Algorytmy kodowania entropijnego
|
|
- Anna Rybak
- 8 lat temu
- Przeglądów:
Transkrypt
1 Algorytmy kodowania entropijnego 1. Kodowanie Shannona-Fano 2. Kodowanie Huffmana 3. Jednoznaczność kodów Huffmana. Kod o minimalnej wariancji 4. Dynamiczne kodowanie Huffmana
2 Poprzedni wykład - podsumowanie 1. Kompresja danych niezbędny element systemów multimedialnych 2. Algorytmy kompresji: stratne i bezstratne 3. Fazy budowy algorytmu: modelowania i kodowanie 4. Entropia miara średniej ilości informacji generowanej przez źródło. Shannon: średnia długość kodu w kompresji bezstratnej entropii 5. Kodowanie a. Minimalizacja średniej długości kodu b. Jednoznaczna dekodowalność 6. Kody prefiksowe wyróŝniona klasa kodów zapewniająca jednoznaczną dekodowalność i optymalność
3 Kodowanie entropijne Sformułowanie problemu: Źródło S generuje symbole (litery a i z alfabetu A Zadany jest model probabilistyczny określający prawdopodobieństwa P(a i i entropię H źródła Znaleźć kod prefiksowy minimalizujący redundancję R = l P ( a i i i Historycznie pierwszy taki algorytm Shannon (Bell Labs, Fano (MIT, 1949 H
4 Kodowanie Shannona - Fano 1. Tworzymy listę liter 2. Sortujemy ją wg. malejących częstości wystąpienia (prawdopodobieństw 3. Dzielimy listę na dwie podlisty, tak by sumy częstości na obu były jak najbliŝsze 4. Wszystkim literom na górnej liście przypisujemy 0, na dolnej 1 5. Stosujemy rekursywnie krok 3 i 4 dopóki kaŝdy z symboli stanie się liściem w drzewie Przykład: Alfabet {a, b, c, d, e} opisany częstościami: a b c d e
5 Kodowanie Shannona-Fano c.d. {a,b,c,d,c;39} {a,b;22} {c,d,e;17} {d,e;11} a b c 0 1 d e Litera Częst. P(a i H(a i c (a i l i *p(a i a b c R=0.096 = 4.4%H d e
6 Kody Shannona-Fano własności Łatwy do zaprogramowania, dość efektywny algorytm Z konstrukcji kod prefiksowy Kod typu od góry do dołu (od korzenia do liści. Czy jest to kod optymalny (czy dla danego modelu probabilistycznego minimalizuje średnią długość? Odpowiedź niekoniecznie!!!
7 Kodowanie Huffmana Przesłanki cechy kodu optymalnego 1. Symbolom występującym częściej odpowiadają w kodzie optymalnym krótsze słowa kodowe 2. Dwa najrzadziej występujące symbole mają w kodzie optymalnym równe długości Podstawa tworzenia kodu: do 1 i 2 dodajemy zasadę: słowa kodowe odpowiadające najmniej prawdopodobnym symbolem róŝnią się tylko jednym bitem a, b najmniej prawd. symbole, P(a P(b c(a=m*0, c(b=m*1
8 Kodowanie Huffmana algorytm Przepis na konstrukcję drzewa binarnego kodu: 1. Utwórz listę symboli; posortuj wg prawdopodobieństw 2. Utwórz wierzchołki zewn. (liście odpowiadające wyjściowym symbolom 3. Weź dwa węzły odpowiadające symbolom o najmniejszym prawdopodobieństwie. Przypisz im odpowiednio 0 i 1. Utwórz węzeł reprezentujący ich sumę (z prawdopodobieństwem równym sumie 4. Dodaj nowo utworzony węzeł do listy węzłów. Usuń z tej listy jego węzły macierzyste 5. Powtarzaj całą procedurę dopóki nie pozostanie tylko jeden węzeł (utoŝsamiony z korzeniem drzewa
9 Kodowanie Huffmana przykład a,15 b,7 c,6 d,6 e,5 Litera Częst. P(a i H(a i c (a i l i *p(a i a b c R=0.044 = 2.0 % H d e
10 Kody Huffmana własności Łatwy do zaprogramowania Z konstrukcji kod prefiksowy Kod typu od dołu do góry (od liści do korzenia Jest to kod optymalny (dla danego modelu probabilistycznego Ograniczenia na średnią długość kodu: H(S l H(S + e e = p max gdy p max > 0.5 e = p max gdy p max 0.5
11 Jednoznaczność kodów Huffmana Dany jest model probabilistyczny P(a i. Czy określa on kod w jednoznaczny sposób? Odpowiedź niekoniecznie. Powód róŝne moŝliwości sortowania w trakcie tworzenia kodu RóŜne kody będą miały tą samą średnią długość; róŝnić się będą wariancją Najkorzystniej uŝywać kodu o minimalnej wariancji Przykład: alfabet {a, b, c, d, e} z modelem probabilistyczym: a b c d e
12 Jednoznaczność kodów Huffmana c.d. I sposób a b c d e II sposób a b c d e
13 Jednoznaczność kodów Huffmana c.d. Litera Praw. Kod 1 Kod 2 Dl. 1 Dl. 2 Kw.1 Kw.2 a b c d e Znaczenie praktyczne im większa wariancja, tym trudniej zaprojektować bufor przy transmisji przez kanał telekomunikacyjny Zasada tworzenie kodu o minimalnej wariancji symbole złoŝone umieszczamy na liście sortowania maksymalnie wysoko
14 Rozszerzone kody Huffmana Gdy alfabet mały, prawdopodobieństwa wystąpienia liter silnie zróŝnicowane duŝa redundancja Litera P(a i H(a i k i l i l i P(a i a b SUMA R= l śr H = =0.531= 113% H MoŜliwe rozwiązanie kodowanie ciągów liter o ustalonej długości k (k = 2, 3,... Rozszerzony alfabet: litery to ciągi k-elementowe oryginalnego alfabetu Gdy m rozmiar wyjściowego alfabetu; to rozmiar rozszerzonego alfabetu = m k
15 Rozszerzone kody Huffmana c.d. Litery P(a i H(a i k i l i l i P(a i aa ab ba bb SUMA R zn = ( /2 = = 37.5% H Gdy kodujemy trójki R zn = 13.6% H Wynik ogólny średnia długość kodu ograniczona poprzez: H(S l H(S + 1/k Wada silny (wykładniczy wzrost rozmiaru alfabetu
16 Kodowanie dynamiczne Omawiane wyŝej modele wymagają znajomości modelu probabilistycznego na ogół nie jest on znany. MoŜliwe wyjście procedura dwuprzebiegowa. Nawet gdy model znany, to jego przekazanie (zwłaszcza w przypadku modelu wyŝszego rzędu stanowi dodatkowe obciąŝenie. Wyjście pozbawione powyŝszych wad kodowanie dynamiczne (adaptacyjne.
