu elektrycznego Powtórzenie wiadomości z klasy II Elektromagnetyzm pole magnetyczne prądu elektrycznego Doświadczenie Oersteda (1820) 1.Jeśli przez przewodnik płynie prąd, to wokół tego przewodnika powstaje pole magnetyczne.

Bardziej szczegółowo

PRĄDNICA - SILNIK Model rozbierany

PRĄDNICA - SILNIK Model rozbierany PRĄDNICA - SILNIK Model rozbierany (V 5 103) Rys. 1 Model słuŝy do pokazania budowy prądnicy i silnika na prąd stały oraz wyjaśnienia zasad ich działania. Odpowiednio do swego przeznaczenia ma on taką

Bardziej szczegółowo

Klucz odpowiedzi. Konkurs Fizyczny Etap III

Klucz odpowiedzi. Konkurs Fizyczny Etap III Klucz odpowiedzi Konkurs Fizyczny Etap III Zadania za 1 p. TEST JEDNOKROTNEGO WYBORU (łącznie 20 p.) Nr zadania 1 2 3 4 5 6 7 8 9 10 Odpowiedź A B A C A C A D C D Zadania za 2 p. Nr zadania 11 12 13 14

Bardziej szczegółowo

Szczegółowy rozkład materiału z fizyki dla klasy III gimnazjum zgodny z nową podstawą programową.

Szczegółowy rozkład materiału z fizyki dla klasy III gimnazjum zgodny z nową podstawą programową. Szczegółowy rozkład materiału z fizyki dla klasy III gimnazjum zgodny z nową podstawą programową. Lekcja organizacyjna. Omówienie programu nauczania i przypomnienie wymagań przedmiotowych Tytuł rozdziału

Bardziej szczegółowo

POLI MAGHlE1'YCZNE WOKÓł. PRZEWODNIKA, PRZEZ KTÓRY PUNIE PRĄD. INDUKCJA ElEKTROMAGNETYCZNA.

POLI MAGHlE1'YCZNE WOKÓł. PRZEWODNIKA, PRZEZ KTÓRY PUNIE PRĄD. INDUKCJA ElEKTROMAGNETYCZNA. Veletrh napadi! uciteltl fyziky POLI MAGHlE1'YCZNE WOKÓł. PRZEWODNIKA, PRZEZ KTÓRY PUNIE PRĄD. INDUKCJA ElEKTROMAGNETYCZNA. Krzysztof Tabaszewski Baterie.l:qczenie baterii. Baterie sprawdzamy przy pomocy

Bardziej szczegółowo

Podstawy fizyki sezon 2 4. Pole magnetyczne 1

Podstawy fizyki sezon 2 4. Pole magnetyczne 1 Podstawy fizyki sezon 2 4. Pole magnetyczne 1 Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Pola magnetycznego

Bardziej szczegółowo

Magnetyzm cz.i. Oddziaływanie magnetyczne Siła Lorentza Prawo Biote a Savart a Prawo Ampera

Magnetyzm cz.i. Oddziaływanie magnetyczne Siła Lorentza Prawo Biote a Savart a Prawo Ampera Magnetyzm cz.i Oddziaływanie magnetyczne Siła Lorentza Prawo Biote a Savart a Prawo Ampera 1 Magnesy Zjawiska magnetyczne (naturalne magnesy) były obserwowane i badane już w starożytnej Grecji 500 lat

Bardziej szczegółowo

Silniki prądu stałego

Silniki prądu stałego Silniki prądu stałego Maszyny prądu stałego Silniki zamiana energii elektrycznej na mechaniczną Prądnice zamiana energii mechanicznej na elektryczną Często dane urządzenie może pracować zamiennie. Zenobie

Bardziej szczegółowo

Wyznaczanie przenikalności magnetycznej i krzywej histerezy

Wyznaczanie przenikalności magnetycznej i krzywej histerezy Ćwiczenie 13 Wyznaczanie przenikalności magnetycznej i krzywej histerezy 13.1. Zasada ćwiczenia W uzwojeniu, umieszczonym na żelaznym lub stalowym rdzeniu, wywołuje się przepływ prądu o stopniowo zmienianej

Bardziej szczegółowo

MATERIAŁ DIAGNOSTYCZNY Z FIZYKI I ASTRONOMII

MATERIAŁ DIAGNOSTYCZNY Z FIZYKI I ASTRONOMII Miejsce na naklejkę z kodem szkoły dysleksja MATERIAŁ DIAGNOSTYCZNY Z FIZYKI I ASTRONOMII POZIOM ROZSZERZONY Czas pracy 150 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 15

Bardziej szczegółowo

Ćwiczenie nr 43: HALOTRON

Ćwiczenie nr 43: HALOTRON Wydział PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko 1. 2. Temat: Data wykonania Data oddania Zwrot do popr. Rok Grupa Zespół Nr ćwiczenia Data oddania Data zaliczenia OCENA Ćwiczenie nr 43: HALOTRON Cel

Bardziej szczegółowo

Pole magnetyczne. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Pole magnetyczne. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Pole magnetyczne Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Pole magnetyczne Pole magnetyczne jest nierozerwalnie związane z polem elektrycznym. W zależności

Bardziej szczegółowo

PRĄDNICA PIERŚCIENIOWA OPIS

PRĄDNICA PIERŚCIENIOWA OPIS PRĄDNICA PIERŚCIENIOWA (załącznik do opracowania pt.: BAZA elektrotechniczna do konstrukcji prądnicy tarczowej opartej na magnesach neodymowych Repertorium Notariusza A nr 287/2015 z dn. 02.02.2015 r.)

