Kraking katalityczny węglowodorów

Wielkość: px
Rozpocząć pokaz od strony:

Download "Kraking katalityczny węglowodorów"

Transkrypt

1 Zarządzanie Środowiskiem Pracownia Podstawy technologii chemicznej i zarządzanie chemikaliami Wprowadzenie i instrukcja do ćwiczenia Kraking katalityczny węglowodorów dr Hanna Wilczura-Wachnik Uniwersytet Warszawski Wydział Chemii Zakład Dydaktyczny Technologii Chemicznej 1

2 Wprowadzenie podstawy teoretyczne Niemal wszystkie reakcje zachodzące w organizmach żywych a także większość reakcji w przemyśle przebiega w obecności katalizatorów. Ponadto, w dzisiejszych czasach kataliza należy do najważniejszych technologii stosowanych w ochronie środowiska szczególnie w obszarze prewencji emisji toksycznych substancji. Powszechnie znanym przykładem jest stosowanie katalitycznych dopalaczy w samochodach. Termin kataliza wprowadził Berzelius w 1836r. Pracując nad różnymi reakcjami stwierdził, że substancja nazwana katalizatorem wpływa na szybkość reakcji. Wiele lat później Ostwald zaproponował następującą definicję katalizatora: katalizator to substancja przyspieszająca reakcję chemiczną nie zmieniając jej stanu równowagi a po reakcji pozostaje w niezmienionej postaci. Definicję tę uzupełniono w sposób następujący: katalizator to substancja, która zwiększa szybkość, z jaką reakcja chemiczna osiąga stan równowagi, sama się jednak nie zużywa. Symbol katalizatora nie występuje w równaniu stechiometrycznym. Obecnie obowiązuje następująca definicja katalizatora: katalizator zmienia szybkość dochodzenia układu do stanu równowagi, ale go nie zmienia. Katalizator nie może wywołać reakcji termodynamicznie niemożliwej w danych warunkach. Katalizator zmienia jedynie szybkość reakcji przebiegającej samorzutnie i bez udziału katalizatora. O przydatności katalizatora w procesie przemysłowym decydują następujące właściwości: aktywność, selektywność i stabilność. Aktywność katalizatora określa się jako różnicę między szybkością reakcji zachodzącej w obecności katalizatora i bez udziału katalizatora. Pojęcie aktywność katalizatora ma sens tylko w odniesieniu do danego układu katalizator-reagenty (danego typu reakcji) np.: aktywność kat V 2 O 5 w reakcji utleniania węglowodorów aromatycznych aktywność kat V 2 O 5 w reakcji utleniania SO 2 do SO 3. Selektywność katalizatora to stosunek ilości wybranego produktu reakcji do całkowitej ilości produktów otrzymywanych w danej reakcji. Definicja katalizatora zakłada, że nie ulega on zmianom podczas reakcji chemicznej. W rzeczywistości jego aktywność ulega zmniejszeniu w rezultacie zmian odwracalnych lub nieodwracalnych zachodzących w funkcji czasu na jego powierzchni. Obniżenie aktywności katalizatora może być odwracalne lub 2

3 nieodwracalne. Przywrócenie aktywności katalizatora następuje w wyniku jego regeneracji i aktywacji. Jeśli dezaktywacja katalizatora jest nieodwracalna konieczna jest jego wymiana. Stabilność katalizatora jest istotną cechą z punktu widzenia przydatności w procesach przemysłowych, ponieważ trwałość chemiczna, mechaniczna i termiczna determinuje czas jego życia. Pośród wielu czynników wpływających na stabilność katalizatora najistotniejszymi są: - zmniejszenie powierzchni aktywnej w wyniku rekrystalizacji lub spiekania, - zatrucie, - uszkodzenie mechaniczne. Procesy technologiczne, w których stosowane są reakcje chemiczne nazywane są procesami katalitycznymi. W zależności od mechanizmu reakcji procesy katalityczne dzielimy na: - reakcje utleniania i redukcji (reakcje redox): uwodornienia, odwodornienia, utleniania. Katalizatorami są: metale, półprzewodnikowe tlenki metali i siarczki. - reakcje kwas-zasada: hydroliza, izomeryzacja, kraking, alkilowanie. Typowymi katalizatorami są kwasy i zasady Brensteda i Lewisa, tlenki glinu, magnezu i glinokrzemiany. - reakcje o mechanizmie koordynacyjnym: polimeryzacja, oligomeryzacja, karbonylowanie, uwodornienie, hydroformylowanie. Typowymi katalizatorami są: kompleksy metali (zwykle metali przejściowych bloku d), układy bimetaliczne. Klasyfikacja katalizatorów Różnorodność cech katalizatorów sprawia, że nie powstało generalne ogólnie obowiązujące kryterium ich klasyfikacji. Zwykle porównuje się takie właściwości jak: stan fazowy reagentów i katalizatora, budowa katalizatora, skład, typy reakcji katalizowanych. Najczęściej stosowanym kryterium podziału katalizatorów jest stan fazowy układu reagenty-katalizator nazywany układem katalitycznym. Według tego kryterium rozróżnia się katalizatory heterogeniczne, homogeniczne i enzymatyczne, stanowiące odrębną grupę katalizatorów o specyficznych właściwościach. 3

4 Katalizatory heterogeniczne należą do najpowszechniej stosowanych w procesach przemysłowych. Heterogeniczne układy katalityczne znajdują zastosowanie w procesach technologii organicznej oraz nieorganicznej. Zaletami katalizatorów heterogenicznch są: - możliwość oddzielenia od reagentów i produktów a w konsekwencji łatwość odzysku i trwałość - możliwość stosowania w nieruchomych i fluidalnych złożach - wysoka aktywność w szerokim zakresie reakcji (np. uwodornienia, izomeryzacji olefin, redukcji aromatów i estrów) - dobra stabilność termiczna w szerokim zakresie warunków reakcji - relatywnie łatwe manipulowanie w operacjach o dużej skali Do wad katalizatorów heterogenicznych należą: - niejednorodność tzn. więcej niż jedno centrum aktywne - niezdefiniowana powierzchnia - trudności w projektowaniu i udoskonalaniu są wynikiem niezdefiniowanych centrów aktywnych - mniejsza selektywność (jako rezultat heterogenicznej natury centrów reakcyjnych, także często przez ostre warunki reakcji). Zastosowanie katalizy heterogenicznej w procesach technologii organicznej ma istotne znaczenie. Poniżej podano przykłady technologii działających w skali produkcyjnej. Przykłady katalizy heterogenicznej w technologii organicznej: - kraking katalityczny zeolity / Al 2 O 3 SiO 2 - hydrokraking Pd - zeolit (lub Ni, Mo, Pt) - reforming katalityczny Pt Al 2 O 3, Pt Re Al 2 O 3 - izomeryzacja np. alkanów Pd zeolit, Al 2 O 3 - uwodnienie np. alkenów kationity wodorowe - polimeryzacja np. alkenów H 3 PO 4 / glinokrzemiany Jak wspomniano katalizator i reagenty tworzą układ katalityczny. W zależności od stanu skupienia (rodzaju fazy) katalizatora i reagentów układy katalityczne są klasyfikowane w sposób następujący: 4

5 Rodzaj fazy Kataliza katalizator substraty Przykłady reakcji homogeniczna ciecz gaz ciało stałe ciecz gaz ciało stałe hydroliza estrów obecności kwasów nieorganicznych, utlenianie SO 2 do SO 3 w obecności NO 2, rozkład KClO 3 w obecności MnO 2 heterogeniczna ciecz ciecz ciało stałe ciało stałe ciało stałe gaz cało stałe + gaz ciecz gaz ciecz+gaz CH 2 =CH 2 + O 2 > CH 3 CHO w obecności roztworu PdCl 2 + CuCl 2, uwodornienie węgla w obecności kompleksów metali przejściowych, odwodnienie wyższych alkoholi na Al 2 O 3 SiO 2, utlenianie etylenu na Ag 2 O, uwodornienie nienasyconych kwasów tłuszczowych na Ni Katalizatory występują zarówno w stanie stałym, ciekłym jak i gazowym. Znaczenie przemysłowe mają katalizatory stałe i ograniczonym zakresie w ciekłym stanie skupienia. Procesami katalitycznymi są technologie organiczne: otrzymywania polimerów, barwników, farmaceutyków, procesy chemicznego przerobu frakcji destylacji rurowo-wieżowej ropy naftowej (np.kraking katalityczny) a także nieorganiczne: synteza kwasu siarkowego, synteza amoniaku, konwersja amoniaku do kwasu azotowego. W procesie krakingu katalitycznego frakcji ropy naftowej najczęściej stosowane są układy katalityczne zawierające zeolity (20%) i glinokrzemiany (80%) lub Al 2 O 3 nazywane kontaktami. Typowy skład zeolitu (syntetycznego glinokrzemianu) jest następujący: M m/2 O Al 2 O 3 nsio 2 kh 2 O gdzie: M kation wymienny o wartościowości m n liczba cząsteczek SiO 2 k liczba cząsteczek H 2 O Na skalę przemysłową proces krakingu katalitycznego frakcji ropy naftowej prowadzi się w celu pozyskania węglowodorów grupy C 3, C 4, benzyny, olej napędowy i opałowy. We współcześnie działających instalacjach krakingu katalitycznego proces 5