17 Kodowanie dynamiczne zasada Ogólny schemat kodowania dynamicznego: KODER Inicjalizuj_model(; while ((a=getchar(input!= eof { koduj(a,output; update_model(a; } DEKODER Inicjalizuj_model(; while ((a=dekoduj(input!= eof { putc(a,output; update_model(a; } Koder i dekoder uŝywają tych samych procedur inicjalizuj_model i update_model to powoduje, Ŝe model ewoluuje tak samo dla nadawcy (kodera i odbiorcy (dekodera.
18 Dynamiczne kodowanie Huffmana Model opisany przez drzewo binarne. Liście (wierzchołki zewnętrzne kwadraty, wierzchołki wewnętrzne kółka. Dla alfabetu o n literach jest 2*n 1 wierzchołków Dodatkowe elementy opisu Waga wierzchołka (dla zewnętrznych liczba wystąpień; dla wewnętrznych suma wag jego potomstwa Numer wierzchołka jednoznacznie go identyfikujący Wierzchołki o mniejszym numerze mają niŝsze wagi. Dla kaŝdego 1 j n wierzchołki y 2j-1 i y 2j są potomkami tego samego rodzica, którego numer jest większy y 2j-1 i y 2j własność rodzeństwa. Dodatkowy wierzchołek NYT o wadze 0 odpowiadający symbolom jeszcze nie dołączonym do drzewa Zbiór wierzchołków o takiej samej wadze nazywamy blokiem
19 Inicjalizacja Przed rozpoczęciem kaŝdej literze alfabetu przypisujemy wejściowy kod (taki sam dla kodera i dekodera określony następująco: niech m rozmiar alfabetu. Wybieramy e i r takie, Ŝe m = 2 e + r, 0 r < 2 e Dla 1 k 2 r kodem a k jest (e+1 bitowa binarna reprezentacja liczby (k-1, dla pozostałych k kodem a k jest e bitowa binarna reprezentacja liczby (k-r-1 Przykład: litery angielskie, m=26, e=4, r=10. Kod a (k= , kod b (k= , kod a Początkowe drzewo: jeden wierzchołek NYT o wadze 0
20 Procedura uaktualniająca
21 Kodowanie dynamiczne - przykład Zakodować ciąg [aardv] zakładając, Ŝe alfabet zawiera 26 małych liter angielskich Inicjalizacja: 1. m=26 e=4, r=10 2. Kody startowe liter: c(a = 00000, c(d = 00011, c(r = 10001, c(v = 1011 Kodowanie: 1. Zakodowany ciąg ma postać: Kolejne drzewa reprezentacje modelu są pokazane na następnej stronie.
