Politechnika Gdaska Wydział Elektrotechniki i Automatyki Katedra Inynierii Systemów Sterowania. Podstawy Automatyki
|
|
- Irena Dąbrowska
- 7 lat temu
- Przeglądów:
Transkrypt
1 Polithi G Wyził Eltrothii i Automtyi Ktr Iyirii Sytmów Strowi Potwy Automtyi Stilo ytmu trowi rytri lgriz Hurwitz i Routh Mtriły pomoiz o wiz trmi T Oprowi: Kzimirz Duziiwiz, r h. i. Mihł Grohowi, r i. Rort Piotrowi, r i. Tomz Rutowi, r i. G, pziri 9
2 Wprowzi Stilo ułu jt jym z główyh poj toowyh przy lizi ziłi ułu ymizgo. Zpwii tilgo ziłi jt potwowym wymgim, ji twimy ułowi utomtyzj rgulji. Potwowymi rytrimi lgrizymi i tiloi : rytrium Hurwit z i rytrium Routh. Krytri lgriz otyz i tiloi zmityh ułów trowi. W lzj zi mtriłu i w wzlih zih, jli i zi to pryzyji wz lu i zi wyiło z hmtu ułu rgulji, przz uł rgulji zimy rozumili zmity uł rgulji. Krytrium tiloi Hurwitz Rówi hrtrytyz momy zwz prztwi w poti wilomiu: M ( ) () Krytrium Hurwitz mówi: Uł utomtyzj rgulji jt tily, wty i tylo wty, gy płio tpuj w wrui: wru oizy: wzyti wpółzyii rówi hrtrytyzgo wiz o zr: > i,,, () i wru ottzy: wzyti powyzzii wyzzi Hurwitz wiz o zr: i > i,,, () Ay mo yło orzyt z tgo rytrium ly jzz wyji, o to jt wyzzi i powyzzii Hurwitz. Wyzzi i powyzzii Hurwitz mj tpuj pot: - () gzi:,,,, - opowiio powyzzi pirwzgo, rugigo, - rzu orz wyzzi Hurwitz.
3 Zi Korzytj z rytrium Hurwitz z tilo ułu, tórgo rówi hrtrytyz jt poti: h ( w T ) A ( T ) UW () Rozwizi Zi Ozzmy l uprozzi zpiu: h UW zt () Ztm rówi hrtrytyz jt poti: ( w T ) A ( T ) zt () Po przztłiu mmy: ( w T ) A ( T ) zt A ( T ) ( w T ) A ( T ) zt () Ułm jt rówy zru, jli lizi jt rówy zru - pozuiwi pirwitów rówi hrtrytyzgo jt rówow pozuiwiu pirwitów rówi: Rozwijj to rówi otrzymmy: ( T ) ( T ) A (9) w zt ( T ) ( T ) AT A T A () W rówiu tym: w zt zt w zt AT, A, T zt, w zt () Z wruu oizgo wyi, powiy y płio tpuj irówoi: AT A >, T w >, zt zt >, > ()
4 Wrui t w poó turly płio. Z poti rówi hrtrytyzgo wi, uł jt rzu trzigo. Npizmy, ztm wyzzi Hurwitz : () Z poti wyzzi i powyzziów wi, : wru >, prowzjy i o poti >, poryw i z jym z wruów oizyh, jli >, to l płii wruu, potrz, y. Wytrzy prwzi wru > : > > () > Potwij prmtry ułu otrzymmy: A T zt AT w zt > () Bior po uwg, y z wytpujyh w tj irówoi zyiów jt oti, momy pi: lu p: T T w > () T > T w () W t poó otrzymlimy wrui gwrtuj tilo ziłi ułu rgulji. Mo j formułow w tpujy poó: wzyti wzmoii w ułzi powiy y oti orz powii y płioy wru: T > T w () Krytrium tiloi Routh Krytrium tiloi Routh jt moyfij rytrium Hurwitz poprzz wprowzi tliy Routh w mij wyzziów Hurwitz. Uł utomtyzj rgulji jt tily, wty i tylo wty, gy płio tpuj w wrui: wru oizy (logizy j w rytrium Hurwitz ): wzyti wpółzyii rówi hrtrytyzgo () itij i wiz o zr, wru ottzy: polg utworziu i ziu tliy Routh.
5 Pirwzym tpm w rytrium Routh jt umizzi wpółzyiów rówi hrtrytyzgo () w wóh wirzh. Pirwzy wirz ł i z iprzytyh wpółzyiów, z rugi wirz ł i z przytyh wpółzyiów liz o jwyzj potgi wilomiu hrtrytyzgo. Dl rówi hrtrytyzgo () pirwz w wirz tliy Routh poti: () Koljym tpm jt wypłii tpyh wirzy tliy Routh, miowii: f (9) gzi: f () Po oliziu wpółzyiów,, f, i zuowiu tliy Routh toujmy wru wytrzjy rytrium tiloi Routh : Uł utomtyzj rgulji jt tily, gy wzyti wpółzyii lwj rjj olumy tliy Routh oti.
6 Jli uł utomtyzj rgulji jt itily, to wpółzyii tj olumy zmiij z, liz zmi ih zu rów jt lizi pirwitów lyh w prwj półpłzzyi płzzyzy pirwitów. Czmi olizi oljyh lmtów tliy Routh mo y utruio. Przypmi timi mog y: Pirwzy lmt w pwym wirzu tliy Routh jt zrowy, lz i wzyti wpółzyii rów zro. Jli zro pojwi i w pirwzym lmi wirz, to wzyti lmty w tpym wirzu rów i imoliw jt lz wypłii tliy Routh. W tij ytuji moymy rówi hrtrytyz przz lmt ( α ), gzi α liz rzzywit oti i pirwitim rówi hrtrytyzgo. Wzyti lmty pwgo wirz tliy Routh zrow. Sytuj t ozz j z tpujyh przypów: ). rówi m przyjmij j pr pirwitów o prziwyh zh, ). rówi m j lu wij pr pirwitów przoyh oi urojoj, ). rówi m pry pirwitów tworzyh ymtri woół poztu ułu wpółrzyh. Powyz ytuj rozwizuj i tworz wilomi pomoizy p ( ), tóry uuj i z wpółzyiów wirz zjujgo i powyj wirz zrowgo w tliy Routh. Rozwizuj to rówi uzyuj i rówi pirwiti rówi orygilgo. Kroi potpowi tpuj:. Utworzi wilomiu pomoizgo p ( ) z wpółzyiów wirz zjujgo i powyj wirz zrowgo w tliy Routh. p( ). Wyzzi pohoj wilomiu pomoizgo wzglm :. p ( ). Ztpii wirz zrowgo wpółzyimi wilomiu. Kotyuj wypłii tliy Routh z wyorzytim owo utworzogo wirz.. Itrprtj w zwyły poó zmiy zów wpółzyiów w pirwzj olumi tliy Routh. Zi D jt tpuj rówi hrtrytyz ułu rgulji: () Korzytj z rytrium Routh zj tilo tgo ułu.