6 prowadzonych jest w fazie fluidalnej w sposób ciągły. Reaktor i regenerator katalizatora działają w sposób zintegrowany (instalacja Universal Oil Products). Mechanizm krakingu katalitycznego jest jonowy. Frakcje ropy naftowej zwykle zawierają śladowe ilości alkenów (węglowodorów nienasyconych zawierających podwójne wiązanie między atomami węgla). W początkowym etapie krakingu cząsteczki alkenu reagują z kwasowymi centrami aktywnymi Bronsteda lub Lewisa tworząc karbokationy (produkty pośrednie). Powstające karbokationy dalej ulegają kolejnym reakcjom: izomeryzacji, przeniesienia łańcuch lub/i β-rozpadowi. Szczegółowe omówienie reakcji można znaleźć w Podręczniku do ćwiczeń z technologii chemicznej pod redakcją T.Kasprzyckiej-Guttman. Skład produktów krakingu katalitycznego zależy od reakcji, którym ulegają powstające karbokationy. Jeśli dominują reakcje β-rozpadu wówczas głównymi produktami są propylen i butylen. W przypadku przewagi reakcji izomeryzacji powstają głównie węglowodory rozgałęzione podwyższające liczbę oktanową otrzymywanej benzyny. Niekorzystnymi reakcjami z punktu widzenia otrzymywanych produktów jak również aktywności katalizatora są reakcje polimeryzacji, koksowania, aromatyzacji. W ich wyniku centra aktywne katalizatora ulegają zablokowaniu i konieczna jest regeneracja katalizatora. Literatura 1. Praca zbiorowa pod redakcją T.Kasprzyckiej Guttman, Podręcznik do ćwiczeń z technologii chemicznej, Wydawnictwa Uniwersytetu Warszawskiego, B. Grzybowska-Świergosz, Elementy katalizy heterogenicznej, PWN S. Matar, M.J.Mirbach, H.A.tayim, Catalysis In petrochemical processes, Kluwer Academic Publishers J.Hagen, Industrial catalysis: a practical approach, Wiley,

7 Instrukcja ćwiczenia Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z procesem krakingu katalitycznego węglowodoru alifatycznego. Proces prowadzony jest w skali laboratoryjnej w układzie heterofazowym z nieruchomym złożem stosując, jako katalizator zeolit 13X lub Al 2 O 3. W trakcie ćwiczenia bada się zmianę aktywności katalizatora w funkcji czasu, stopień koksowania surowca. Ponadto, wyznacza się wpływ temperatury i szybkości dozowania surowca na wydajność krakingu, ilość i jakość produktów. Gazowe i ciekłe produkty krakingu analizuje się metodą chromatografii gazowej stosując aparat Hewlett-Packard GC 6890, stopień koksowania oznacza się metodą Wardera. Opis ćwiczenia i instalacji Reaktor kwarcowy (1) umieszczony jest w piecu rurowym z nawiniętą spiralą grzejną (2). Temperaturę procesów (krakingu i wypalania koksu) ustala się regulatorami (11 i 11a). Termoparą (3) kontroluje się temperaturę w złożu katalizatora. Surowiec krakingu dozowany jest za pomocą pompy infuzyjnej zaopatrzonej w szklaną strzykawkę (4). Objętościową szybkość przepływu surowca ustawia się pokrętłami oznaczonymi symbolem (% S) znajdującymi się na obudowie pompy infuzyjnej (wykres charakterystyki pompy dołączony jest do instrukcji ćwiczenia). Produkty reakcji opuszczające reaktor (1) schładzane są w chłodnicy (8) i dodatkowo w wymrażalniku (15). Produkty ciekłe krakingu zbierane są w odbieralniku (9). Produkty gazowe kierowane są przez kran B do zbiornika (6) a dalej do gazomierza (7). Po zakończeniu reakcji odłącza się zbiornik produktów gazowych i gazomierz od instalacji a układ katalityczny przepłukuje się gazem obojętnym ( N 2 lub Ar). W tym celu łączy się butlę z gazem (14) z reaktorem (1) poprzez odpowiednio ustawione krany F i A. Na tym etapie eksperymentu wymywane są ze złoża katalizatora zaadsorbowane produkty krakingu oraz nieprzereagowany surowiec. Po przepłukaniu katalizatora gazem obojętnym odłącza się zbiornik produktów ciekłych 7

8 (9), waży się go i oblicza strumień produktów ciekłych. Otrzymane produkty ciekłe analizuje się metodą glc. Osadzony na katalizatorze koks wypala się w strumieniu powietrza tłoczonego do reaktora pompką (5) przez kran A. Zachodzi wówczas reakcja: 3C + 2O 2 ===> 2CO + CO 2. Powstająca mieszanina tlenku i ditlenku węgla kierowana jest kranem B do dopalacza (10) wypełnionego wiórkami miedzi. W dopalaczu zachodzi reakcja utleniania tlenku węgla do ditlenku. CO 2 opuszczający dopalacz przewodem (13) doprowadzany jest do absorbera wypełnionego roztworem NaOH. W wyniku absorpcji CO 2 w roztworze NaOH powstaje Na 2 CO 3. Schemat instalacji przedstawia rysunek 1. Rysunek 1. Schemat instalacji do krakingu katalitycznego w skali laboratoryjnej na nieruchomym złożu katalizatora. A,B,C,D.E,F krany; 1 przepływowy reaktor kwarcowy z warstwą katalizatora; 2 piec grzejny; 3 termopara; 4 pompa infuzyjna; 5 pompka powietrzna; 6 zbiornik produktów gazowych; 7 gazomierz; 8 chłodnica wodna; 9 zbiornik produktów ciekłych; 10 dopalacz CO CO 2 (wypełniony wiórkami Cu); 11,11a wskaźniki i regulatory temperatury w reaktorze i dopalaczu CO do CO 2 ; 12 łaźnia chłodząca; 13 przewód odprowadzający produkty wypalania węgla do absorbera; 8

9 14 butla z N 2 lub Ar; 15 wymrażalnik; 16 płuczka olejowa; 17 wylot gazów do kanału wentylacyjnego; 18 pompa perystaltyczna; 19 absorber. Zawartość Na 2 CO 3 w roztworze NaOH oznacza się metodą Wardera * miareczkując badany roztwór kolejno wobec fenoloftaleiny i oranżu metylowego roztworem HCl. Aby ograniczyć ubytek CO 2 miareczkowania przeprowadza się schładzając roztwór miareczkowany w mieszaninie lodu z dodatkiem NaCl a końcówka biurety powinna znajdować się możliwie blisko powierzchni roztworu. Pierwsze miareczkowanie wykonuje się wobec fenoloftaleiny 0,1M roztworem kwasu solnego do odbarwienia roztworu (odmiareczkowuje się przy tym cała ilość NaOH i połowa węglanu). Węglan sodu przechodzi w kwaśny węglan zgodnie z równaniem reakcji: Na 2 CO 3 + HCl ===> NaHCO 3 + HCl ph = 8.3 Następnie do badanego roztworu dodaje się oranżu metylowego i dalej miareczkuje roztworem 0,1M HCL do pierwszej zmiany barwy wskaźnika (z żółtej na pomarańczową). Zachodzi wówczas reakcja: NaHCO 3 + HCl ===> NaCl + H 2 O + CO 2 Uwaga! To miareczkowanie należy prowadzić bardzo powoli dodając titrant po kropli a roztwór miareczkowany chłodzić i mieszać. Jeśli na pierwsze miareczkowanie wobec fenoloftaleiny schodzi a [ml] HCl, na drugie wobec oranż metylowego b [ml], to zawartość Na 2 CO 3 (w gramach) można policzyć według wzoru: X = b C M C M stężenie molowe HCl [ mmol/ml] masa molowa Na 2 CO 3 [g/mmol] a następnie obliczyć zawartość węgla w oznaczanym węglanie. * J.Minczewski, Z.Marczenko Chemia analityczna. Analiza ilosciowa. PWN 1973, Tom 2 str 224 9

10 Kolejność czynności podczas wykonywania ćwicznia I. Przygotowanie układu do reakcji. Uwaga: wszystkie czynności związane z obsługą butli ze sprężonymi gazami wykonuje się wyłącznie w obecności asystenta prowadzącego ćwiczenie. 1. Płukanie gazem obojętnym układu reakcyjnego: reaktor, przewody transportu masy, odbieralnik produktów ciekłych dalej przez kran B do gazomierza (rys.1). Połączyć butlę z gazem reaktorem (1) przez krany F i A a dalej przez krany C i D z gazomierzem. Po sprawdzeniu ustawienia kranów odkręcić zawór butli i ustawić szybkość przepływu gazu. Uwaga: W czasie przepłukiwania instalacji argonem należy zapoznać się z odczytem objętości gazu przepływającego przez gazomierz. 2. Włączyć grzanie pieca korzystając z regulatora temperatury (11) - temperaturę podaje asystent. 3. Zważyć odbieralnik (9). 4. Połączyć odbieralnik z chłodnicą (8). 5. Włączyć przepływ wody w chłodnicy. 6. Wstawić odbieralnik do łaźni chłodzącej (12) wypełnionej stałym CO Strzykawkę napełnioną substratem umieścić w pompie. 8. Nastawić pompę dozującą surowiec na odpowiedni przepływ. 9. Odciąć strumień gazu obojętnego odpowiednio ustawiając kran F i zamykając zawór butli. 10. Ustawić krany B, C i D tak aby połączyć reaktor (1) z gazomierzem (7). 11. Odczytać początkowe wskazanie stanu licznika gazomierza (7). 12. W nasadce reaktora (1) umieścić igłę strzykawki dozującej surowiec. II. Przeprowadzenie krakingu. 1. Włączyć pompę dozującą substrat i zanotować czas rozpoczęcia reakcji. Czas prowadzenia reakcji ustala asystent. 2. Po zakończeniu dozowania substratu wyłączyć pompę (4) i usunąć łaźnię chłodzącą (12). 3. Zanotować czas trwania reakcji, odczytać i zapisać stan licznika gazomierza (7). 4. Zamknąć krany C i D i odłączyć zbiornik produktów gazowych od instalacji. 5. Podłączyć butlę z Ar do reaktora (1) ustawiając odpowiednio krany A i F aby wypłukać ze złoża zaadsorbowane produkty reakcji i/lub resztki nieprzereagowanego surowca. Płukanie złoża prowadzić 10 min. 6. Zdjąć odbieralnik (9) i założyć pustą kolbkę. 7. Zważyć odbieralnik z produktami reakcji. 8. Metodą chromatografii gazowej przeprowadzić analizę otrzymanych produktów ciekłych i gazowych. III. Wypalanie koksu. 1. Odciąć dopływ gazu obojętnego do reaktora (1) kranem F. 2. Połączyć wylot dopalacza z absorberem CO Włączyć grzanie dopalacza i ustawić jego temperaturę na 220 o C korzystając z regulatora temperatury (11a). 10