22 Procedura uaktualniająca - działanie
23 Procedura kodująca
24 Procedura dekodująca
25 Kody Huffmana - zastosowania Zwykle w połączeniu z innymi metodami (jako część procedury; np. LZ, JPEG Kompresja tekstu typowy stopień kompresji 1 : 1.65 Słabiej nadaje się do bezstratnej kompresji obrazu i dźwięku osiągany stopień kompresji 1 : 1.7 (gdy kodujemy róŝnice między pikselami lub kolejnymi próbkami dźwięku
Kompresja bezstratna. Entropia. Kod Huffmana
Kompresja bezstratna. Entropia. Kod Huffmana Kodowanie i bezpieczeństwo informacji - Wykład 10 29 kwietnia 2013 Teoria informacji Jeśli P(A) jest prawdopodobieństwem wystapienia informacji A to niech i(a)
Nierówność Krafta-McMillana, Kodowanie Huffmana
Nierówność Krafta-McMillana, Kodowanie Huffmana Kodowanie i kompresja informacji - Wykład 2 1 marca 2010 Test na jednoznaczna dekodowalność Kod a jest prefiksem kodu b jeśli b jest postaci ax. x nazywamy
Kodowanie Huffmana. Platforma programistyczna.net; materiały do laboratorium 2014/15 Marcin Wilczewski
Kodowanie Huffmana Platforma programistyczna.net; materiały do laboratorium 24/5 Marcin Wilczewski Algorytm Huffmana (David Huffman, 952) Algorytm Huffmana jest popularnym algorytmem generującym optymalny
Kompresja danych kodowanie Huffmana. Dariusz Sobczuk
Kompresja danych kodowanie Huffmana Dariusz Sobczuk Plan wykładu Kodowanie metodą Shannona-Fano Kodowanie metodą Huffmana Elementarny kod Golomba Kod Golomba Kod Rice a kompresja danych 2 Efektywny kod
KODY SYMBOLI. Kod Shannona-Fano. Algorytm S-F. Przykład S-F
KODY SYMBOLI Kod Shannona-Fano KODOWANIE DANYCH, A.Przelaskowski Metoda S-F Kod Huffmana Adaptacyjne drzewo Huffmana Problemy implementacji Kod Golomba Podsumowanie Kod drzewa binarnego Na wejściu rozkład:
Teoria informacji i kodowania Ćwiczenia
Teoria informacji i kodowania Ćwiczenia Piotr Chołda, Andrzej Kamisiński Katedra Telekomunikacji Akademii Górniczo-Hutniczej Kod źródłowy Kodem źródłowym nazywamy funkcję różnowartościową, która elementom
Algorytmy kompresji. Kodowanie Huffmana, kodowanie arytmetyczne
Algorytmy kompresji Kodowanie Huffmana, kodowanie arytmetyczne Kodowanie arytmetyczne Peter Elias 1923-2001 Kodowanie arytmetyczne to metoda kodowania źródłowego dyskretnych źródeł sygnałów, stosowana
Kody Tunstalla. Kodowanie arytmetyczne
Kody Tunstalla. Kodowanie arytmetyczne Kodowanie i kompresja informacji - Wykład 3 8 marca 2010 Kody Tunstalla Wszystkie słowa kodowe maja ta sama długość ale jeden kod może kodować różna liczbę liter
Wstęp Statyczne kody Huffmana Dynamiczne kody Huffmana Praktyka. Kodowanie Huffmana. Dawid Duda. 4 marca 2004
4 marca 2004 Podstawowe oznaczenia i definicje Wymagania wobec kodu Podstawowa idea Podsumowanie Podstawowe oznaczenia i definicje Podstawowe oznaczenia i definicje: alfabet wejściowy: A = {a 1, a 2,...,
0-0000, 1-0001, 2-0010, 3-0011 itd... 9-1001.
KODOWANIE Jednym z problemów, z którymi spotykamy się w informatyce, jest problem właściwego wykorzystania pamięci. Konstruując algorytm staramy się zwykle nie tylko o zminimalizowanie kosztów czasowych
Definicja. Jeśli. wtedy
Definicja Jeśli wtedy Cel kompresji: zredukowanie do minimum oczekiwanego (średniego) kosztu gdzie l i jest długością słowa kodu c i kodującego symbol a i Definicja Definicje Efektywność kodowania określamy
Kompresja Kodowanie arytmetyczne. Dariusz Sobczuk
Kompresja Kodowanie arytmetyczne Dariusz Sobczuk Kodowanie arytmetyczne (lata 1960-te) Pierwsze prace w tym kierunku sięgają początków lat 60-tych XX wieku Pierwszy algorytm Eliasa nie został opublikowany
Przetwarzanie i transmisja danych multimedialnych. Wykład 3 Kodowanie Shannona Fano i Huffmana. Przemysław Sękalski.
Przetwarzanie i transmisja danych multimedialnych Wykład 3 Kodowanie Shannona Fano i Huffmana Przemysław Sękalski sekalski@dmcs.pl Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych
KODY SYMBOLI. Materiały KODA, A.Przelaskowski. Koncepcja przedziałów nieskończonego alfabetu
KODY SYMBOLI Materiały KODA, A.Przelaskowski Koncepcja drzewa binarnego Metoda S-F Kod Huffmana Adaptacyjne drzewo Huffmana Problemy implementacji Koncepcja przedziałów nieskończonego alfabetu Proste kody
Temat: Algorytm kompresji plików metodą Huffmana
Temat: Algorytm kompresji plików metodą Huffmana. Wymagania dotyczące kompresji danych Przez M oznaczmy zbiór wszystkich możliwych symboli występujących w pliku (alfabet pliku). Przykład M = 2, gdy plik
Kodowanie i kompresja Streszczenie Studia dzienne Wykład 9,
1 Kody Tunstalla Kodowanie i kompresja Streszczenie Studia dzienne Wykład 9, 14.04.2005 Inne podejście: słowa kodowe mają ustaloną długość, lecz mogą kodować ciągi liter z alfabetu wejściowego o różnej
Kodowanie informacji
Kodowanie informacji Tomasz Wykład 4: kodowanie arytmetyczne Motywacja Podstawy i własności Liczby rzeczywiste Motywacje 1 średnia długość kodu Huffmana może odbiegać o p max + 0.086 od entropii, gdzie
Granica kompresji Kodowanie Shannona Kodowanie Huffmana Kodowanie ciągów Kodowanie arytmetyczne. Kody. Marek Śmieja. Teoria informacji 1 / 35
Kody Marek Śmieja Teoria informacji 1 / 35 Entropia Entropia określa minimalną statystyczną długość kodowania (przyjmijmy dla prostoty że alfabet kodowy A = {0, 1}). Definicja Niech X = {x 1,..., x n }
teoria informacji Entropia, informacja, kodowanie Mariusz Różycki 24 sierpnia 2015
teoria informacji Entropia, informacja, kodowanie Mariusz Różycki 24 sierpnia 2015 1 zakres materiału zakres materiału 1. Czym jest teoria informacji? 2. Wprowadzenie matematyczne. 3. Entropia i informacja.
mgr inż. Grzegorz Kraszewski SYSTEMY MULTIMEDIALNE wykład 4, strona 1. GOLOMBA I RICE'A
mgr inż. Grzegorz Kraszewski SYSTEMY MULTIMEDIALNE wykład 4, strona 1. KOMPRESJA ALGORYTMEM ARYTMETYCZNYM, GOLOMBA I RICE'A Idea algorytmu arytmetycznego Przykład kodowania arytmetycznego Renormalizacja
Kwantyzacja wektorowa. Kodowanie różnicowe.