7 Rozwizi Zi Wru oizy jt płioy, poiw wzyti wpółzyii rówi hrtrytyzgo itij i wiz o zr:,,,, () Nly trz zuow tli Routh : () Wypłimy olj lmty tliy Routh olizj opowii wyzzii:, () Ztm ł tli Routh jt poti:, () Mmy wi zmiy zów w lwj rjj olumi, o ozz, rówi hrtrytyz m w pirwiti w prwj półpłzzyi, ztm uł jt itily. Zi D jt tpuj rówi hrtrytyz ułu rgulji: () Korzytj z rytrium Routh zj tilo tgo ułu.
8 Rozwizi Zi Tli Routh jt poti: () Tli Routh zwir w trzim wirzu w pirwzj olumi wyrz zrowy. Jt to przyp zzgóly ztoowi rytrium tiloi Routh. Moymy rówi hrtrytyz przz lmt ( ) α, gzi α liz rzzywit oti i pirwitim rówi hrtrytyzgo. Nih α. Now rówi hrtrytyz jt poti: ( )( ) () Nly trz zuow ow tli Routh : (9) Wypłimy olj lmty tliy Routh olizj opowii wyzzii:,,,,,,, () Ztm ł tli Routh jt poti:,,, () Mmy wi zmiy zów w lwj rjj olumi, o ozz, rówi hrtrytyz m w pirwiti w prwj półpłzzyi, ztm uł jt itily.
9 Zi D jt tpuj rówi hrtrytyz ułu rgulji: () Korzytj z rytrium Routh, zj tilo tgo ułu. Rozwizi Zi Tli Routh jt poti: () Tli Routh zwir zwrty wirz zrowy. Jt to przyp zzgóly ztoowi rytrium tiloi Routh. p, tórgo wpółzyimi wpółzyii Tworzymy wilomi pomoizy ( ) ottigo izrowgo wirz tliy Routh i ztpujmy zrowy wirz wpółzyimi pohoj tgo wilomiu wzglm. Wilomi pomoizy jt poti: Poho wilomiu pomoizgo wzglm jt poti:. p ( ) () p Nly trz zuow ow tli Routh : ( ) () () W przottim wirzu pojwiło i zro, poiw jt to wirz jolmtowy toujmy poowi prour prztwio wzij i wirz t ztpujmy wpółzyiim pohoj wyri go poprzzjgo:, zyli liz. Ni mmy zmi zu w lwj rjj olumi, o ozz, rówi hrtrytyz i m pirwitów w prwj półpłzzyi, ztm uł jt tily. 9
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki
Polithi Gń Wyził Eltrothii i Autotyi Ktr Iżyirii Sytów Strowi Potwy Autotyi Stilość ytów trowi rozwiązi rówi hrtrytyzgo, rytri lgriz: Hurwitz i Routh Mtriły pooiz o ćwizń tri T Oprowi: Kziirz Duziiwiz,
Od wzorów skróconego mnoŝenia do klasycznych nierówności
Hery Pwłowsi IV LO Toruń O wzorów sróoego moŝei o lsyzyh ierówośi Uzą w szole wzorów sróoego moŝei zzymy o owozei wóh toŝsmośi: () ( ) () ( ) Nstępie uŝywmy ih o przesztłi wyrŝeń Tym rzem zrómy z ih iy
Automatyka i Robotyka Analiza Wykład 23 dr Adam Ćmiel
Automty i ooty Aliz Wyłd dr Adm Ćmil mil@gh.du.pl SZEEGI POTĘGOWE iąg liz zspoloyh z z - szrg potęgowy, gdzi - iąg współzyiów szrgu, z C - środ, trum ustlo, z C - zmi. Dl dowolgo ustlogo z C szrg potęgowy
1.1. Układy do zamiany kodów (dekodery, kodery, enkodery) i
Ukły yrow (loizn) 1.1. Ukły o zminy koów (kory, kory, nkory) i Są to ukły kominyjn, zminiją sposó koowni lu przstwini ny yrowy. 1.1.1. kory kory to ukły kominyjn, zminiją n yrow, zpisn w owolnym kozi innym
Co można zrobić za pomocą maszyny Turinga? Wszystko! Maszyna Turinga potrafi rozwiązać każdy efektywnie rozwiązywalny problem algorytmiczny!