11 4. Absorber napełnić 300 ml 0.1M roztworu NaOH. 5. Ustawić krany A, B i E w położeniach zapewniających przepływ strumienia gazów przez reaktor (1) do dopalacza (10) i dalej przez pompę (18) do absorbera (19). 6. Podnieść temperaturę w reaktorze (1) do 600 o C. 7. Włączyć pompkę powietrzną (5) i pompę perystaltyczną (18). 8. Wypalanie koksu prowadzić 30minut. 9. Po zakończeniu wypalania koksu wyłączyć grzanie pieca i dopalacza oraz pompkę powietrzną. 10. Zamknąć dopływ wody chłodzącej do chłodnicy (8), zakręcić butlę z gazem. 11. Roztwór z absorbera przenieść ilościowo do kolby miarowej o pojemności 500mL dopełnić do kreski woda destylowaną i metodą Wardera oznaczyć ilość węglanu sodu. Dane uzyskane z przeprowadzonego krakingu: Ilość katalizatora: 4.4 g zeolitu 13X lub Al 2 O 3 Surowiec Temperatura reakcji [ o C]... Czas krakingu.[h]... Objętościowa szybkość dozowania surowca [ml/h] Masowa szybkość dozowania surowca [g/h] Objętość produktów gazowych [dcm 3 ]... Skład produktów gazowych analiza glc:. Masa produktów ciekłych [g]... Skład produktów ciekłych analiza glc:. IV. Analiza gazowych i ciekłych produktów krakingu katalitycznego Gazowe i ciekłe produkty krakingu analizuje się metodą chromatografii gazowej na aparacie Hewlett-Packard GC Stosuje się kolumnę kapilarną (30.0 m x 320 um x 0.25 um) typu HP 19091J-413 wypełnioną 5% fenylo-metylo siloksanem. Warunki pracy chromatografu: - Temperatura pieca.. o C - Ciśnienie na wejściu komory nastrzykowej kpa - Temperatura wejścia do kolumny. o C - Przepływ gazu nośnego (Ar).. ml/min - Parametry pracy detektora płomieniowo-jonizacyjnego: - Temperatura detektora.. o C - Przepływ wodoru.ml/min - Przepływ powietrza. ml/min - Przepływ gazu nośnego ml/min 11

12 V. Oznaczenie ilości koksu osadzonego na katalizatorze Należy wykonać następujące czynności: Absorber (19) odłączyć od układu. Ilościowo przelać roztwór do kolby miarowej o pojemności 500mL i dopełnić do kreski wodą destylowaną. Wykonać miareczkowanie (trzy oznaczenia) według podanego niżej przepisu: Z kolby miarowej pobrać do kolby Erlenmeyera (kolba stożkowa) 10 ml roztworu i ochłodzić w mieszaninie lodu i NaCl. Dodać do roztworu 1-3 krople 0,5% alkoholowego roztworu fenoloftaleiny i rozpocząć miareczkowanie 0.1M HCl. Uwaga! Miareczkowanie należy prowadzić bardzo powoli, mieszając roztwór i przez cały czas chłodząc go w lodzie z NaCl. Koniec biurety powinien znajdować się jak najbliżej powierzchni roztworu. Po odbarwieniu roztworu odczytać zużytą objętość kwasu - a [ml]. Następnie dodać do roztworu 1-2 krople oranżu metylowego (żółte zabarwienie roztworu) i miareczkować roztworem HCl do zmiany barwy na kolor pomarańczowy. Odczytać objętość zużytego kwasu - b [ml]. Uwaga! Ta część miareczkowania powinna być przeprowadzona bardzo powoli kwas należy dodawać po kropli chłodząc miareczkowany roztwór i mieszając. Obliczyć zawartość Na 2 CO 3 w NaOH z równania: X = b M a następnie obliczyć zawartość węgla w oznaczonym węglanie. Miareczkowania należy wykonać dla trzech kolejnych próbek roztworu. Dla każdej próbki obliczyć zawartość węgla w oznaczonym węglanie a końcowy wynik podać jako średnią z otrzymanych wartości liczbowych. Opracowanie wyników Dla stosowanego katalizatora: 1. Obliczyć ilość koksu osadzonego na katalizatorze. 2. Wykonać bilans materiałowy przeprowadzonych reakcji krakingu i przedstawić je na wykresach Sankey a. 3. Obliczyć wydajność katalizatora w gramach produktów ciekłych na 1gram kat. 4. Opisać otrzymane chromatogramy (odczytać i podać w tabeli: czasy retencji i powierzchnie poszczególnych pików). 5. Przedyskutować otrzymane wyniki i sformułować wnioski w tym czy cel ćwiczenia został osiągnięty. 12

Kraking katalityczny węglowodorów

Kraking katalityczny węglowodorów UNIWERSYTET WARSZAWSKI WYDZIAŁ CHEMII ZAKŁAD CHEMII ORGANICZNEJ I TECHNOLOGII CHEMICZNEJ Kraking katalityczny węglowodorów Instrukcja do ćwiczenia nr 6 Fot. Joanna Kaczyńska-Walczak Opracowanie dr inż.

Bardziej szczegółowo

Katalityczne odwadnianie alkoholi

Katalityczne odwadnianie alkoholi Zarządzanie Środowiskiem Pracownia Podstawy technologii chemicznej i zarządzanie chemikaliami Wprowadzenie i instrukcja do ćwiczenia Katalityczne odwadnianie alkoholi dr Hanna Wilczura-Wachnik Uniwersytet

Bardziej szczegółowo

Pracownia Polimery i Biomateriały

Pracownia Polimery i Biomateriały Pracownia Polimery i Biomateriały INSTRUKCJA DO ĆWICZENIA Spalanie i termiczna degradacja polimerów Część II Opracowała dr Hanna Wilczura-Wachnik Uniwersytet Warszawski Wydział Chemii Zakład Dydaktyczny

Bardziej szczegółowo

Ćwiczenie 12 KATALITYCZNE ODWODORNIENIE HEPTANU

Ćwiczenie 12 KATALITYCZNE ODWODORNIENIE HEPTANU Ćwiczenie 12 KATALITYCZNE ODWODORNIENIE HEPTANU Cel ćwiczenia Celem ćwiczenia jest zapoznanie z procesem heterogenicznej katalizy oraz z metodami określania parametrów procesu takich jak: stopień przemiany,

Bardziej szczegółowo

Ćwiczenie 26 KATALITYCZNE ODWODNIENIE HEPTANOLU

Ćwiczenie 26 KATALITYCZNE ODWODNIENIE HEPTANOLU Ćwiczenie 26 KATALITYCZNE ODWODNIENIE HEPTANOLU Cel ćwiczenia Celem ćwiczenia jest zapoznanie z procesem heterogenicznej katalizy oraz z metodami określania parametrów kinetycznych procesu takich jak:

Bardziej szczegółowo

KATALITYCZNE ODWODORNIENIE HEPTANU

KATALITYCZNE ODWODORNIENIE HEPTANU Zakład Technologii Chemicznej Pracownia z Technologii Chemicznej Ćwiczenie 12 KATALITYCZNE ODWODORNIENIE HEPTANU WARSZAWA 2012 Prowadzi dr inż. Jadwiga Skupińska Ćwiczenie 12 KATALITYCZNE ODWODORNIENIE

Bardziej szczegółowo

ĆWICZENIE 2 WSPÓŁOZNACZANIE WODOROTLENKU I WĘGLANÓW METODĄ WARDERA. DZIAŁ: Alkacymetria

ĆWICZENIE 2 WSPÓŁOZNACZANIE WODOROTLENKU I WĘGLANÓW METODĄ WARDERA. DZIAŁ: Alkacymetria ĆWICZENIE 2 WSPÓŁOZNACZANIE WODOROTLENKU I WĘGLANÓW METODĄ WARDERA DZIAŁ: Alkacymetria ZAGADNIENIA Prawo zachowania masy i prawo działania mas. Stała równowagi reakcji. Stała dysocjacji, stopień dysocjacji

Bardziej szczegółowo

Katalityczne spalanie jako metoda oczyszczania gazów przemysłowych Instrukcja wykonania ćwiczenia nr 18

Katalityczne spalanie jako metoda oczyszczania gazów przemysłowych Instrukcja wykonania ćwiczenia nr 18 Katalityczne spalanie jako metoda oczyszczania gazów przemysłowych Instrukcja wykonania ćwiczenia nr 18 Celem ćwiczenia jest przedstawienie reakcji katalitycznego utleniania węglowodorów jako wysoce wydajnej

Bardziej szczegółowo

Adsorpcyjne oczyszczanie gazów z zanieczyszczeń związkami organicznymi

Adsorpcyjne oczyszczanie gazów z zanieczyszczeń związkami organicznymi Pracownia: Utylizacja odpadów i ścieków dla MSOŚ Instrukcja ćwiczenia nr 17 Adsorpcyjne oczyszczanie gazów z zanieczyszczeń związkami organicznymi Uniwersytet Warszawski Wydział Chemii Zakład Dydaktyczny

Bardziej szczegółowo

Katalityczne spalanie jako metoda oczyszczania gazów przemysłowych Instrukcja wykonania ćwiczenia nr 18