Kwantyzacja wektorowa. Kodowanie różnicowe. Kodowanie i kompresja informacji - Wykład 7 12 kwietnia 2010 Kwantyzacja wektorowa wprowadzenie Zamiast kwantyzować pojedyncze elementy kwantyzujemy całe bloki
Wygra Polska czy Brazylia, czyli o tym jak zwięźle zapisywać informacje
Wygra Polska czy Brazylia, czyli o tym jak zwięźle zapisywać informacje Witold Tomaszewski Instytut Matematyki Politechniki Śląskiej e-mail: Witold.Tomaszewski@polsl.pl Je n ai fait celle-ci plus longue
Kodowanie i entropia
Kodowanie i entropia Marek Śmieja Teoria informacji 1 / 34 Kod S - alfabet źródłowy mocy m (np. litery, cyfry, znaki interpunkcyjne), A = {a 1,..., a n } - alfabet kodowy (symbole), Chcemy przesłać tekst
Entropia Kodowanie. Podstawy kompresji. Algorytmy kompresji danych. Sebastian Deorowicz
Algorytmy kompresji danych 2007 02 27 Plan wykładu 1 Modelowanie i kodowanie 2 Modelowanie i kodowanie Plan wykładu 1 Modelowanie i kodowanie 2 Modelowanie i kodowanie definicja stowarzyszona ze zbiorem
Teoria Informacji - wykład. Kodowanie wiadomości
Teoria Informacji - wykład Kodowanie wiadomości Definicja kodu Niech S={s 1, s 2,..., s q } oznacza dany zbiór elementów. Kodem nazywamy wówczas odwzorowanie zbioru wszystkich możliwych ciągów utworzonych
Podstawowe pojęcia. Teoria informacji
Kodowanie i kompresja informacji - Wykład 1 22 luty 2010 Literatura K. Sayood, Kompresja danych - wprowadzenie, READ ME 2002 (ISBN 83-7243-094-2) Literatura K. Sayood, Kompresja danych - wprowadzenie,
Kodowanie transformacyjne. Plan 1. Zasada 2. Rodzaje transformacji 3. Standard JPEG
Kodowanie transformacyjne Plan 1. Zasada 2. Rodzaje transformacji 3. Standard JPEG Zasada Zasada podstawowa: na danych wykonujemy transformacje która: Likwiduje korelacje Skupia energię w kilku komponentach
Algorytmy zachłanne. dr inż. Urszula Gałązka
Algorytmy zachłanne dr inż. Urszula Gałązka Algorytm zachłanny O Dokonuje wyboru, który w danej chwili wydaje się najkorzystniejszy. O Mówimy, że jest to wybór lokalnie optymalny O W rzeczywistości nie
Def. Kod jednoznacznie definiowalny Def. Kod przedrostkowy Def. Kod optymalny. Przykłady kodów. Kody optymalne
Załóżmy, że mamy źródło S, które generuje symbole ze zbioru S={x, x 2,..., x N } z prawdopodobieństwem P={p, p 2,..., p N }, symbolom tym odpowiadają kody P={c, c 2,..., c N }. fektywność danego sposobu
Algorytmy i struktury danych. Co dziś? Tytułem przypomnienia metoda dziel i zwyciężaj. Wykład VIII Elementarne techniki algorytmiczne
Algorytmy i struktury danych Wykład VIII Elementarne techniki algorytmiczne Co dziś? Algorytmy zachłanne (greedyalgorithms) 2 Tytułem przypomnienia metoda dziel i zwyciężaj. Problem można podzielić na
Przetwarzanie i transmisja danych multimedialnych. Wykład 5 Kodowanie słownikowe. Przemysław Sękalski.
Przetwarzanie i transmisja danych multimedialnych Wykład 5 Kodowanie słownikowe Przemysław Sękalski sekalski@dmcs.pl Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych DMCS Przemysław
Elementy teorii informacji i kodowania
i kodowania Entropia, nierówność Krafta, kodowanie optymalne Marcin Jenczmyk m.jenczmyk@knm.katowice.pl 17 kwietnia 2015 M. Jenczmyk Spotkanie KNM i kodowania 1 / 20 Niech S = {x 1,..., x q } oznacza alfabet,
Podstawy kompresji danych
Podstawy kompresji danych Pojęcie kompresji W ogólności kompresja (kodowanie) jest procedurą (przekształceniem) zmiany reprezentacji wejściowego zbioru danych do postaci wymagającej mniejszej liczby bitów
mgr inż. Grzegorz Kraszewski SYSTEMY MULTIMEDIALNE wykład 3, strona 1.
mgr inż. Grzegorz Kraszewski SYSTEMY MULTIMEDIALNE wykład 3, strona 1. KOMPRESJA ALGORYTMEM HUFFMANA I LZ77 Idea algorytmu Huffmana Huffman kontra LZW Sposób tworzenia słownika Etapy budowy drzewa kodu
Kodowanie Shannona-Fano
Kodowanie Shannona-Fano Kodowanie Shannona-Fano znane było jeszcze przed kodowaniem Huffmana i w praktyce można dzięki niemu osiągnąć podobne wyniki, pomimo, że kod generowany tą metodą nie jest optymalny.