TEZA CHURCHA-TURINGA Mzyn Turing: m końzenie wiele tnów zpiuje po jenym ymolu n liniowej tśmie Co możn zroić z pomoą mzyny Turing? Wzytko! Mzyn Turing potrfi rozwiązć kży efektywnie rozwiązywlny prolem
Podstawa badania: VDE 0660 część 500/IEC 60 439 Przeprowadzone badanie: Znamionowa wytrzymałość na prąd udarowy I pk. Ip prąd zwarciowy udarowy [ka]
Rozził moy Wykrsy wytrzymłośi zwriowj wług EC Wykrsy wytrzymłośi zwriowj wług EN 439-1/EC 439-1 Bni typu zgoni z EN 439-1 W trki ni typu systmu przprowzn zostją nstępują ni systmów szyn ziorzyh Rittl jk
Tw: (O promieniu zbieżności R szeregu potęgowego ) Jeżeli istnieje granica. to R = ) ciąg liczb zespolonych
Automatya i Rootya Aaliza Wyład dr Adam Ćmil cmil@agh.du.pl SZEREGI POTĘGOWE ( c ciąg licz zspoloych c ( z z - szrg potęgowy, gdzi ( c - ciąg współczyiów szrgu, z C - środ, ctrum (ustalo, z C - zmia. Dla
( t) dt. ( t) = ( t)
TRANSFORMATA APACE A ROZWIĄZWANIE RÓWNAŃ RÓŻNICZKOWCH Zi Rchuk Oprorow Problm: Rozwiązć moą oprorową rówi różiczkow prz wrukch począkowch T x x. b.,5 c... Rozwiązi: Soując przkzłci plc z uwzglęiim wruków
n ó g, S t r o n a 2 z 1 9
Z n a k s p r a w y G O S I R D Z P I2 7 1 0 6 3 2 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A D o s t a w a w r a z z m o n t a e m u r z» d z e s i ł o w n i z
8. N i e u W y w a ć u r z ą d z e n i a, g d y j e s t w i l g o t n e l ug b d y j e s t n a r a W o n e n a b e z p o 6 r e d n i e d z i a ł a n i
M G 4 0 1 v 4 G R I L L E L E K T R Y C Z N Y M G 4 0 1 I N S T R U K C J A M O N T A V U I B E Z P I E C Z N E G O U V Y T K O W A N I A S z a n o w n i P a s t w o, d z i ę k u j e m y z a z a k u p
M G 4 2 7 v. 2 0 1 5 G R I L L P R O S T O K Ą T N Y R U C H O M Y 5 2 x 6 0 c m z p o k r y w ą M G 4 2 7 I N S T R U K C J A M O N T A 7 U I B E Z P I E C Z N E G O U 7 Y T K O W A N I A S z a n o w
ZADANIE I OPIS PRZEDMIOTU ZAMÓWENIA SPECYFIKACJA TECHNICZNA (OPIS) OFEROWANEGO SPRZĘTU
ZADANIE I OPIS PRZEDMIOTU ZAMÓWENIA SPECYFIKACJA TECHNICZNA (OPIS) OFEROWANEGO SPRZĘTU Nzw i rs Wykonwy:. I. Systm o ony i trningu koorynji nrwowo-mięśniowj i momntów sił mięśniowyh rozwijnyh w stwh końzyn
WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ
ĆWICZENIE 9 WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ Opis kł pomirowego A) Wyzzie ogiskowej sozewki skpijąej z pomir oległośi przemiot i obrz o sozewki Szzególie proste, rówoześie
ď ź ź Ä Ď É Ě Ź Ą Ü Á Ą Ń Đ ő ý ý ő ý Ú Ä Á Ą ô Ó Ó ŕ đ ý Á Ą Đ í ő É ä Ä Ä Ď ď ŕ Ń ř ý ő Ú Á Ĺ Ą Ď Ó í úł ő Ł Ä Á Ą Ď Ó ŕ Ď ý ý ő ý ĄÁ Á Ą Ď Ń ŕ Ü ä ý ő ý ý Đ ý ő Ú ď Ä Ą Ą É Ó Ł ő ý ő ý ý ŕ ŕ Á Ą Ń É
Grafy hamiltonowskie, problem komiwojaera algorytm optymalny
2 Grfy hmiltonowski, prolm komiwojr lgorytm optymlny 3 Grfy hmiltonowski Df. Cykl (rog) Hmilton jst to ykl (rog), w którym ky wirzhołk grfu wystpuj okłni rz. Grf jst hmiltonowski (półhmiltonowski), o il
Chorągiew Dolnośląska ZHP 1. Zarządzenia i informacje 1.1. Zarządzenia
C h o r ą g i e w D o l n o l ą s k a Z H P W r o c ł a w, 3 0 l i s t o p a d a2 0 1 4 r. Z w i ą z e k H a r c e r s t w a P o l s k i e g o K o m e n d a n t C h o r ą g w i D o l n o 6 l ą s k i e
v = k[a] α [B] β k! "! cc + dd aa + bb v = 1 a dt = 1 c dt = 1 d dt = 1 b dt Reakcje chemiczne Szybkość reakcji W ogólności dla reakcji postaci
Raj hmizn Szybość raji W ogólnośi dla raji potai aa bb! "! C dd możmy wprowadzić pojęi zybośi raji: a d [ A] b d [ B] d [ C] d d [ D] Owa zybość podlga ogólnijzj wrji prawa działania ma: [A] α [B] β Stał,
GENEZA WYZNACZNIKA. Układ równań liniowych z dwiema niewiadomymi. Rozwiązania układu metodą eliminacji Gaussa
/ WYKŁD. Wyzzik mierzy: defiij idukyj i permutyj. Włsośi wyzzików, rozwiięie Lple', wzór Srrus. Mierz odwrot i sposoy jej wyzzi. GENEZ WYZNCZNIK Ukłd rówń liiowyh z dwiem iewidomymi, y x y x Rozwiązi ukłdu
Instrukcja obiegu i kontroli dokumentów powodujących skutki finansowo-gospodarcze w ZHP Spis treści
C h o r ą g i e w D o l n o l ą s k a Z H P U c h w a ł a n r 2 1 / I X / 2 0 1 5 K o m e n d y C h o r ą g w i D o l n o 6 l ą s k i e j Z H P z d n i a 2 10. 5. 2 0 1 5 r. w s p r a w i e I n s t r u
Algorytmy i Struktury Danych.