Katalityczne spalanie jako metoda oczyszczania gazów przemysłowych Instrukcja wykonania ćwiczenia nr 18 Katalityczne spalanie jako metoda oczyszczania gazów przemysłowych Instrukcja wykonania ćwiczenia nr 18 Celem ćwiczenia jest przedstawienie reakcji katalitycznego utleniania węglowodorów jako wysoce wydajnej

Bardziej szczegółowo

Pracownia Polimery i Biomateriały. Spalanie i termiczna degradacja polimerów

Pracownia Polimery i Biomateriały. Spalanie i termiczna degradacja polimerów Pracownia Polimery i Biomateriały INSTRUKCJA DO ĆWICZENIA Spalanie i termiczna degradacja polimerów Opracowała dr Hanna Wilczura-Wachnik Uniwersytet Warszawski Wydział Chemii Zakład Dydaktyczny Technologii

Bardziej szczegółowo

Ćwiczenie IX KATALITYCZNY ROZKŁAD WODY UTLENIONEJ

Ćwiczenie IX KATALITYCZNY ROZKŁAD WODY UTLENIONEJ Wprowadzenie Ćwiczenie IX KATALITYCZNY ROZKŁAD WODY UTLENIONEJ opracowanie: Barbara Stypuła Celem ćwiczenia jest poznanie roli katalizatora w procesach chemicznych oraz prostego sposobu wyznaczenia wpływu

Bardziej szczegółowo

Ciągły proces otrzymywania detergentów na bazie kwasów alkiloarylosulfonowych

Ciągły proces otrzymywania detergentów na bazie kwasów alkiloarylosulfonowych Ciągły proces otrzymywania detergentów na bazie kwasów alkiloarylosulfonowych Instrukcja do ćwiczenia nr 9 Asystent prowadzący: Dr Tomasz S. Pawłowski 1 Cel ćwiczenia Celem ćwiczenia jest zapoznanie się

Bardziej szczegółowo

WOJEWÓDZKI KONKURS PRZEDMIOTOWY Z CHEMII... DLA UCZNIÓW GIMNAZJÓW - rok szkolny 2011/2012 eliminacje wojewódzkie

WOJEWÓDZKI KONKURS PRZEDMIOTOWY Z CHEMII... DLA UCZNIÓW GIMNAZJÓW - rok szkolny 2011/2012 eliminacje wojewódzkie ŁÓDZKIE CENTRUM DOSKONALENIA NAUCZYCIELI I KSZTAŁCENIA PRAKTYCZNEGO kod Uzyskane punkty..... WOJEWÓDZKI KONKURS PRZEDMIOTOWY Z CHEMII... DLA UCZNIÓW GIMNAZJÓW - rok szkolny 2011/2012 eliminacje wojewódzkie

Bardziej szczegółowo

KOLEJNOŚĆ CZYNNOŚCI DO ĆWICZENIA NR 2

KOLEJNOŚĆ CZYNNOŚCI DO ĆWICZENIA NR 2 KOLEJNOŚĆ CZYNNOŚCI DO ĆWICZENIA NR 2 student A:.. student B: student C:. lp. Czynności do wykonania student wykonujący 1 Zapoznanie z kartami charakterystyk wszyscy 2 Odmierzenie octanu winylu, etanolu.

Bardziej szczegółowo

Kinetyka chemiczna jest działem fizykochemii zajmującym się szybkością i mechanizmem reakcji chemicznych w różnych warunkach. a RT.

Kinetyka chemiczna jest działem fizykochemii zajmującym się szybkością i mechanizmem reakcji chemicznych w różnych warunkach. a RT. Ćwiczenie 12, 13. Kinetyka chemiczna. Kinetyka chemiczna jest działem fizykochemii zajmującym się szybkością i mechanizmem reakcji chemicznych w różnych warunkach. Szybkość reakcji chemicznej jest związana

Bardziej szczegółowo

ABSORPCYJNE OCZYSZCZANIE GAZÓW ODLOTOWYCH Z TLENKÓW AZOTU Instrukcja wykonania ćwiczenia 23

ABSORPCYJNE OCZYSZCZANIE GAZÓW ODLOTOWYCH Z TLENKÓW AZOTU Instrukcja wykonania ćwiczenia 23 ABSORPCYJNE OCZYSZCZANIE GAZÓW ODLOTOWYCH Z TLENKÓW AZOTU Instrukcja wykonania ćwiczenia 23 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą absorpcyjnego usuwania tlenków azotu z gazów odlotowych.

Bardziej szczegółowo

A B S O R P C Y J N E O D S I A R C Z A N I E O D L O T O W Y C H G A Z Ó W P R Z E M Y S Ł O W Y C H. Instrukcja wykonania ćwiczenia nr 19

A B S O R P C Y J N E O D S I A R C Z A N I E O D L O T O W Y C H G A Z Ó W P R Z E M Y S Ł O W Y C H. Instrukcja wykonania ćwiczenia nr 19 A B S O R P C Y J N E O D S I A R C Z A N I E O D L O T O W Y C H G A Z Ó W P R Z E M Y S Ł O W Y C H Instrukcja wykonania ćwiczenia nr 19 Celem ćwiczenia jest zapoznanie z absorpcyjną metodą usuwania

Bardziej szczegółowo

Ciągły proces otrzymywania detergentów na bazie kwasów alkiloarylosulfonowych

Ciągły proces otrzymywania detergentów na bazie kwasów alkiloarylosulfonowych Zakład Chemii Organicznej i Technologii Chemicznej Ciągły proces otrzymywania detergentów na bazie kwasów alkiloarylosulfonowych Instrukcja do ćwiczenia nr 9 1 Cel ćwiczenia Celem ćwiczenia jest zapoznanie

Bardziej szczegółowo

HYDROLIZA SOLI. ROZTWORY BUFOROWE

HYDROLIZA SOLI. ROZTWORY BUFOROWE Ćwiczenie 9 semestr 2 HYDROLIZA SOLI. ROZTWORY BUFOROWE Obowiązujące zagadnienia: Hydroliza soli-anionowa, kationowa, teoria jonowa Arrheniusa, moc kwasów i zasad, równania hydrolizy soli, hydroliza wieloetapowa,

Bardziej szczegółowo

KATALITYCZNE ODWODNIENIE ALKOHOLU

KATALITYCZNE ODWODNIENIE ALKOHOLU Zakład Technologii Chemicznej Pracownia z Technologii Chemicznej Ćwiczenie 26 KATALITYCZNE ODWODNIENIE ALKOHOLU WARSZAWA 2012 Prowadzi dr inż. Jadwiga Skupińska Ćwiczenie 26 KATALITYCZNE ODWADNIANIE ALKOHOLU

Bardziej szczegółowo

Ciągły proces otrzymywania bikarbonatu metodą Solvay a

Ciągły proces otrzymywania bikarbonatu metodą Solvay a Ciągły proces otrzymywania bikarbonatu metodą Solvay a WYMAANIA 1. Podstawy teoretyczne procesu otrzymywania sody metodą Solvay a. 2. Schemat technologiczny metody Solvay a operacje jednostkowe.. Surowce

Bardziej szczegółowo

Opracowała: mgr inż. Ewelina Nowak

Opracowała: mgr inż. Ewelina Nowak Materiały dydaktyczne na zajęcia wyrównawcze z chemii dla studentów pierwszego roku kierunku zamawianego Inżynieria Środowiska w ramach projektu Era inżyniera pewna lokata na przyszłość Opracowała: mgr

Bardziej szczegółowo

Spalanie i termiczna degradacja polimerów

Spalanie i termiczna degradacja polimerów Zarządzanie Środowiskiem Pracownia Powstawanie i utylizacja odpadów oraz zanieczyszczeń INSTRUKCJA DO ĆWICZENIA nr 20 Spalanie i termiczna degradacja polimerów Opracowała dr Hanna Wilczura-Wachnik Uniwersytet

Bardziej szczegółowo

Węglowodory poziom podstawowy

Węglowodory poziom podstawowy Węglowodory poziom podstawowy Zadanie 1. (2 pkt) Źródło: CKE 2010 (PP), zad. 19. W wyniku całkowitego spalenia 1 mola cząsteczek węglowodoru X powstały 2 mole cząsteczek wody i 3 mole cząsteczek tlenku

Bardziej szczegółowo

Analiza miareczkowa. Alkalimetryczne oznaczenie kwasu siarkowego (VI) H 2 SO 4 mianowanym roztworem wodorotlenku sodu NaOH

Analiza miareczkowa. Alkalimetryczne oznaczenie kwasu siarkowego (VI) H 2 SO 4 mianowanym roztworem wodorotlenku sodu NaOH ĆWICZENIE 8 Analiza miareczkowa. Alkalimetryczne oznaczenie kwasu siarkowego (VI) H 2 SO 4 mianowanym roztworem wodorotlenku sodu NaOH 1. Zakres materiału Pojęcia: miareczkowanie alkacymetryczne, krzywa

Bardziej szczegółowo

KINETYKA INWERSJI SACHAROZY

KINETYKA INWERSJI SACHAROZY Dorota Warmińska, Maciej Śmiechowski Katedra Chemii Fizycznej, Wydział Chemiczny, Politechnika Gdańska KINETYKA INWERSJI SACHAROZY Wstęp teoretyczny Kataliza kwasowo-zasadowa Kataliza kwasowo-zasadowa

Bardziej szczegółowo

Ciągły proces otrzymywania bikarbonatu metodą Solvay a

Ciągły proces otrzymywania bikarbonatu metodą Solvay a Ciągły proces otrzymywania bikarbonatu metodą Solvay a Instrukcja do ćwiczenia nr 10 Asystent prowadzący: Dr Tomasz S. Pawłowski 1 Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z przemysłowym procesem