ZADANIE 1. Rozwiązanie:
EUROELEKTR Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 200/20 Rozwiązania zadań dla grupy teleinformatycznej na zawody II. stopnia ZNIE ramka logiczna w technologii MOS składa
Teoria informacji i kodowania Ćwiczenia Sem. zimowy 2016/2017
Kody źródłowe jednoznacznie dekodowalne Zadanie Ile najwięcej słów kodowych może liczyć kod binarny jednoznacznie dekodowalny, którego najdłuższe słowo ma siedem liter? (Odp. 28) Zadanie 2 Zbiór sześciu
Przetwarzanie i transmisja danych multimedialnych. Wykład 6 Metody predykcyjne. Przemysław Sękalski.
Przetwarzanie i transmisja danych multimedialnych Wykład 6 Metody predykcyjne Przemysław Sękalski sekalski@dmcs.pl Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych DMCS Wykład opracowano
Kompresja danych Streszczenie Studia Dzienne Wykład 10,
1 Kwantyzacja wektorowa Kompresja danych Streszczenie Studia Dzienne Wykład 10, 28.04.2006 Kwantyzacja wektorowa: dane dzielone na bloki (wektory), każdy blok kwantyzowany jako jeden element danych. Ogólny
Kodowanie predykcyjne
Kodowanie i kompresja informacji - Wykład 5 22 marca 2010 Motywacje W tekstach naturalnych symbole bardzo często zależa od siebie. Motywacje W tekstach naturalnych symbole bardzo często zależa od siebie.
Algorytmy i struktury danych
Cel ćwiczenia lgorytmy i struktury danych Instytut Sterowania i Systemów Informatycznych Wydział Elektrotechniki, Informatyki i Telekomunikacji Uniwersytet Zielonogórski Kompresja Ćwiczenie ma na celu
Micha Strzelecki Metody przetwarzania i analizy obrazów biomedycznych (2)
Micha Strzelecki Metody przetwarzania i analizy obrazów biomedycznych (2) Prezentacja multimedialna współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego w projekcie Innowacyjna
teoria informacji Kanały komunikacyjne, kody korygujące Mariusz Różycki 25 sierpnia 2015
teoria informacji Kanały komunikacyjne, kody korygujące Mariusz Różycki 25 sierpnia 2015 1 wczoraj Wprowadzenie matematyczne. Entropia i informacja. Kodowanie. Kod ASCII. Stopa kodu. Kody bezprefiksowe.
Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 11,
1 Kwantyzacja skalarna Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 11, 10.05.005 Kwantyzacja polega na reprezentowaniu dużego zbioru wartości (być może nieskończonego) za pomocą wartości
Kodowanie i kompresja Tomasz Jurdziński Studia Wieczorowe Wykład Kody liniowe - kodowanie w oparciu o macierz parzystości
Kodowanie i kompresja Tomasz Jurdziński Studia Wieczorowe Wykład 13 1 Kody liniowe - kodowanie w oparciu o macierz parzystości Przykład Różne macierze parzystości dla kodu powtórzeniowego. Co wiemy z algebry
Wykład 3. Złożoność i realizowalność algorytmów Elementarne struktury danych: stosy, kolejki, listy
Wykład 3 Złożoność i realizowalność algorytmów Elementarne struktury danych: stosy, kolejki, listy Dynamiczne struktury danych Lista jest to liniowo uporządkowany zbiór elementów, z których dowolny element
Modulacja i kodowanie. Labolatorium. Kodowanie źródłowe Kod Huffman a
Modulacja i kodowanie Labolatorium Kodowanie źródłowe Kod Huffman a W tym ćwiczeniu zajmiemy się kodowaniem źródłowym (source coding). 1. Kodowanie źródłowe Głównym celem kodowanie źródłowego jest zmniejszenie
Założenia i obszar zastosowań. JPEG - algorytm kodowania obrazu. Geneza algorytmu KOMPRESJA OBRAZÓW STATYCZNYCH - ALGORYTM JPEG
Założenia i obszar zastosowań KOMPRESJA OBRAZÓW STATYCZNYCH - ALGORYTM JPEG Plan wykładu: Geneza algorytmu Założenia i obszar zastosowań JPEG kroki algorytmu kodowania obrazu Założenia: Obraz monochromatyczny
Algorytmy i struktury danych. wykład 8
Plan wykładu: Kodowanie. : wyszukiwanie wzorca w tekście, odległość edycyjna. Kodowanie Kodowanie Kodowanie jest to proces przekształcania informacji wybranego typu w informację innego typu. Kod: jest
Teoria Informacji i Metody Kompresji Danych
Teoria Informacji i Metody Kompresji Danych 1 Przykładowe zadania (dodatkowe materiały wykładowe) 2 Robert Susmaga Instytut Informatyki ul. Piotrowo 2 Poznań kontakt mail owy Robert.Susmaga@CS.PUT.Poznan.PL
Kompresja danych - wprowadzenie. 1. Konieczno kompresji 2. Definicja, typy kompresji 3. Modelowanie 4. Podstawy teorii informacji 5.