Algorytmy i Struktury Dnyh. Gry. Drzwo rozpinj. Minimln rzwo rozpinj. Bożn Woźn-Szzśnik wozn@gmil.om Jn Długosz Univrsity, Poln Wykł 9 Bożn Woźn-Szzśnik (AJD) Algorytmy i Struktury Dnyh. Wykł 9 1 / 4 Pln
I n f o r m a c j e n a t e m a t p o d m i o t u k t ó r e m u z a m a w i a j» c y p o w i e r z y łk p o w i e r z y l i p r o w a d z e p o s t p
A d r e s s t r o n y i n t e r n e t o w e j, n a k t ó r e j z a m i e s z c z o n a b d z i e s p e c y f i k a c j a i s t o t n y c h w a r u n k ó w z a m ó w i e n i a ( j e e ld io t y c z y )
Opis i zakres czynności sprzątania obiektów Gdyńskiego Centrum Sportu
O p i s i z a k r e s c z y n n o c is p r z» t a n i a o b i e k t ó w G d y s k i e g o C e n t r u m S p o r t u I S t a d i o n p i ł k a r s k i w G d y n i I A S p r z» t a n i e p r z e d m e c
Procedura wymiarowania mimośrodowo ściskanego słupa żelbetowego wg PN-EN-1992:2008
Poua wymiaowaia mimośoowo śikago łupa żlbtowgo wg P-E-99:8. Utalamy zy łup jt mukły zy kępy a) wyzazamy ługość obliziową i mukłość łupa (5.8.3.) 3 bh I I i (jżli watość ϕ i jt zaa, moża pzyjąć,7) +,ϕ S
Ankieta absolwenta ANKIETA ABSOLWENTA. Losy zawodowe absolwentów PWSZ w Raciborzu
24 mj 2012 r. Ankit solwnt Wyni I Sttus oowiązująy Symol Stron 1/5 ANKIETA ABSOLWENTA Losy zwoow solwntów PWSZ w Riorzu Dro Asolwntko, Droi Asolwni! HASŁO DO ANKIETY: Prosimy o okłn przzytni pytń i zznzni
Środowisko życia i zdrowie - edukacja ekologiczna
Zspół Szkół Mhniznyh Elktryznyh i Elktroniznyh mgr Grzgorz Gurzyński Śroowisko żyi i zrowi - ukj kologizn Projkt progrmu wyhowwzgo l wyhownków Intrntu ZSMEiE w Toruniu propgujągo ziłni prokologizn i zrowy
WYKŁAD nr 14,15. Stabilność i korekcja układów liniowych
WYŁAD r Stilość i orej ułdów liiowyh Stilość ułdu O ułdzie powiemy że jet tily jeżeli w wyiu dziłi złóei i po jego utiu wr o do pierwotego tu utloego lu oiąg owy t utloy w przypdu pozoti złóei tłym poziomie.
Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.
Z n a k s p r a w y G O S I R D Z P I 2 7 1 0 5 32 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f W y k o n a n i e p r z e g l» d ó w k o n s e r w a c y j n o -
Gdyńskim Ośrodkiem Sportu i Rekreacji jednostka budżetowa
W Z Ó R U M O W Y z a w a r t a w G d y n i w d n i u 2 0 1 4 r po m i d z y G d y s k i m O r o d k i e m S p o r t u i R e k r e a c j i j e d n o s t k a b u d e t o w a ( 8 1-5 3 8 G d y n i a ), l
ELEMENTY PROSTOKĄTNE Informacje techniczne 1 Kanały 2 Kolana 3 Trójniki 5 Odsadzki Czwórniki 7 Przejścia 8 ELEMENTY DACHOWE Podstawy dachowe 9
ELEMENTY PROSTOKĄTNE nomcj tcniczn 1 Knły 2 Koln 3 Tójniki 5 Oszki Czwóniki 7 Pzjści 8 ELEMENTY DACHOWE Postwy cow 9 Wyzutni 11 Czpni powitz 13 Wywitzki 15 Koln czpn 15 NOX STANLESS STEEL 58-512 St Kminic
ANALIZA FOURIEROWSKA szybkie transformaty Fouriera
AALIZA FOURIEROWSKA szybi trasformaty Fourira dowola fuję priodyzą F( w zasi lub przstrzi (tx, ors T) moża przdstawić jao () F( b o + [ a si( + b os( ] gdzi π / T lub ω zauważmy, ż ω, jst ajiższą zęstośią
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania SYSTEMY DYNAMICZNE
Poliehi Gń Wyził Eleroehii i Auoyi er Iżyierii Syeów Serowi SYSTEY DYNAICZNE Zieość poi opiu yeów iągłyh eriły pooize o ćwizeń Teri T3 Oprowie: ziierz Duziiewiz, r h. iż. ihł Grohowi, r iż. Roer Piorowi,
2. Funktory TTL cz.2
2. Funktory TTL z.2 1.2 Funktory z otwrtym kolektorem (O.. open olletor) ysunek poniżej przedstwi odnośny frgment płyty zołowej modelu. Shemt wewnętrzny pojedynzej rmki NAND z otwrtym kolektorem (O..)
15. CAŁKA NIEOZNACZONA cz. I
5. CAŁKA NIEOZNACZONA cz. I Fukcj pirwot fukcji f w pwym przdzial (właciwym lub iwłaciwym) azywamy tak fukcj F, którj pochoda rówa si fukcji f w tym przdzial. Zbiór wszystkich fukcji pirwotych fukcji f
Rozkaz L. 7/ Kary organizacyjne 11. Odznaczenia Odznaczenia harcerskie
C h o r ą g i e w D o l n o l ą s k a Z H P W r o c ł a w, 3 1 l i p c a 2 Z w i ą z e k H a r c e r s t w a P o l s k i e g o K o m e n d a n t C h o r ą g w i D o l n o 6 l ą s k i e j Z H P i m. h m.
ANALIZA ANKIETY SKIEROWANEJ DO UCZNIÓW ZESPOŁU SZKÓŁ
ANALIZA ANKIETY SKIEROWANEJ DO UCZNIÓW ZEOŁU SZKÓŁ Bni nkietowe zostły przeprowzono w rmh relizji projektu eukyjnego Nie wyrzuj jk lei. Celem tyh ń yło uzysknie informji n temt świomośi ekologiznej uzniów
Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa w Gdyni Rozdział 2. Informacja o trybie i stosowaniu przepisów
Z n a k s p r a w y G C S D Z P I 2 7 1 0 2 8 2 0 1 5 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f W y k o n a n i e ro b ó t b u d o w l a n y c h w b u d y n k u H
CONNECT, STARTUP, PROMOTE YOUR IDEA
Dz ę u ę z r - T A ry. K z w ź ó ży u w USA www.. łą z sz s ł z ś F u T A ry! C yr t 2018 y Sy w Gór Wy rwsz S Fr s, 2018 Wszyst r w z strz ż. N ut ryz w r z wsz ł ś u r tu sz - w w st st z r. K w ą w
Grafy hamiltonowskie, problem komiwojażera algorytm optymalny
1 Grfy hmiltonowski, problm komiwojżr lgorytm optymlny Wykł oprcowny n postwi książki: M.M. Sysło, N.Do, J.S. Kowlik, Algorytmy optymlizcji yskrtnj z progrmmi w języku Pscl, Wywnictwo Nukow PWN, 1999 2
2 x U S B 2. 0 ( t y ł ), 2 x U S B 3. 0 ( t y ł ),
J e s t e m y f i r m s p e c j a l i z u j c s i w m i n i a t u r o w y c h k o m p u t e r a c h, z n a j d u j c y c h s z e r o k i e z a s t o s o w a n i e p r z y : w y w i e t l a nu i t r e c
2 ), S t r o n a 1 z 1 1
Z a k r e s c z y n n o c i s p r z» t a n i a Z a ł» c z n i k n r 1 d o w z o r u u m o w y s t a n o w i» c e g o z a ł» c z n i k n r 5 d o S p e c y f i k a c j i I s t o t n y c h W a r u n k ó w
Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.