Bardziej szczegółowo

WYDZIAŁ CHEMICZNY POLITECHNIKI WARSZAWSKIEJ KATEDRA TECHNOLOGII CHEMICZNEJ. Laboratorium LABORATORIUM Z TECHNOLOGII CHEMICZNEJ

WYDZIAŁ CHEMICZNY POLITECHNIKI WARSZAWSKIEJ KATEDRA TECHNOLOGII CHEMICZNEJ. Laboratorium LABORATORIUM Z TECHNOLOGII CHEMICZNEJ WYDZIAŁ CHEMICZNY POLITECHNIKI WARSZAWSKIEJ KATEDRA TECHNOLOGII CHEMICZNEJ Laboratorium LABORATORIUM Z TECHNOLOGII CHEMICZNEJ Instrukcja do ćwiczenia pt. PROCES WYTWARZANIA WODORU Prowadzący: dr inż. Bogdan

Bardziej szczegółowo

KATEDRA INŻYNIERII CHEMICZNEJ I PROCESOWEJ INSTRUKCJE DO ĆWICZEŃ LABORATORYJNYCH LABORATORIUM INŻYNIERII CHEMICZNEJ, PROCESOWEJ I BIOPROCESOWEJ

KATEDRA INŻYNIERII CHEMICZNEJ I PROCESOWEJ INSTRUKCJE DO ĆWICZEŃ LABORATORYJNYCH LABORATORIUM INŻYNIERII CHEMICZNEJ, PROCESOWEJ I BIOPROCESOWEJ KATEDRA INŻYNIERII CHEMICZNEJ I PROCESOWEJ INSTRUKCJE DO ĆWICZEŃ LABORATORYJNYCH LABORATORIUM INŻYNIERII CHEMICZNEJ, PROCESOWEJ I BIOPROCESOWEJ Absorpcja Osoba odiedzialna: Donata Konopacka - Łyskawa dańsk,

Bardziej szczegółowo

PRACOWNIA ANALIZY ILOŚCIOWEJ. Analiza substancji biologicznie aktywnej w preparacie farmaceutycznym kwas acetylosalicylowy

PRACOWNIA ANALIZY ILOŚCIOWEJ. Analiza substancji biologicznie aktywnej w preparacie farmaceutycznym kwas acetylosalicylowy PRACOWNIA ANALIZY ILOŚCIOWEJ Analiza substancji biologicznie aktywnej w preparacie farmaceutycznym kwas acetylosalicylowy Ćwiczenie obejmuje: 1. Oznaczenie jakościowe kwasu acetylosalicylowego 2. Przygotowanie

Bardziej szczegółowo

Obliczanie stężeń roztworów

Obliczanie stężeń roztworów Obliczanie stężeń roztworów 1. Ile mililitrów stężonego, ok. 2,2mol/l (M) roztworu NaOH należy pobrać, aby przygotować 800ml roztworu o stężeniu ok. 0,2 mol/l [ M ]? {ok. 72,7ml 73ml } 2. Oblicz, jaką

Bardziej szczegółowo

Ciągły proces otrzymywania bikarbonatu metodą Solvay a

Ciągły proces otrzymywania bikarbonatu metodą Solvay a Zakład Chemii Organicznej i Technologii Chemicznej Ciągły proces otrzymywania bikarbonatu metodą Solvay a Instrukcja do ćwiczenia nr 10 2 Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z przemysłowym

Bardziej szczegółowo

VIII Podkarpacki Konkurs Chemiczny 2015/2016

VIII Podkarpacki Konkurs Chemiczny 2015/2016 III Podkarpacki Konkurs Chemiczny 015/016 ETAP I 1.11.015 r. Godz. 10.00-1.00 Uwaga! Masy molowe pierwiastków podano na końcu zestawu. Zadanie 1 (10 pkt) 1. Kierunek której reakcji nie zmieni się pod wpływem

Bardziej szczegółowo

STĘŻENIE JONÓW WODOROWYCH. DYSOCJACJA JONOWA. REAKTYWNOŚĆ METALI

STĘŻENIE JONÓW WODOROWYCH. DYSOCJACJA JONOWA. REAKTYWNOŚĆ METALI Ćwiczenie 8 Semestr 2 STĘŻENIE JONÓW WODOROWYCH. DYSOCJACJA JONOWA. REAKTYWNOŚĆ METALI Obowiązujące zagadnienia: Stężenie jonów wodorowych: ph, poh, iloczyn jonowy wody, obliczenia rachunkowe, wskaźniki

Bardziej szczegółowo

KOLEJNOŚĆ CZYNNOŚCI DO ĆWICZENIA NR 5 (kopolimeryzacja styrenu i bezwodnika maleinowego)

KOLEJNOŚĆ CZYNNOŚCI DO ĆWICZENIA NR 5 (kopolimeryzacja styrenu i bezwodnika maleinowego) KOLEJNOŚĆ CZYNNOŚCI DO ĆWICZENIA NR 5 (kopolimeryzacja styrenu i bezwodnika maleinowego) student A:.. student : student C:. lp. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Bardziej szczegółowo

LABORATORIUM Z KATALIZY HOMOGENICZNEJ I HETEROGENICZNEJ WYZNACZANIE STAŁEJ SZYBKOŚCI REAKCJI UTLENIANIA POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY

LABORATORIUM Z KATALIZY HOMOGENICZNEJ I HETEROGENICZNEJ WYZNACZANIE STAŁEJ SZYBKOŚCI REAKCJI UTLENIANIA POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY KATEDRA FIZYKOCHEMII I TECHNOLOGII POLIMERÓW WYZNACZANIE STAŁEJ SZYBKOŚCI REAKCJI UTLENIANIA JONÓW TIOSIARCZANOWYCH Miejsce ćwiczenia: Zakład Chemii Fizycznej, sala

Bardziej szczegółowo

Instrukcja wykonania ćwiczenia nr 19

Instrukcja wykonania ćwiczenia nr 19 ABSORPCYJNE ODSIARCZANIE ODLOTOWYCH GA ZÓW P R ZEMYSŁOWYCH Instrukcja wykonania ćwiczenia nr 19 Celem ćwiczenia jest zapoznanie z absorpcyjną metodą usuwania SO 2 z gazów odlotowych przez pochłanianie

Bardziej szczegółowo

ĆWICZENIE 5. KOPOLIMERYZACJA STYRENU Z BEZWODNIKIEM MALEINOWYM (polimeryzacja w roztworze)

ĆWICZENIE 5. KOPOLIMERYZACJA STYRENU Z BEZWODNIKIEM MALEINOWYM (polimeryzacja w roztworze) ĆWICZENIE 5 KOPOLIMERYZACJA STYRENU Z BEZWODNIKIEM MALEINOWYM (polimeryzacja w roztworze) Celem ćwiczenia jest zapoznanie studentów z metodą polimeryzacji w roztworze oraz badaniem składu powstałego kopolimeru.

Bardziej szczegółowo

Ćwiczenie 8 Wyznaczanie stałej szybkości reakcji utleniania jonów tiosiarczanowych

Ćwiczenie 8 Wyznaczanie stałej szybkości reakcji utleniania jonów tiosiarczanowych CHEMI FIZYCZN Ćwiczenie 8 Wyznaczanie stałej szybkości reakcji utleniania jonów tiosiarczanowych W ćwiczeniu przeprowadzana jest reakcja utleniania jonów tiosiarczanowych za pomocą jonów żelaza(iii). Przebieg

Bardziej szczegółowo

Inżynieria procesów przetwórstwa węgla, zima 15/16

Inżynieria procesów przetwórstwa węgla, zima 15/16 Inżynieria procesów przetwórstwa węgla, zima 15/16 Ćwiczenia 1 7.10.2015 1. Załóżmy, że balon ma kształt sfery o promieniu 3m. a. Jaka ilość wodoru potrzebna jest do jego wypełnienia, aby na poziomie morza

Bardziej szczegółowo

1. Zaproponuj doświadczenie pozwalające oszacować szybkość reakcji hydrolizy octanu etylu w środowisku obojętnym

1. Zaproponuj doświadczenie pozwalające oszacować szybkość reakcji hydrolizy octanu etylu w środowisku obojętnym 1. Zaproponuj doświadczenie pozwalające oszacować szybkość reakcji hydrolizy octanu etylu w środowisku obojętnym 2. W pewnej chwili szybkość powstawania produktu C w reakcji: 2A + B 4C wynosiła 6 [mol/dm

Bardziej szczegółowo

Przedmiot: Chemia budowlana Zakład Materiałoznawstwa i Technologii Betonu

Przedmiot: Chemia budowlana Zakład Materiałoznawstwa i Technologii Betonu Przedmiot: Chemia budowlana Zakład Materiałoznawstwa i Technologii Betonu Ćw. 4 Kinetyka reakcji chemicznych Zagadnienia do przygotowania: Szybkość reakcji chemicznej, zależność szybkości reakcji chemicznej

Bardziej szczegółowo

Spis treści. Wstęp... 9

Spis treści. Wstęp... 9 Spis treści Wstęp... 9 1. Szkło i sprzęt laboratoryjny 1.1. Szkła laboratoryjne własności, skład chemiczny, podział, zastosowanie.. 11 1.2. Wybrane szkło laboratoryjne... 13 1.3. Szkło miarowe... 14 1.4.

Bardziej szczegółowo

CZYNNIKI WPŁYWAJĄCE NA SZYBKOŚĆ REAKCJI CHEMICZNYCH. ILOŚCIOWE ZBADANIE SZYBKOŚCI ROZPADU NADTLENKU WODORU.