Kompresja danych - wprowadzenie. Konieczno kompresji. Definicja, typy kompresji. Modelowanie 4. Podstawy teorii informacji 5. Kodowanie Konieczno kompresji danych Due rozmiary danych Niewystarczajce przepustowoci
Programowanie dynamiczne i algorytmy zachłanne
Programowanie dynamiczne i algorytmy zachłanne Tomasz Głowacki tglowacki@cs.put.poznan.pl Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii
Przetwarzanie i transmisja danych multimedialnych. Wykład 2 Podstawy kompresji. Przemysław Sękalski.
Przetwarzanie i transmisja danych multimedialnych Wykład Podstawy kompresji Przemysław Sękalski sekalski@dmcs.pl Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych DMCS Zawartość wykładu.
Wybrane metody kompresji obrazów
Wybrane metody kompresji obrazów Celem kodowania kompresyjnego obrazu jest redukcja ilości informacji w nim zawartej. Redukcja ta polega na usuwaniu informacji nadmiarowej w obrazie, tzw. redundancji.
Algorytmy graficzne. Podstawy kompresji danych fragment wykładu. Marcin Wilczewski
Algorytmy graficzne Podstawy kompresji danych fragment wykładu Marcin Wilczewski Algorytm Huffmana (David Huffman, 952) Algorytm Huffmana jest popularnym algorytmem generującym optymalny kod w ramach przyjętego
Algorytmy i struktury danych
Algorytmy i struktury danych Zaawansowane algorytmy sortowania Witold Marańda maranda@dmcs.p.lodz.pl 1 Sortowanie za pomocą malejących przyrostów metoda Shella Metoda jest rozwinięciem metody sortowania
Wstęp do Programowania potok funkcyjny
Wstęp do Programowania potok funkcyjny Marcin Kubica 22/23 Outline Programowanie zachłanne Programowanie zachłanne Rodzaje kodów Programowanie zachłanne Kody stałej długości (np. ASCII). Kody zmiennej
Kody Huffmana. Konrad Wypyski. 11 lutego 2006 roku
Kody Huffmana Konrad Wypyski 11 lutego 2006 roku Spis treści 1 Rozdział 1 Kody Huffmana Kody Huffmana (ang. Huffman coding) to jedna z najprostszych i najłatwiejszych w implementacji metod kompresji bezstratnej;
Według raportu ISO z 1988 roku algorytm JPEG składa się z następujących kroków: 0.5, = V i, j. /Q i, j
Kompresja transformacyjna. Opis standardu JPEG. Algorytm JPEG powstał w wyniku prac prowadzonych przez grupę ekspertów (ang. Joint Photographic Expert Group). Prace te zakończyły się w 1991 roku, kiedy
Sortowanie. Bartman Jacek Algorytmy i struktury
Sortowanie Bartman Jacek jbartman@univ.rzeszow.pl Algorytmy i struktury danych Sortowanie przez proste wstawianie przykład 41 56 17 39 88 24 03 72 41 56 17 39 88 24 03 72 17 41 56 39 88 24 03 72 17 39
Wstęp do Informatyki
Wstęp do Informatyki Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 4 Bożena Woźna-Szcześniak (AJD) Wstęp do Informatyki Wykład 4 1 / 1 DZIELENIE LICZB BINARNYCH Dzielenie
1.1. Pozycyjne systemy liczbowe
1.1. Pozycyjne systemy liczbowe Systemami liczenia nazywa się sposób tworzenia liczb ze znaków cyfrowych oraz zbiór reguł umożliwiających wykonywanie operacji arytmetycznych na liczbach. Dla dowolnego
Ćwiczenie nr 4: Kodowanie arytmetyczne, range coder
Algorytmy Kompresji Danych Laboratorium Ćwiczenie nr 4: Kodowanie arytmetyczne, range coder 1. Zapoznać się z opisem implementacji kodera entropijnego range coder i modelem danych opracowanym dla tego
Tranzystor JFET i MOSFET zas. działania
Tranzystor JFET i MOSFET zas. działania brak kanału v GS =v t (cutoff ) kanał otwarty brak kanału kanał otwarty kanał zamknięty w.2, p. kanał zamknięty Co było na ostatnim wykładzie? Układy cyfrowe Najczęściej
Kompresja danych DKDA (7)
Kompresja danych DKDA (7) Marcin Gogolewski marcing@wmi.amu.edu.pl Uniwersytet im. Adama Mickiewicza w Poznaniu Poznań, 22 listopada 2016 1 Kwantyzacja skalarna Wprowadzenie Analiza jakości Typy kwantyzatorów
Rekurencje. Jeśli algorytm zawiera wywołanie samego siebie, jego czas działania moŝe być określony rekurencją. Przykład: sortowanie przez scalanie:
Rekurencje Jeśli algorytm zawiera wywołanie samego siebie, jego czas działania moŝe być określony rekurencją. Przykład: sortowanie przez scalanie: T(n) = Θ(1) (dla n = 1) T(n) = 2 T(n/2) + Θ(n) (dla n
Kodowanie i kompresja Streszczenie Studia dzienne Wykład 12,
1 Kompresja stratna Kodowanie i kompresja Streszczenie Studia dzienne Wykład 12, 5.05.2005 Algorytmy kompresji bezstratnej oceniane są ze względu na: stopień kompresji; czas działania procesu kodowania
Metody teorii gier. ALP520 - Wykład z Algorytmów Probabilistycznych p.2
Metody teorii gier ALP520 - Wykład z Algorytmów Probabilistycznych p.2 Metody teorii gier Cel: Wyprowadzenie oszacowania dolnego na oczekiwany czas działania dowolnego algorytmu losowego dla danego problemu.