Z n a k s p r a w y G O S I R D Z P I 2 70 1 3 7 2 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f U d o s t p n i e n i e w r a z z r o z s t a w i e n i e m o g
ARKUSZ WIELOSPECJALISTYCZNEJ OCENY FUNKCJONOWANIA UCZNIA
WJYJ Y JW / f GY ĄW Ź f f f ą f. f.. ź.. ą W Y JW ą f f ż f ą f ą f -. f. ż 1 2 ż f 1 B. 2 B. Y Y? ż Y - YJ G Y W Y W X Y J : : : : Y Ą Y Ł Y W - - / Y Y Y : ą W Ó Ł ą W Ó Y J -... Y W Ś Y J W / W ą??
Przykład 2.6. Przekrój złożony z trzech kształtowników walcowanych.
Przkłd 6 Przkrój złożon z trzh ksztłtowników wlownh Polni: Wznzć główn ntrln momnt bzwłdnośi orz kirunki główn dl poniższgo przkroju złożongo z trzh ksztłtowników wlownh 0800 0 80800 Dn dotzą ksztłtowników
MISKOLC. ubytovací katalóg. 1 www.hellomiskolc.hu
O í O OÓW OOWY 1 www í,, ý, ľ x š, í ť, čť, š š čý ý ľ, ý, ž ž,, ý č í Uč ľ, ň ý ľ í í í žť ť š ý ž ý č ž ý ô, š ď š í O 16 -í š äčš ž? ôž ť ž čť! ý ľ x č ý ť žť šť äčší žý ý í í ď, šš, č, í, í žčíš íš
LABORATORIUM DYNAMIKI MASZYN
LABORATORIUM DYNAMII MASZYN Ćwcz 5 IDENTYFIACJA OBIETU DYNAMICZNEO NA PODSTAWIE JEO LOARYTMICZNYCH CHARATERYSTY CZĘSTOTLIWOŚCIOWYCH. Cl ćwcz Orśl rów ruchu obtu dyczgo podtw go logrytczych chrtryty czętotlwoścowych,
Sieæ koordynatorów pobierania i przeszczepiania narz¹dów w Polsce w 2013 r.
Siæ kooryntorów poirni i przszzpini nrz¹ów w Pols w 2013 r. N koni 2013 r. unkjê trnsplntyjngo p³ni³o w Pols ³¹zni 274 osoy. Njwiêksz¹ zœæ, 228 osó, stnowili szpitlni kooryntorzy poirni nrz¹ów. Kooryntorzy
%%'!)%'targzip gunzipcompressuncompressdiffpatch* %!+%,-./! Nazwy programów, polece, katalogów, wyniki działania wydawanych polece.
!" #!"#"$" % $%&%'( %%'!)%'trgzip gunzipomprssunomprssdiffpth* &$ #$"" " %!+%,-./! #"'% 0%%! +%%1'%! 23 23 () *"!#!! Czionk o stłj szrokoi Nzwy progrmów, pol, ktlogów, wyniki dziłni wydwnyh pol. Czionk
1 3. N i e u W y w a ć w o d y d o d o g a s z a n i a g r i l l a! R e k o m e n d o w a n y j e s t p i a s e k Z a w s z e u p e w n i ć s i
M G 4 2 7 v.1 2 0 1 6 G R I L L P R O S T O K Ą T N Y R U C H O M Y 5 2 x 6 0 c m z p o k r y w ą M G 4 2 7 I N S T R U K C J A M O N T A 7 U I B E Z P I E C Z N E G O U 7 Y T K O W A N I A S z a n o w
460 Szeregi Fouriera. Definicja. Definicja. Układ trygonometryczny. Definicja Układ ortogonalny funkcji ( ϕ n
6 Szeregi Fourier Defiij Dwie fuje ψ :< > C zywmy fujmi ortogolymi przedzile < > gdy ψ Defiij Ciąg fuji ) :< > C zywmy ułdem ortogolym przedzile < > gdy fuje są prmi ortogole przedzile < > tz gdy j j λ
Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa Rozdział 2. Informacja o trybie i stosowaniu przepisów
Z n a k s p r a w y G C S D Z P I 2 7 1 01 82 0 1 5 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A P r o m o c j a G m i n y M i a s t a G d y n i a p r z e z z e s p óp
5. WYKORZYSTANIE GRAFÓW PRZEPŁYWU SYGNAŁÓW DO BUDOWY MODELI MATEMATYCZNYCH
5. Worzstni grów rzłwu sgnłu o uow moli mtmtznh 5. WYKORZYSTANIE RAFÓW PRZEPŁYWU SYNAŁÓW DO UDOWY MODELI MATEMATYCZNYCH 5.. Wrowzni o grów rzłwowh Njzęśij sotną ostią grizną ułów utomti są shmt struturln
a) b) Rys. 6.1. Schemat ideowo-konstrukcyjny układu do przykładu 6.1 a) i jego schemat blokowy
04 6. Ztoownie metod hemtów lokowh do nliz włśiwośi ukłdów utomtki Shemt lokow ukłdu utomtki jet formą zpiu mtemtznego modelu dnego ukłdu, n podtwie której, wkorztują zd przedtwione rozdzile 3.7, możn
Gdyńskim Ośrodkiem Sportu i Rekreacji jednostka budżetowa
Z a ł» c z n i k n r 5 d o S p e c y f i k a c j i I s t o t n y c h W a r u n k Zó aw m ó w i e n i a Z n a k s p r a w y G O S I R D Z P I 2 7 1 0 1 1 2 0 14 W Z Ó R U M O W Y z a w a r t a w Gd y n
Rozdział 1. Nazwa i adres Zamawiającego Rozdział 2. Informacja o trybie i stosowaniu przepisów Rozdział 3. Przedmiot zamówienia
Z n a k s p r a w y G O S I R D Z P I 2 7 1 0 1 0 2 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f S p r z» t a n i e i u t r z y m a n i e c z y s t o c i g d y
ZADANIA Układy nieliniowe. s 2
Przykłd Okrślić punky równowgi podngo ukłdu ZDNI Ukłdy niliniow u f(,5 y Ry. Część niliniow j okrślon z poocą funkcji: f ( Zkłdy, ż wyuzni j zrow: u. Punky równowgi odpowidją yucji, gdy pochodn części
z d n i a 1 5 m a j a r.