CZYNNIKI WPŁYWAJĄCE NA SZYBKOŚĆ REAKCJI CHEMICZNYCH. ILOŚCIOWE ZBADANIE SZYBKOŚCI ROZPADU NADTLENKU WODORU. CZYNNIKI WPŁYWAJĄCE NA SZYBKOŚĆ REAKCJI CHEMICZNYCH. ILOŚCIOWE ZBADANIE SZYBKOŚCI ROZPADU NADTLENKU WODORU. Projekt zrealizowany w ramach Mazowieckiego programu stypendialnego dla uczniów szczególnie uzdolnionych

Bardziej szczegółowo

KATALITYCZNY ROZKŁAD WODY UTLENIONEJ

KATALITYCZNY ROZKŁAD WODY UTLENIONEJ Dorota Warmińska, Maciej Śmiechowski Katedra Chemii Fizycznej, Wydział Chemiczny, Politechnika Gdańska KATALITYCZNY ROZKŁAD WODY UTLENIONEJ Wstęp teoretyczny Kataliza homo- i heterogeniczna Zwiększenie

Bardziej szczegółowo

EGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE Rok 2019 CZĘŚĆ PRAKTYCZNA

EGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE Rok 2019 CZĘŚĆ PRAKTYCZNA Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu Układ graficzny CKE 2018 Nazwa kwalifikacji: Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych

Bardziej szczegółowo

RÓWNOWAŻNIKI W REAKCJACH UTLENIAJĄCO- REDUKCYJNYCH

RÓWNOWAŻNIKI W REAKCJACH UTLENIAJĄCO- REDUKCYJNYCH 8 RÓWNOWAŻNIKI W REAKCJACH UTLENIAJĄCO- REDUKCYJNYCH CEL ĆWICZENIA Wyznaczenie gramorównoważników chemicznych w procesach redoks na przykładzie KMnO 4 w środowisku kwaśnym, obojętnym i zasadowym z zastosowaniem

Bardziej szczegółowo

Chemia nieorganiczna Zadanie Poziom: podstawowy

Chemia nieorganiczna Zadanie Poziom: podstawowy Zadanie 1 2 3 4 5 6 7 8 9 10 (Nazwisko i imię) Punkty Razem pkt % Chemia nieorganiczna Zadanie 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 Poziom: podstawowy Punkty Zadanie 1. (1 pkt.) W podanym

Bardziej szczegółowo

Ilościowa analiza mieszaniny alkoholi techniką GC/FID

Ilościowa analiza mieszaniny alkoholi techniką GC/FID Ilościowa analiza mieszaniny alkoholi techniką GC/FID WPROWADZENIE Pojęcie chromatografii obejmuje grupę metod separacji substancji, w których występują diw siły: siła powodująca ruch cząsteczek w określonym

Bardziej szczegółowo

Odwracalność przemiany chemicznej

Odwracalność przemiany chemicznej Odwracalność przemiany chemicznej Na ogół wszystkie reakcje chemiczne są odwracalne, tzn. z danych substratów tworzą się produkty, a jednocześnie produkty reakcji ulegają rozkładowi na substraty. Fakt

Bardziej szczegółowo

XXIII KONKURS CHEMICZNY DLA GIMNAZJALISTÓW ROK SZKOLNY 2015/2016

XXIII KONKURS CHEMICZNY DLA GIMNAZJALISTÓW ROK SZKOLNY 2015/2016 IMIĘ I NAZWISKO PUNKTACJA SZKOŁA KLASA NAZWISKO NAUCZYCIELA CHEMII I LICEUM OGÓLNOKSZTAŁCĄCE Inowrocław 21 maja 2016 Im. Jana Kasprowicza INOWROCŁAW XXIII KONKURS CHEMICZNY DLA GIMNAZJALISTÓW ROK SZKOLNY

Bardziej szczegółowo

CHEMIA ŚRODKÓW BIOAKTYWNYCH I KOSMETYKÓW PRACOWNIA CHEMII ANALITYCZNEJ. Ćwiczenie 7

CHEMIA ŚRODKÓW BIOAKTYWNYCH I KOSMETYKÓW PRACOWNIA CHEMII ANALITYCZNEJ. Ćwiczenie 7 CHEMIA ŚRODKÓW BIOAKTYWNYCH I KOSMETYKÓW PRACOWNIA CHEMII ANALITYCZNEJ Ćwiczenie 7 Wykorzystanie metod jodometrycznych do miedzi (II) oraz substancji biologicznie aktywnych kwas askorbinowy, woda utleniona.

Bardziej szczegółowo

SZYBKOŚĆ REAKCJI CHEMICZNYCH. RÓWNOWAGA CHEMICZNA

SZYBKOŚĆ REAKCJI CHEMICZNYCH. RÓWNOWAGA CHEMICZNA SZYBKOŚĆ REAKCJI CHEMICZNYCH. RÓWNOWAGA CHEMICZNA Zadania dla studentów ze skryptu,,obliczenia z chemii ogólnej Wydawnictwa Uniwersytetu Gdańskiego 1. Reakcja między substancjami A i B zachodzi według

Bardziej szczegółowo

Instrukcja do ćwiczeń laboratoryjnych

Instrukcja do ćwiczeń laboratoryjnych UNIWERSYTET GDAŃSKI WYDZIAŁ CHEMII Pracownia studencka Katedra Analizy Środowiska Instrukcja do ćwiczeń laboratoryjnych Ćwiczenie nr 1 CHROMATOGRAFIA GAZOWA WPROWADZENIE DO TECHNIKI ORAZ ANALIZA JAKOŚCIOWA

Bardziej szczegółowo

ĆWICZENIE 2. Usuwanie chromu (VI) z zastosowaniem wymieniaczy jonowych

ĆWICZENIE 2. Usuwanie chromu (VI) z zastosowaniem wymieniaczy jonowych ĆWICZENIE 2 Usuwanie chromu (VI) z zastosowaniem wymieniaczy jonowych Część doświadczalna 1. Metody jonowymienne Do usuwania chromu (VI) można stosować między innymi wymieniacze jonowe. W wyniku przepuszczania

Bardziej szczegółowo

OBLICZANIE WYNIKÓW ANALIZ I

OBLICZANIE WYNIKÓW ANALIZ I OBLICZANIE WYNIKÓW ANALIZ I 1. Ile gramów zasady sodowej zawiera próbka roztworu, jeżeli na jej zmiareczkowanie zużywa się średnio 53,24ml roztworu HCl o stężeniu 0,1015mol/l? M (NaOH) - 40,00 2. Ile gramów

Bardziej szczegółowo

Kryteria oceniania z chemii kl VII

Kryteria oceniania z chemii kl VII Kryteria oceniania z chemii kl VII Ocena dopuszczająca -stosuje zasady BHP w pracowni -nazywa sprzęt laboratoryjny i szkło oraz określa ich przeznaczenie -opisuje właściwości substancji używanych na co

Bardziej szczegółowo

RÓWNOWAGA CIECZ PARA W UKŁADZIE DWUSKŁADNIKOWYM

RÓWNOWAGA CIECZ PARA W UKŁADZIE DWUSKŁADNIKOWYM RÓWNOWAGA CIECZ PARA W UKŁADZIE DWUSKŁADNIKOWYM Cel ćwiczenia: wyznaczenie diagramu fazowego ciecz para w warunkach izobarycznych. Układ pomiarowy i opis metody: Pomiary wykonywane są metodą recyrkulacyjną

Bardziej szczegółowo

1. Stechiometria 1.1. Obliczenia składu substancji na podstawie wzoru

1. Stechiometria 1.1. Obliczenia składu substancji na podstawie wzoru 1. Stechiometria 1.1. Obliczenia składu substancji na podstawie wzoru Wzór związku chemicznego podaje jakościowy jego skład z jakich pierwiastków jest zbudowany oraz liczbę atomów poszczególnych pierwiastków

Bardziej szczegółowo

EGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE Rok 2018 CZĘŚĆ PRAKTYCZNA

EGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE Rok 2018 CZĘŚĆ PRAKTYCZNA Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu Układ graficzny CKE 2018 Nazwa kwalifikacji: Organizacja i kontrolowanie procesów technologicznych w przemyśle chemicznym Oznaczenie

Bardziej szczegółowo

II. ODŻELAZIANIE LITERATURA. Zakres wiadomości obowiązujących do zaliczenia przed przystąpieniem do wykonania. ćwiczenia:

II. ODŻELAZIANIE LITERATURA. Zakres wiadomości obowiązujących do zaliczenia przed przystąpieniem do wykonania. ćwiczenia: II. ODŻELAZIANIE LITERATURA 1. Akty prawne: Aktualne rozporządzenie dotyczące jakości wody do picia i na potrzeby gospodarcze. 2. Chojnacki A.: Technologia wody i ścieków. PWN, Warszawa 1972. 3. Hermanowicz

Bardziej szczegółowo

Zagadnienia do pracy klasowej: Kinetyka, równowaga, termochemia, chemia roztworów wodnych

Zagadnienia do pracy klasowej: Kinetyka, równowaga, termochemia, chemia roztworów wodnych Zagadnienia do pracy klasowej: Kinetyka, równowaga, termochemia, chemia roztworów wodnych 1. Równanie kinetyczne, szybkość reakcji, rząd i cząsteczkowość reakcji. Zmiana szybkości reakcji na skutek zmiany

Bardziej szczegółowo

VI. ZMIĘKCZANIE WODY METODĄ JONOWYMIENNĄ

VI. ZMIĘKCZANIE WODY METODĄ JONOWYMIENNĄ I. ZMIĘKCZANIE WODY METODĄ JONOWYMIENNĄ LITERATURA 1. Akty prawne: Aktualne rozporządzenie dotyczące jakości wody do picia i na potrzeby gospodarcze. 2. Chojnacki A.: Technologia wody i ścieków. PWN, Warszawa

Bardziej szczegółowo

POLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ

POLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ POLITECHNIA POZNAŃSA ZAŁAD CHEMII FIZYCZNEJ ATALIZA HOMOGENICZNA WSTĘP ataliza: Jest to zjawisko przyspieszenia reakcji w obecności katalizatora. atalizator to substancja, która choć uczestniczy w reakcji