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA FIZYKI W GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

PLAN REALIZACJI MATERIAŁU NAUCZANIA FIZYKI W GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH PLAN REALIZACJI MATERIAŁU NAUCZANIA FIZYKI W GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH Krzysztof Horodecki, Artur Ludwikowski, Fizyka 3. Podręcznik dla gimnazjum, Gdańskie Wydawnictwo Oświatowe

Bardziej szczegółowo

Jeżeli zwój znajdujący się w polu magnetycznym o indukcji B obracamy z prędkością v, to w jego bokach o długości l indukuje się sem o wartości:

Jeżeli zwój znajdujący się w polu magnetycznym o indukcji B obracamy z prędkością v, to w jego bokach o długości l indukuje się sem o wartości: Temat: Podział maszyn prądu stałego i ich zastosowanie. 1. Maszyny prądu stałego mogą mieć zastosowanie jako prądnice i jako silniki. Silniki prądu stałego wykazują dobre właściwości regulacyjne. Umożliwiają

Bardziej szczegółowo

WYZNACZANIE PRACY WYJŚCIA ELEKTRONÓW Z LAMPY KATODOWEJ

WYZNACZANIE PRACY WYJŚCIA ELEKTRONÓW Z LAMPY KATODOWEJ INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA FIZYKI CIAŁA STAŁEGO Ć W I C Z E N I E N R FCS - WYZNACZANIE PRACY WYJŚCIA ELEKTRONÓW Z LAMPY

Bardziej szczegółowo

MGR Prądy zmienne.

MGR Prądy zmienne. MGR 7 7. Prądy zmienne. Powstawanie prądu sinusoidalnego zmiennego. Wielkości charakteryzujące przebiegi sinusoidalne. Analiza obwodów zawierających elementy R, L, C. Prawa Kirchhoffa w obwodach prądu

Bardziej szczegółowo

Ć W I C Z E N I E N R E-15

Ć W I C Z E N I E N R E-15 NSTYTUT FZYK WYDZAŁ NŻYNER PRODUKCJ TECNOLOG MATERAŁÓW POLTECNKA CZĘSTOCOWSKA PRACOWNA ELEKTRYCZNOŚC MAGNETYZMU Ć W C Z E N E N R E-15 WYZNACZANE SKŁADOWEJ POZOMEJ NATĘŻENA POLA MAGNETYCZNEGO ZEM METODĄ

Bardziej szczegółowo

Temat: Ruch cząstek naładowanych w polu magnetycznym. 1. Cele edukacyjne. a) kształcenia. Scenariusz lekcji

Temat: Ruch cząstek naładowanych w polu magnetycznym. 1. Cele edukacyjne. a) kształcenia. Scenariusz lekcji Scenariusz lekcji Klasa: II LP Czas lekcji: 1 godzina lekcyjna Temat: Ruch cząstek naładowanych w polu 1. Cele edukacyjne a) kształcenia Wiadomości: zna pojęcie siły Lorentza wskazuje wielkości, od których

Bardziej szczegółowo

MOMENT MAGNETYCZNY W POLU MAGNETYCZNYM

MOMENT MAGNETYCZNY W POLU MAGNETYCZNYM Ćwiczenie nr 16 MOMENT MAGNETYCZNY W POLU MAGNETYCZNYM Aparatura Zasilacze regulowane, cewki Helmholtza, multimetry cyfrowe, dynamometr torsyjny oraz pętle próbne z przewodnika. X Y 1 2 Rys. 1 Układ pomiarowy

Bardziej szczegółowo

PL B1. POLITECHNIKA LUBELSKA, Lublin, PL BUP 24/18. PRZEMYSŁAW FILIPEK, Lublin, PL WUP 06/19. rzecz. pat.

PL B1. POLITECHNIKA LUBELSKA, Lublin, PL BUP 24/18. PRZEMYSŁAW FILIPEK, Lublin, PL WUP 06/19. rzecz. pat. RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 232308 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 426279 (22) Data zgłoszenia: 09.07.2018 (51) Int.Cl. F04C 18/00 (2006.01)

Bardziej szczegółowo

Zakres pól magnetycznych: Źródło pola B B maks. [ T ] Pracujący mózg 10-13 Ziemia 4 10-5 Elektromagnes 2 Cewka nadprzewodząca. Cewka impulsowa 70

Zakres pól magnetycznych: Źródło pola B B maks. [ T ] Pracujący mózg 10-13 Ziemia 4 10-5 Elektromagnes 2 Cewka nadprzewodząca. Cewka impulsowa 70 Wykład 7. Pole magnetyczne Siła magnetyczna W pobliżu przewodników z prądem elektrycznym i magnesów działają siły magnetyczne -magnes trwały, elektromagnes, silnik elektryczny, prądnica, monitor komputerowy...

Bardziej szczegółowo

Fizyka 2 Wróbel Wojciech. w poprzednim odcinku

Fizyka 2 Wróbel Wojciech. w poprzednim odcinku w poprzednim odcinku 1 Model przewodnictwa metali Elektrony przewodnictwa dla metalu tworzą tzw. gaz elektronowy Elektrony poruszają się chaotycznie (ruchy termiczne), ulegają zderzeniom z atomami sieci

Bardziej szczegółowo