Przepustowość kanału, odczytywanie wiadomości z kanału, poprawa wydajności kanału.
Przepustowość kanału, odczytywanie wiadomości z kanału, poprawa wydajności kanału Wiktor Miszuris 2 czerwca 2004 Przepustowość kanału Zacznijmy od wprowadzenia równości IA, B HB HB A HA HA B Można ją intuicyjnie
AKD Metody słownikowe
AKD Metody słownikowe Algorytmy kompresji danych Sebastian Deorowicz 2009 03 19 Sebastian Deorowicz () AKD Metody słownikowe 2009 03 19 1 / 38 Plan wykładu 1 Istota metod słownikowych 2 Algorytm Ziva Lempela
Joint Photographic Experts Group
Joint Photographic Experts Group Artur Drozd Uniwersytet Jagielloński 14 maja 2010 1 Co to jest JPEG? Dlaczego powstał? 2 Transformata Fouriera 3 Dyskretna transformata kosinusowa (DCT-II) 4 Kodowanie
dr inż. Jacek Naruniec
dr inż. Jacek Naruniec J.Naruniec@ire.pw.edu.pl Entropia jest to średnia ilość informacji przypadająca na jeden znak alfabetu. H( x) n i 1 p( i)log W rzeczywistości określa nam granicę efektywności kodowania
Temat 7. Dekodery, enkodery
Temat 7. Dekodery, enkodery 1. Pojęcia: koder, dekoder, enkoder, konwerter kodu, transkoder, enkoder priorytetowy... Koderami (lub enkoderami) nazywamy układy realizujące proces zamiany informacji kodowanej
Drzewa spinające MST dla grafów ważonych Maksymalne drzewo spinające Drzewo Steinera. Wykład 6. Drzewa cz. II
Wykład 6. Drzewa cz. II 1 / 65 drzewa spinające Drzewa spinające Zliczanie drzew spinających Drzewo T nazywamy drzewem rozpinającym (spinającym) (lub dendrytem) spójnego grafu G, jeżeli jest podgrafem
Teoria informacji i kodowania Ćwiczenia Sem. zimowy 2016/2017
Algebra liniowa Zadanie 1 Czy jeśli wektory x, y i z, należące do binarnej przestrzeni wektorowej nad ciałem Galois GF (2), są liniowo niezależne, to można to samo orzec o następujących trzech wektorach:
Podstawy Informatyki: Kody. Korekcja błędów.
Podstawy Informatyki: Kody. Korekcja błędów. Adam Kolany Instytut Techniczny adamkolany@pm.katowice.pl Adam Kolany (PWSZ Nowy Sącz, IT) Podstawy Informatyki: Kody. Korekcja błędów. 11 stycznia 2012 1 /
Problem kodowania w automatach
roblem kodowania w automatach Kodowanie stanów to przypisanie kolejnym stanom automatu odpowiednich kodów binarnych. Minimalna liczba bitów b potrzebna do zakodowania automatu, w którym liczność zbioru
Metody kompresji i przechowywania obrazów
Metody kompresji i przechowywania obrazów Obrazy ogromnymi zbiorami danych: Np. Fotografia 24mm x 36 mm 10 7 punktów; rozdzielczość 0.01 mm 256 poziomów; >10 MB Na komputerze 640 x 480 pikseli 900 kb 1280x1024
Optymalizacja ciągła
Optymalizacja ciągła 5. Metoda stochastycznego spadku wzdłuż gradientu Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 04.04.2019 1 / 20 Wprowadzenie Minimalizacja różniczkowalnej
Algorytmy i str ruktury danych. Metody algorytmiczne. Bartman Jacek
Algorytmy i str ruktury danych Metody algorytmiczne Bartman Jacek jbartman@univ.rzeszow.pl Metody algorytmiczne - wprowadzenia Znamy strukturę algorytmów Trudność tkwi natomiast w podaniu metod służących
Kwantyzacja wektorowa. Plan 1. Zasada działania 2. Projektowanie. Algorytm LBG 3. Kwantyzatory strukturalne 4. Modyfikacje
Kwantyzacja wektorowa Plan 1. Zasada działania 2. Projektowanie. Algorytm LBG 3. Kwantyzatory strukturalne 4. Modyfikacje Zasada kwantyzacji wektorowej Kwantyzacja skalarna koduje oddzielnie kaŝdą próbkę
Fundamentals of Data Compression
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013
wiadomość komunikat - informacja Caius Julius Cesar Człowiek zasztyletowany przez senatorów na forum Romanum w Idy Marcowe roku DCCIX ab urbe condita
wiadomość komunikat - informacja Caius Julius Cesar Człowiek zasztyletowany przez senatorów na forum Romanum w Idy Marcowe roku DCCIX ab urbe condita Wojna Bambadocji przeciwko Alandii i Cezji Alandia:
Podstawy Informatyki. Metody dostępu do danych
Podstawy Informatyki c.d. alina.momot@polsl.pl http://zti.polsl.pl/amomot/pi Plan wykładu 1 Bazy danych Struktury danych Średni czas odszukania rekordu Drzewa binarne w pamięci dyskowej 2 Sformułowanie
EGZAMIN - Wersja A. ALGORYTMY I STRUKTURY DANYCH Lisek89 opracowanie kartki od Pani dr E. Koszelew
1. ( pkt) Dany jest algorytm, który dla dowolnej liczby naturalnej n, powinien wyznaczyd sumę kolejnych liczb naturalnych mniejszych od n. Wynik algorytmu jest zapisany w zmiennej suma. Algorytm i=1; suma=0;
Algorytmy i. Wykład 5: Drzewa. Dr inż. Paweł Kasprowski
Algorytmy i struktury danych Wykład 5: Drzewa Dr inż. Paweł Kasprowski pawel@kasprowski.pl Drzewa Struktury przechowywania danych podobne do list ale z innymi zasadami wskazywania następników Szczególny
Modelowanie motywów łańcuchami Markowa wyższego rzędu
Modelowanie motywów łańcuchami Markowa wyższego rzędu Uniwersytet Warszawski Wydział Matematyki, Informatyki i Mechaniki 23 października 2008 roku Plan prezentacji 1 Źródła 2 Motywy i ich znaczenie Łańcuchy
Automatyka. Treść wykładów: Multiplekser. Układ kombinacyjny. Demultiplekser. Koder
Treść wykładów: utomatyka dr inż. Szymon Surma szymon.surma@polsl.pl http://zawt.polsl.pl/studia pok., tel. +48 6 46. Podstawy automatyki. Układy kombinacyjne,. Charakterystyka,. Multiplekser, demultiplekser,.