Bardziej szczegółowo

Jakościowa i ilościowa analiza mieszaniny alkoholi techniką chromatografii gazowej

Jakościowa i ilościowa analiza mieszaniny alkoholi techniką chromatografii gazowej Jakościowa i ilościowa analiza mieszaniny alkoholi techniką chromatografii gazowej WPROWADZENIE Pojęcie chromatografii obejmuje grupę metod separacji substancji, w których występują diw siły: siła powodująca

Bardziej szczegółowo

Plan dydaktyczny z chemii klasa: 2TRA 1 godzina tygodniowo- zakres podstawowy. Dział Zakres treści

Plan dydaktyczny z chemii klasa: 2TRA 1 godzina tygodniowo- zakres podstawowy. Dział Zakres treści Anna Kulaszewicz Plan dydaktyczny z chemii klasa: 2TRA 1 godzina tygodniowo- zakres podstawowy lp. Dział Temat Zakres treści 1 Zapoznanie z przedmiotowym systemem oceniania i wymaganiami edukacyjnymi z

Bardziej szczegółowo

HYDROLIZA SOLI. 1. Hydroliza soli mocnej zasady i słabego kwasu. Przykładem jest octan sodu, dla którego reakcja hydrolizy przebiega następująco:

HYDROLIZA SOLI. 1. Hydroliza soli mocnej zasady i słabego kwasu. Przykładem jest octan sodu, dla którego reakcja hydrolizy przebiega następująco: HYDROLIZA SOLI Hydroliza to reakcja chemiczna zachodząca między jonami słabo zdysocjowanej wody i jonami dobrze zdysocjowanej soli słabego kwasu lub słabej zasady. Reakcji hydrolizy mogą ulegać następujące

Bardziej szczegółowo

WĘGLOWODORY POWTÓRZENIE WIADOMOŚCI

WĘGLOWODORY POWTÓRZENIE WIADOMOŚCI WĘGLOWODORY POWTÓRZENIE WIADOMOŚCI 1. W kórym punkcie zapisano wyłącznie węglowodory odbarwiające wodę bromową: a) C 2 H 6 ; C 4 H 10 ; C 6 H 14 b) C 9 H 20 ; C 8 H 16 ; C 2 H 4 c) C 2 H 2 ; C 3 H 6 ;

Bardziej szczegółowo

TYPY REAKCJI CHEMICZNYCH

TYPY REAKCJI CHEMICZNYCH 1 REAKCJA CHEMICZNA: TYPY REAKCJI CHEMICZNYCH REAKCJĄ CHEMICZNĄ NAZYWAMY PROCES, W WYNIKU KTÓREGO Z JEDNYCH SUBSTANCJI POWSTAJĄ NOWE (PRODUKTY) O INNYCH WŁAŚCIWOŚCIACH NIŻ SUBSTANCJE WYJŚCIOWE (SUBSTRATY)

Bardziej szczegółowo

Technologia chemiczna. Zajęcia 2

Technologia chemiczna. Zajęcia 2 Technologia chemiczna Zajęcia 2 Podstawą wszystkich obliczeń w technologii chemicznej jest bilans materiałowy. Od jego wykonania rozpoczyna się projektowanie i rachunek ekonomiczny planowanego lub istniejącego

Bardziej szczegółowo

Piroliza odpadowych poliolefin

Piroliza odpadowych poliolefin Politechnika Śląska Wydział Chemiczny Katedra Chemii, Technologii Nieorganicznej i Paliw Minimalizacja odpadów Technologia chemiczna Dąbrowa Górnicza sem. VI Instrukcja do ćwiczeń laboratoryjnych Piroliza

Bardziej szczegółowo

57 Zjazd PTChem i SITPChem Częstochowa, Promotowany miedzią niklowy katalizator do uwodornienia benzenu

57 Zjazd PTChem i SITPChem Częstochowa, Promotowany miedzią niklowy katalizator do uwodornienia benzenu 57 Zjazd PTChem i SITPChem Częstochowa, 14-18.09.2014 Promotowany miedzią niklowy katalizator do uwodornienia benzenu Kamila Michalska Kazimierz Stołecki Tadeusz Borowiecki Uwodornienie benzenu do cykloheksanu

Bardziej szczegółowo

EGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE Rok 2019 ZASADY OCENIANIA

EGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE Rok 2019 ZASADY OCENIANIA Układ graficzny CKE 2019 EGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE Rok 2019 ZASADY OCENIANIA Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu Nazwa kwalifikacji: Przygotowywanie

Bardziej szczegółowo

KATALITYCZNE OZNACZANIE ŚLADÓW MIEDZI

KATALITYCZNE OZNACZANIE ŚLADÓW MIEDZI 6 KATALITYCZNE OZNACZANIE ŚLADÓW MIEDZI CEL ĆWICZENIA Zapoznanie studenta z zagadnieniami katalizy homogenicznej i wykorzystanie reakcji tego typu do oznaczania śladowych ilości jonów Cu 2+. Zakres obowiązującego

Bardziej szczegółowo

Konkurs Chemiczny dla uczniów szkół ponadgimnazjalnych rok szkolny 2013/2014

Konkurs Chemiczny dla uczniów szkół ponadgimnazjalnych rok szkolny 2013/2014 ŁÓDZKIE CENTRUM DOSKONALENIA NAUCZYCIELI I KSZTAŁCENIA PRAKTYCZNEGO Konkurs Chemiczny dla uczniów szkół ponadgimnazjalnych rok szkolny 2013/2014 Imię i nazwisko uczestnika Szkoła Klasa Nauczyciel Imię

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH: PROCESY ESTRYFIKACJI NA PRZYKŁADZIE OTRZYMYWANIA WYBRANYCH PLASTYFIKATORÓW

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH: PROCESY ESTRYFIKACJI NA PRZYKŁADZIE OTRZYMYWANIA WYBRANYCH PLASTYFIKATORÓW PLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY KATEDRA TECHNLGII CHEMICZNEJ RGANICZNEJ I PETRCHEMII INSTRUKCJA D ĆWICZEŃ LABRATRYJNYCH: PRCESY ESTRYFIKACJI NA PRZYKŁADZIE TRZYMYWANIA WYBRANYCH PLASTYFIKATRÓW Laboratorium

Bardziej szczegółowo

b) Podaj liczbę moli chloru cząsteczkowego, która całkowicie przereaguje z jednym molem glinu.

b) Podaj liczbę moli chloru cząsteczkowego, która całkowicie przereaguje z jednym molem glinu. Informacja do zadań 1 i 2 Chlorek glinu otrzymuje się w reakcji glinu z chlorowodorem lub działając chlorem na glin. Związek ten tworzy kryształy, rozpuszczalne w wodzie zakwaszonej kwasem solnym. Z roztworów

Bardziej szczegółowo

Jakościowe i ilościowe oznaczanie alkoholi techniką chromatografii gazowej

Jakościowe i ilościowe oznaczanie alkoholi techniką chromatografii gazowej Jakościowe i ilościowe oznaczanie alkoholi techniką chromatografii gazowej Instrukcja do ćwiczeń opracowana w Katedrze Chemii Środowiska Uniwersytetu Łódzkiego. 1. Wstęp teoretyczny Zagadnienie rozdzielania

Bardziej szczegółowo

Zagadnienia z chemii na egzamin wstępny kierunek Technik Farmaceutyczny Szkoła Policealna im. J. Romanowskiej

Zagadnienia z chemii na egzamin wstępny kierunek Technik Farmaceutyczny Szkoła Policealna im. J. Romanowskiej Zagadnienia z chemii na egzamin wstępny kierunek Technik Farmaceutyczny Szkoła Policealna im. J. Romanowskiej 1) Podstawowe prawa i pojęcia chemiczne 2) Roztwory (zadania rachunkowe zbiór zadań Pazdro

Bardziej szczegółowo

WOJEWÓDZKI KONKURS PRZEDMIOTOWY Z CHEMII DLA UCZNIÓW GIMNAZJÓW - rok szkolny 2016/2017 eliminacje rejonowe

WOJEWÓDZKI KONKURS PRZEDMIOTOWY Z CHEMII DLA UCZNIÓW GIMNAZJÓW - rok szkolny 2016/2017 eliminacje rejonowe kod ŁÓDZKIE CENTRUM DOSKONALENIA NAUCZYCIELI I KSZTAŁCENIA PRAKTYCZNEGO Uzyskane punkty.. WOJEWÓDZKI KONKURS PRZEDMIOTOWY Z CHEMII DLA UCZNIÓW GIMNAZJÓW - rok szkolny 2016/2017 eliminacje rejonowe Zadanie

Bardziej szczegółowo

2. Podczas spalania 2 objętości pewnego gazu z 4 objętościami H 2 otrzymano 1 objętość N 2 i 4 objętości H 2O. Jaki gaz uległ spalaniu?