C h o r ą g i e w D o l n o l ą s k a Z H P D e c y z j a n r 1 4 / I X / 2 0 1 5 K o m e n d a n t a C h o r ą g w i D o l n o 6 l ą s k i e j Z H P z d n i a 1 5 m a j a 2 0 1 5 r. w s p r a w i e g
d o b r y - 4 d s t 3, d o p 2, n d s t % % - d o b r y
Z a ł c z n i k N1 r d o S t a t u t u Z e s p o ł u S z k ó ł C e n t r u m E d u k a c j i i m. I g n a c e g o Ł u k a s i e w i c z a W e w n t r z s z k o l n y S y s t e m O c e n i a n i a w Z e
GRAFY i SIECI. Graf: G = ( V, E ) - para uporządkowana
GRAFY podstwowe definicje GRAFY i SIECI Grf: G = ( V, E ) - pr uporządkown V = {,,..., n } E { {i, j} : i j i i, j V } - zbiór wierzchołków grfu - zbiór krwędzi grfu Terminologi: grf = grf symetryczny,
Mazurskie Centrum Kongresowo-Wypoczynkowe "Zamek - Ryn" Sp. z o.o. / ul. Plac Wolności 2,, Ryn; Tel , fax ,
R E G U L A M I N X I I I O G Ó L N O P O L S K I K O N K U R S M Ł O D Y C H T A L E N T Ó W S Z T U K I K U L I N A R N E J l A r t d e l a c u i s i n e M a r t e l l 2 0 1 5 K o n k u r s j e s t n
4. Rekurencja. Zależności rekurencyjne, algorytmy rekurencyjne, szczególne funkcje tworzące.
4. Reurecj. Zleżości reurecyje, lgorytmy reurecyje, szczególe fucje tworzące. Reurecj poleg rozwiązywiu problemu w oprciu o rozwiązi tego smego problemu dl dych o miejszych rozmirch. W iformtyce reurecj
Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.
Z n a k s p r a w y G O S I R D Z P I 2 7 1 0 2 32 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f O b s ł u g a o p e r a t o r s k a u r a w i s a m o j e z d n
Katalog został ułożony wg mocy zainstalowanej elektrociepłowni.
g ży g my j IT ZŁDÓW ZMYŁWYCH IDJĄCYCH TCIŁWI (jść g my j) ąg m y b b 1 fy - 1020,0 1020,0 19 2 fy - W 461,6 461,6 21 3 M Ś 202,0 193,0 23 4 y Zy "y" 124,5 119,0 25 5 y T 118,3 122,0 27 6 ITTI WIDZY 111,6
2. Regulamin uchwala Rada Nadzorcza na podstawie 69 Statutu Spółdzielni Mieszkaniowej Arka we Wrocławiu.
Rgulmin rmontów orz wykorzystywni śroków z funuszu rmontowgo Spółzilni Miszkniowj Ark w Wrołwiu złąznik o uhwły 67/03 I Postnowini ogóln 1. Rgulmin okrśl oowiązki Spółzilni i jj Członków w zkrsi nprw wwnątrz
METODA ELEMENTÓW SKOŃCZONYCH
METOD ELEMETÓW SOŃCZOC Pzyłd. towni pł fomizm MES. Dn: - m, E. P P m m m B y... Dytyzj. W towniy podził jt ozywity pęt jt mntm, towy węzłm w ozmini MES. Pzy podzi n węzły i mnty w łdzi gonym, nmy mntów
Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.
Z n a k s p r a w y G O S I R D Z P I 2 7 1 0 3 12 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f O b s ł u g a o p e r a t o r s k aw r a z z d o s t a w» s p r
Do roboty" Dr in. Micha! Grodecki
P mtriów Dl znyh przkrojów olizy g!ówn ntrln momnty zw!noi. N ih postwi olizy promini zw!noi, nrysow lips zw!noi. Uwgi: Przkroj mj jn o symtrii. W zwizku z tym jn z osi poztkowgo uk!u wspó!rznyh musi si
Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa Rozdział 2. Informacja o trybie i stosowaniu przepisów
Z n a k s p r a w y G C S D Z P I 2 7 1 0 4 52 0 1 5 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A W y k o n a n i e p o m i a r ó w i n s t a l a c j i e l e k t r y c
Politechnika Śląska Wydział Automatyki, Elektroniki i Informatyki Praca dyplomowa
Politechni Ślą Wydził Automtyi, Eletronii i Informtyi Prc dyplomow Temt : Stnowio lbortoryjne do ymulcji obietów n terowniu SLC500. Promotor : Dr inż. J.przy Student : Tomz tuzczy Cel prcy Celem prcy było
Macierze w MS Excel 2007
Mcierze w MS Ecel 7 Progrm MS Ecel umożliwi wykoywie opercji mcierzch. Służą do tego fukcje: do możei mcierzy MIERZ.ILOZYN do odwrci mcierzy MIERZ.ODW do trspoowi mcierzy TRNSPONUJ do oliczi wyzczik mcierzy
Odpływ ścienny Scada. Kreatywne odwadnianie łazienki. www.kessel.pl
Oływ śy S Kyw w łz www.. 2 S Oływ śy S T Gó węź ły Wyść zuwy łz Oyy zy wyywu ów Oływ śy S zu uwą zuwą. Dzę w wyś zuwy (y 80 ó węz ły) ę ż w ąy. 115-165 H2 H1 15 362 H3 Py wyów Pły uw óż żw zwą wą zuwę
Fragment darmowy udostępniony przez Wydawnictwo w celach promocyjnych. EGZEMPLARZ NIE DO SPRZEDAŻY!