Algorytm obejścia drzewa poszukiwań i zadanie o hetmanach szachowych
Algorytm obejścia drzewa poszukiwań i zadanie o hetmanach szachowych 1 Algorytm obejścia drzewa poszukiwań i zadanie o hetmanach szachowych Alexander Denisjuk Prywatna Wyższa Szkoła Zawodowa w Giżycku
Niech x 1,..., x n będzie ciągiem zdarzeń. ---
Matematyczne podstawy kryptografii, Ćw2 TEMAT 7: Teoria Shannona. Kody Huffmana, entropia. BIBLIOGRAFIA: [] Cz. Bagiński, cez.wipb.pl, [2] T. H. Cormen, C. E. Leiserson, R. L Rivest, Wprowadzenie do algorytmów,
SYSTEMY UCZĄCE SIĘ WYKŁAD 4. DRZEWA REGRESYJNE, INDUKCJA REGUŁ. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska
SYSTEMY UCZĄCE SIĘ WYKŁAD 4. DRZEWA REGRESYJNE, INDUKCJA REGUŁ Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska DRZEWO REGRESYJNE Sposób konstrukcji i przycinania
0 + 0 = 0, = 1, = 1, = 0.
5 Kody liniowe Jak już wiemy, w celu przesłania zakodowanego tekstu dzielimy go na bloki i do każdego z bloków dodajemy tak zwane bity sprawdzające. Bity te są w ścisłej zależności z bitami informacyjnymi,
xx + x = 1, to y = Jeśli x = 0, to y = 0 Przykładowy układ Funkcja przykładowego układu Metody poszukiwania testów Porównanie tabel prawdy
Testowanie układów kombinacyjnych Przykładowy układ Wykrywanie błędów: 1. Sklejenie z 0 2. Sklejenie z 1 Testem danego uszkodzenia nazywa się takie wzbudzenie funkcji (wektor wejściowy), które daje błędną
Algorytmy równoległe: ocena efektywności prostych algorytmów dla systemów wielokomputerowych
Algorytmy równoległe: ocena efektywności prostych algorytmów dla systemów wielokomputerowych Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka 2013/14 Znajdowanie maksimum w zbiorze
Algorytmy i Struktury Danych
Algorytmy i Struktury Danych Kopce Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 11 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych Wykład 11 1 / 69 Plan wykładu
Języki formalne i automaty Ćwiczenia 9
Języki formalne i automaty Ćwiczenia 9 Autor: Marcin Orchel Spis treści Spis treści... 1 Wstęp teoretyczny... 2 Maszyna Mealy'ego... 2 Maszyna Moore'a... 2 Automat ze stosem... 3 Konwersja gramatyki bezkontekstowej
EGZAMIN MATURALNY Z INFORMATYKI
WPISUJE ZDAJĄCY NUMER UCZNIA EGZAMIN MATURALNY Z INFORMATYKI POZIOM ROZSZERZONY CZĘŚĆ I ARKUSZ EGZAMINACYJNY PROJEKTU INFORMATURA DATA: 9 GRUDNIA 2016 R. CZAS PRACY: 60 MINUT LICZBA PUNKTÓW DO UZYSKANIA:
Wykład 8. Drzewo rozpinające (minimum spanning tree)
Wykład 8 Drzewo rozpinające (minimum spanning tree) 1 Minimalne drzewo rozpinające - przegląd Definicja problemu Własności minimalnych drzew rozpinających Algorytm Kruskala Algorytm Prima Literatura Cormen,
Kodowanie i kompresja Streszczenie Studia dzienne Wykład 6
Kodowanie i kompresja Streszczenie Studia dzienne Wykład 6 1 Kody cykliczne: dekodowanie Definicja 1 (Syndrom) Niech K będzie kodem cyklicznym z wielomianem generuja- cym g(x). Resztę z dzielenia słowa
Instrukcje dla zawodników
Płock, 17 marca 2018 r. Instrukcje dla zawodników Arkusze otwieramy na wyraźne polecenie komisji. Wszystkie poniższe instrukcje zostaną odczytane i wyjaśnione. 1. Arkusz składa się z 3 zadań. 2. Każde