2. Podczas spalania 2 objętości pewnego gazu z 4 objętościami H 2 otrzymano 1 objętość N 2 i 4 objętości H 2O. Jaki gaz uległ spalaniu? 1. Oblicz, ilu moli HCl należy użyć, aby poniższe związki przeprowadzić w sole: a) 0,2 mola KOH b) 3 mole NH 3 H 2O c) 0,2 mola Ca(OH) 2 d) 0,5 mola Al(OH) 3 2. Podczas spalania 2 objętości pewnego gazu

Bardziej szczegółowo

OZNACZANIE WŁAŚCIWOŚCI BUFOROWYCH WÓD

OZNACZANIE WŁAŚCIWOŚCI BUFOROWYCH WÓD OZNACZANIE WŁAŚCIWOŚCI BUFOROWYCH WÓD POWIERZCHNIOWYCH WPROWADZENIE Właściwości chemiczne wód występujących w przyrodzie odznaczają się dużym zróżnicowaniem. Zależą one między innymi od budowy geologicznej

Bardziej szczegółowo

Beata Mendak fakultety z chemii II tura PYTANIA Z KLASY PIERWSZEJ

Beata Mendak fakultety z chemii II tura PYTANIA Z KLASY PIERWSZEJ Beata Mendak fakultety z chemii II tura Test rozwiązywany na zajęciach wymaga powtórzenia stężenia procentowego i rozpuszczalności. Podaję również pytania do naszej zaplanowanej wcześniej MEGA POWTÓRKI

Bardziej szczegółowo

Kuratorium Oświaty w Lublinie ZESTAW ZADAŃ KONKURSOWYCH Z CHEMII DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2016/2017 ETAP TRZECI

Kuratorium Oświaty w Lublinie ZESTAW ZADAŃ KONKURSOWYCH Z CHEMII DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2016/2017 ETAP TRZECI Kuratorium Oświaty w Lublinie.. Imię i nazwisko ucznia Pełna nazwa szkoły Liczba punktów ZESTAW ZADAŃ KONKURSOWYCH Z CHEMII DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2016/2017 ETAP TRZECI Instrukcja dla ucznia

Bardziej szczegółowo

Materiał powtórzeniowy do sprawdzianu - reakcje egzoenergetyczne i endoenergetyczne, szybkość reakcji chemicznych

Materiał powtórzeniowy do sprawdzianu - reakcje egzoenergetyczne i endoenergetyczne, szybkość reakcji chemicznych Materiał powtórzeniowy do sprawdzianu - reakcje egzoenergetyczne i endoenergetyczne, szybkość reakcji chemicznych I. Reakcje egzoenergetyczne i endoenergetyczne 1. Układ i otoczenie Układ - ogół substancji

Bardziej szczegółowo

Oznaczanie SO 2 w powietrzu atmosferycznym

Oznaczanie SO 2 w powietrzu atmosferycznym Ćwiczenie 6 Oznaczanie SO w powietrzu atmosferycznym Dwutlenek siarki bezwodnik kwasu siarkowego jest najbardziej rozpowszechnionym zanieczyszczeniem gazowym, występującym w powietrzu atmosferycznym. Głównym

Bardziej szczegółowo

Rys. 1. Chromatogram i sposób pomiaru podstawowych wielkości chromatograficznych

Rys. 1. Chromatogram i sposób pomiaru podstawowych wielkości chromatograficznych Ćwiczenie 1 Chromatografia gazowa wprowadzenie do techniki oraz analiza jakościowa Wstęp Celem ćwiczenia jest nabycie umiejętności obsługi chromatografu gazowego oraz wykonanie analizy jakościowej za pomocą

Bardziej szczegółowo

Zadanie 2. [2 pkt.] Podaj symbole dwóch kationów i dwóch anionów, dobierając wszystkie jony tak, aby zawierały taką samą liczbę elektronów.

Zadanie 2. [2 pkt.] Podaj symbole dwóch kationów i dwóch anionów, dobierając wszystkie jony tak, aby zawierały taką samą liczbę elektronów. 2 Zadanie 1. [1 pkt] Pewien pierwiastek X tworzy cząsteczki X 2. Stwierdzono, że cząsteczki te mogą mieć różne masy cząsteczkowe. Wyjaśnij, dlaczego cząsteczki o tym samym wzorze mogą mieć różne masy cząsteczkowe.

Bardziej szczegółowo

Konkurs przedmiotowy z chemii dla uczniów dotychczasowych gimnazjów 24 stycznia 2018 r. zawody II stopnia (rejonowe)

Konkurs przedmiotowy z chemii dla uczniów dotychczasowych gimnazjów 24 stycznia 2018 r. zawody II stopnia (rejonowe) Konkurs przedmiotowy z chemii dla uczniów dotychczasowych gimnazjów 24 stycznia 2018 r. zawody II stopnia (rejonowe) Kod ucznia Suma punktów Witamy Cię na drugim etapie konkursu chemicznego. Podczas konkursu

Bardziej szczegółowo

CHROMATOGRAFIA II 18. ANALIZA ILOŚCIOWA METODĄ KALIBRACJI

CHROMATOGRAFIA II 18. ANALIZA ILOŚCIOWA METODĄ KALIBRACJI CHROMATOGRAFIA II 18. ANALIZA ILOŚCIOWA METODĄ KALIBRACJI Wstęp Celem ćwiczenia jest ilościowe oznaczanie stężenia n-propanolu w metanolu metodą kalibracji. Metodą kalibracji oznaczamy najczęściej jeden

Bardziej szczegółowo

TEST PRZYROSTU KOMPETENCJI Z CHEMII DLA KLAS II

TEST PRZYROSTU KOMPETENCJI Z CHEMII DLA KLAS II TEST PRZYROSTU KOMPETENCJI Z CHEMII DLA KLAS II Czas trwania testu 120 minut Informacje 1. Proszę sprawdzić czy arkusz zawiera 10 stron. Ewentualny brak należy zgłosić nauczycielowi. 2. Proszę rozwiązać

Bardziej szczegółowo

MIANOWANE ROZTWORY KWASÓW I ZASAD, MIARECZKOWANIE JEDNA Z PODSTAWOWYCH TECHNIK W CHEMII ANALITYCZNEJ

MIANOWANE ROZTWORY KWASÓW I ZASAD, MIARECZKOWANIE JEDNA Z PODSTAWOWYCH TECHNIK W CHEMII ANALITYCZNEJ 4 MIANOWANE ROZTWORY KWASÓW I ZASAD, MIARECZKOWANIE JEDNA Z PODSTAWOWYCH TECHNIK W CHEMII ANALITYCZNEJ CEL ĆWICZENIA Poznanie podstawowego sprzętu stosowanego w miareczkowaniu, sposoby przygotowywania

Bardziej szczegółowo

Oranż β-naftolu; C 16 H 10 N 2 Na 2 O 4 S, M = 372,32 g/mol; proszek lub

Oranż β-naftolu; C 16 H 10 N 2 Na 2 O 4 S, M = 372,32 g/mol; proszek lub Laboratorium Chemii rganicznej, Synteza oranżu β-naftolu, 1-5 Synteza oranżu β-naftolu Wydział Chemii UMCS w Lublinie 1. Właściwości fizyczne i chemiczne oranżu β-naftolu S 3 a ranż β-naftolu; C 16 10

Bardziej szczegółowo

CHEMIA. Wymagania szczegółowe. Wymagania ogólne

CHEMIA. Wymagania szczegółowe. Wymagania ogólne CHEMIA Wymagania ogólne Wymagania szczegółowe Uczeń: zapisuje konfiguracje elektronowe atomów pierwiastków do Z = 36 i jonów o podanym ładunku, uwzględniając rozmieszczenie elektronów na podpowłokach [

Bardziej szczegółowo

EGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE Rok 2018 CZĘŚĆ PRAKTYCZNA

EGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE Rok 2018 CZĘŚĆ PRAKTYCZNA Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu Układ graficzny CKE 2017 Nazwa kwalifikacji: Wykonywanie badań analitycznych Oznaczenie kwalifikacji: A.60 Numer zadania: 02

Bardziej szczegółowo

MECHANIZMY REAKCJI CHEMICZNYCH. REAKCJE CHARAKTERYSTYCZNE GRUP FUNKCYJNYCH ZWIĄZKÓW ORGANICZNYCH

MECHANIZMY REAKCJI CHEMICZNYCH. REAKCJE CHARAKTERYSTYCZNE GRUP FUNKCYJNYCH ZWIĄZKÓW ORGANICZNYCH Ćwiczenie 2 semestr 2 MECHANIZMY REAKCJI CHEMICZNYCH. REAKCJE CHARAKTERYSTYCZNE GRUP FUNKCYJNYCH ZWIĄZKÓW ORGANICZNYCH Obowiązujące zagadnienia: Związki organiczne klasyfikacja, grupy funkcyjne, reakcje

Bardziej szczegółowo

ODNAWIALNE ŹRÓDŁA ENERGII I GOSPODARKA ODPADAMI STUDIA STACJONARNE

ODNAWIALNE ŹRÓDŁA ENERGII I GOSPODARKA ODPADAMI STUDIA STACJONARNE PROGRAM ĆWICZEŃ LABORATORYJNYCH Z CHEMII (SEMESTR ZIMOWY) ODNAWIALNE ŹRÓDŁA ENERGII I GOSPODARKA ODPADAMI STUDIA STACJONARNE Ćwiczenie 1 (Karty pracy laboratoryjnej: 1a, 1b, 1d, 1e) 1. Organizacja ćwiczeń.

Bardziej szczegółowo

KATALIZA I KINETYKA CHEMICZNA

KATALIZA I KINETYKA CHEMICZNA 9 KATALIZA I KINETYKA CHEMICZNA CEL ĆWICZENIA Zapoznanie studenta z procesami katalitycznymi oraz wpływem stężenia, temperatury i obecności katalizatora na szybkość reakcji chemicznej. Zakres obowiązującego

Bardziej szczegółowo

Zad: 5 Oblicz stężenie niezdysocjowanego kwasu octowego w wodnym roztworze o stężeniu 0,1 mol/dm 3, jeśli ph tego roztworu wynosi 3.

Zad: 5 Oblicz stężenie niezdysocjowanego kwasu octowego w wodnym roztworze o stężeniu 0,1 mol/dm 3, jeśli ph tego roztworu wynosi 3. Zad: 1 Oblicz wartość ph dla 0,001 molowego roztworu HCl Zad: 2 Oblicz stężenie jonów wodorowych jeżeli wartość ph wynosi 5 Zad: 3 Oblicz stężenie jonów wodorotlenkowych w 0,05 molowym roztworze H 2 SO

Bardziej szczegółowo