Frgmnt rmowy uostępniony przz Wywnictwo w clch promocyjnych. EGZEMPLARZ NIE DO SPRZEDAŻY! Wszlki prw nlżą o: Wywnictwo Zilon Sow Sp. z o.o. Wrszw 2015 www.zilonsow.pl Prw łoń, lw łoń. Przyłóż obywi łoni
K R Ó L O W I E PD Ż N I IPWP.P K J S O L D U N G O W I E P 1 0
1 0 A Królowie Danii K J O L D U N G O W I E. S K J O L D U N G O W I E. E S T R Y D S E N O W I E K R Ó L O W I E D Ż N I IW. S. U N IŻ KŻ L MŻ R S KŻ. O L D E N B U R G O W I E. G L Ü C K S B U R G O
Wykªad 8. Pochodna kierunkowa.
Wykªd jest prowdzony w opriu o podr znik Anliz mtemtyzn 2. enije, twierdzeni, wzory M. Gewert i Z. Skozyls. Wykªd 8. ohodn kierunkow. enij Nieh funkj f b dzie okre±lon przynjmniej n otozeniu punktu (x
Cezary Michalski, Larysa Głazyrina, Dorota Zarzeczna Wykorzystanie walorów turystycznych i rekreacyjnych gminy Olsztyn
Cezary Michalski, Larysa Głazyrina, Dorota Zarzeczna Wykorzystanie walorów turystycznych i rekreacyjnych gminy Olsztyn Prace Naukowe Akademii im. Jana Długosza w Częstochowie. Kultura Fizyczna 7, 215-223
Ż S KŻ Ń C Z Y C Y PWP X I Ł I X I VPW.P W I T T E L S BŻ C H O W I EPPPPPPPPPPPPPPP IP L U K S E M B U R G O W I EPPPPPPPPPPPPPP P X I V MX VP w.a 8
Ż S KŻ Ń C Z Y C Y W X I Ł I X I VW. W I T T E L S BŻ C H O W I E I L U K S E M B U R G O W I E X I V MX V w.a 8 8 W i t t e l s b a c h o w i e L U D W I K W Ż L D E MŻ R L U D W I K I STŻ R S Z Y FŻ
Gdyńskim Ośrodkiem Sportu i Rekreacji jednostką budżetową Zamawiającym Wykonawcą
W Z Ó R U M O W Y n r 1 4 k J Bk 2 0 Z a ł» c z n i k n r 5 z a w a r t a w G d y n i w d n i u 1 4 ro ku p o m i 2 0d z y G d y s k i m O r o d k i e m S p o r t u i R e k r e a c j ei d n o s t k» b
Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.
Z n a k s p r a w y G O S I R D Z P I 2 7 1 03 3 2 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f U d o s t p n i e n i e t e l e b i m ó w i n a g ł o n i e n i
Teoria struktury kapitału
Toria strutury apitału Dr Tomasz Słońsi Toria strutury apitału, Moigliani-Millr (MM), Nobl w zizini onomii Powaliny nowoczsnj torii strutury apitału zostały położon w rou 1958 w molu, tóry opirał się o
Łączne nakłady finansowe i limity zobowiązań
Zł Nr 2 o Uhwły Nr XXX/161/2012 Ry Gminy Jktorów z ni 23 lip 2012r. Progrmy, projekty lu zni związne z progrmmi relizownymi z uziłem śroków, o któryh mow w rt. 5 ust. 1 pkt 2 i 3, (rzem) Wykz przesięwzięć
ZARZĄDZENIE N r 149/2013. Wójt G m i n y Skołyszyn. z d n i a 31 g r u d n i a 2013 r. w sprawie z m i a n y budżetu g m i n y Skołyszyn na 2013 r.
W O J E G M I N Y w Skołyszynie ZARZĄDZENIE N r 149/2013 Wójta G m i n y Skołyszyn z d n i a 31 g r u d n i a 2013 r. w sprawie z m i a n y budżetu g m i n y Skołyszyn na 2013 r. Działając na podstawie
Filtry cyfrowe NOI (projektowanie)
Filtry yfrow OI (rotowi) to trow trformty ZE (imiiośi o. imulow) Polg oil logowgo filtru rototyowgo, wil filtrów logowyh o oyym igui. tęi ży ti ątowy filtr roymu ię filtrm yfrowym o oyym igui. W t oó utworo
Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa Rozdział 2. Informacja o trybie i stosowaniu przepisów
Z n a k s p r a w y G C S D Z P I 2 7 1 07 2 0 1 5 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f U s ł u g i s p r z» t a n i a o b i e k t Gó w d y s k i e g o C e n
MATEMATYKA Przed próbną maturą. Sprawdzian 2. (poziom rozszerzony) Rozwiązania zadań
MATEMATYKA Przed próbą mturą Sprwdzi (poziom rozszerzoy) Rozwiązi zdń Zdie ( pkt) P Uczeń oblicz potęgi o wykłdikc wymieryc i stosuje prw dziłń potęgc o wykłdikc wymieryc 5 ( ) 7 5 Odpowiedź: C Zdie (
Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa w Gdyni Rozdział 2. Informacja o trybie i stosowaniu przepisów
Z n a k s p r a w y G C S D Z P I 2 7 1 03 7 2 0 1 5 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A W y k o n a n i e r e m o n t u n a o b i e k c i e s p o r t o w y mp
Zakres materiału obowiązujący do egzaminu poprawkowego z matematyki klasa 3 technikum str 1
Zks mtłu oowązuąy o zmu popwkowo z mtmtyk kls tkum st Dzł pomowy Dotyzy klsy Zks lz Wyksy włsoś uk wykłz symptot uk wykłz Fuk wykłz Pzsuę wyksu uk wykłz o wkto I loytmy Poę loytmu włsoś loytmów Olz loytmów,
F u l l H D, I P S D, I P F u l l H D, I P 5 M P,
Z a ł» c z n i k n r 6 d o S p e c y f i k a c j i I s t o t n y c h W a r u n k ó w Z a m ó w i e n i a Z n a k s p r a w yg O S I R D Z P I 2 7 1 02 4 2 0 1 5 W Z Ó R U M O W Y z a w a r t a w G d y
Gr. 100 i 125 mm INSTRUKCJA MONTA U KASETY. c f e. h g d. Systemy przesuwne do drzwi. System do œciany karton-gips
Sstm przsuwn o rzwi INSTRUKCJA MONTA U KASETY Gr. 100 i 125 mm Sstm o œin krton-ips Zstwini poszzólnh lmntów h i m l ELEMENTY TYLKO DO KASET NA GR. 125 mm S³upki pionow kst 2 szt (komplt) i Klips s³u ¹
Lekcja 7. Chodzenie przy nodze mijanie innych psów. Nauka wchodzenia na kocyk polecenie Na miejsce
Lcj 7 Chdzni rzy ndz mijni innych ó Smycz rj ręc, i rzy Tjj j ndz Wydj mndę CHODŹ i rzjdź i ró Su ugę Tjg n bi trzymjąc j ręc iłczę ub znur d rzciągni n yści mt (mżz użyć ygnłu nutrng trz Lcj 2) Wydj mndę
Shimmy szuja. Jerzy Wasowski arr voc. Andrzej Borzym. O! Szu-ja! # œ œnœnœ. Da ba da, da ba da, da ba da ba da ba da, da ba da, da ba dam
Shimmy szuj Jeremi Przybor Jerzy Wsoski rr voc Andrzej Borzym Soprno Soprno Alto Tenor h = 75 O! Szu-j! N-o-m- mił, n-truł C # b # nn C D b, b, b b b, b, b m C # b b n b # D b, b, b, b m # Bss C m m m
zestaw DO ĆWICZEŃ z matematyki
Mtemtyk Poziom podstwowy zestaw DO ĆWICZEŃ z mtemtyki poziom podstwowy rozumownie i rgumentcj krty prcy ZESTAW I Zdnie 1 Uzsdnij, że pole romu o przekątnych p i q wyrż się wzorem P = 1 pq Rozwiąznie: Przyjmij
G i m n a z j a l i s t ó w
Ko³o Mtemtyzne G i m n z j l i s t ó w 1. Lizy,, spełniją wrunki: (1) ++ = 0, 1 () + + 1 + + 1 + = 1 4. Olizyć wrtość wyrżeni w = + + Rozwiąznie Stowrzyszenie n rzez Edukji Mtemtyznej Zestw 7 szkie rozwizń
Do roboty" Dr in. Micha! Grodecki
P mtriów Dl znyh przkrojów olizy g!ówn ntrln momnty zw!noi. N ih postwi olizy promini zw!noi, nrysow lips zw!noi. Uwgi: Przkroj mj jn o symtrii. W zwizku z tym jn z osi poztkowgo uk!u wspó!rznyh musi si
O X Y D E M O N 8 Y z Z s W Z - z 8 i ą z a W i Z - l a R - - S Y Z W ó 8 R - X - a. 8 a W i a 4 W a s R i s S s j S X i f S W k Y j W a l W ś Y i k - z 9 ś Y i. Y W Z s - W 9 O W a s O X Y 2 O M k. R
TRZY NARZĘDZIA NIEZBĘDNE DO EFEKTYWNEGO TRENINGU GRY W GOLFA
TRZY NARZĘDZIA NIEZBĘDNE DO EFEKTYWNEGO TRENINGU GRY W GOLFA 1 MARKER SUCHOŚCIERALNY Po co? Żeby wiedzieć gdzie uderzasz piłkę na licu kija. Uder zani e środki em jak i rów nież umi ejętność uderzani a
Instrukcje dotyczące systemu Windows w przypadku drukarki podłączonej lokalnie
Stron 1 z 7 Połązni Instrukj otyzą systmu Winows w przypku rukrki połązonj loklni Uwg: Przy instlowniu rukrki połązonj loklni, jśli ysk CD-ROM Oprogrmowni i okumntj ni osługuj ngo systmu opryjngo, nlży
Zakres materiału obowiązujący do egzaminu poprawkowego z matematyki klasa 2 Ha i 2 Lb 2011 str 1
Zres teriłu oowiązująy do egziu poprwowego z tetyi s H i 0 str Dził progrowy Fuj wdrtow Wieoiy iągi Wieoąty Trygooetri Przyłdowe zdi: Fuj wdrtow:. D jest fuj: y 0 Zres reizji Włsośi fuji (p. ootoizośd,
Kolokwium II GRUPA A. Przy ka»dym z podpunktów wpisz, czy jest on prawdziwy (TAK) czy faªszywy (NIE).
Mtmtyk dl Biologów Wrszw, 6 styzni 008. Imi i nzwisko:... nr indksu:... Kolokwium II GRUPA A Przy k»dym z podpunktów wpisz, zy jst on prwdziwy (TAK) zy fªszywy (NIE). 1. Przdstwiony n rysunku grf (wirzhoªki
Algebra liniowa z geometrią analityczną
WYKŁAD. Elmtar fucj mij spoloj: wilomiay, pirwiasti jdości, fucja: pirwiast stopia, fucja wyładica, fucja logarytmica. Podstawow własości wilomiaów: podilość, twirdi Bout, podstawow twirdi algbry, suai
Oświadczam, że warunki ww. umowy zawartej z Wojewódzką Komendą OHP są przestrzegane. Środki finansowe prosimy przekazać na rachunek bankowy Nr...
Dz tw r 77 4674 Pz. 518 ącz r 4 Mcwć t Pczęć rcwc (mcwć t) (częć rcwc) Wwóz Km OHP z rctwm trum uc Prc Mz w... DOKŁD MRY MÓW O RFDJĘ! Or, z tór wum rfucę. W rcwc Dzń zwrc umw rfucę rfucę wgrzń wcch mcm
SKALA PUNKT OW A DO ROZPAT R Y W A N I A WNIOS K Ó W SKŁADANYCH PRZE Z OSOB Y NIEPEŁNO S P R A W N E NA LIKWIDACJĘ BARIE R
Załącznik nr 3 do Zasad dofinansowania likwidacji barier architektonicznych, technicznych i w komunikowaniu się osób niepełno spra wny c h. w związku z indywidualnymi potrzebami SKALA PUNKT OW A DO ROZPAT