SPOTKANIE 1: Wprowadzenie do uczenia maszynowego
|
|
- Adrian Rudnicki
- 8 lat temu
- Przeglądów:
Transkrypt
1 Wrocław University of Technology SPOTKANIE 1: Wprowadzenie do uczenia maszynowego Adam Gonczarek Studenckie Koło Naukowe Estymator
2 Początki uczenia maszynowego Cybernetyka (XIX-XX w.) systemy sterowania i automatycznego przetwarzania informacji w m.in. mechanice, biologii. 2/32
3 Początki uczenia maszynowego Cybernetyka (XIX-XX w.) systemy sterowania i automatycznego przetwarzania informacji w m.in. mechanice, biologii. Sztuczna inteligencja (lata 50. XX w.) dziedzina nauki, której celem jest zaprojektowanie inteligentnych maszyn. 2/32
4 Początki uczenia maszynowego Cybernetyka (XIX-XX w.) systemy sterowania i automatycznego przetwarzania informacji w m.in. mechanice, biologii. Sztuczna inteligencja (lata 50. XX w.) dziedzina nauki, której celem jest zaprojektowanie inteligentnych maszyn. Systemy ekspertowe (lata 70. XX w.) systemy komputerowe wykorzystujące logikę matematyczną do imitacji wnioskowania człowieka. 2/32
5 Początki uczenia maszynowego Cybernetyka (XIX-XX w.) systemy sterowania i automatycznego przetwarzania informacji w m.in. mechanice, biologii. Sztuczna inteligencja (lata 50. XX w.) dziedzina nauki, której celem jest zaprojektowanie inteligentnych maszyn. Systemy ekspertowe (lata 70. XX w.) systemy komputerowe wykorzystujące logikę matematyczną do imitacji wnioskowania człowieka. Nauki kognitywne (lata 70. XX w.) poznanie i modelowanie zjawisk dotyczących działania umysłu. 2/32
6 Początki uczenia maszynowego Cybernetyka (XIX-XX w.) systemy sterowania i automatycznego przetwarzania informacji w m.in. mechanice, biologii. Sztuczna inteligencja (lata 50. XX w.) dziedzina nauki, której celem jest zaprojektowanie inteligentnych maszyn. Systemy ekspertowe (lata 70. XX w.) systemy komputerowe wykorzystujące logikę matematyczną do imitacji wnioskowania człowieka. Nauki kognitywne (lata 70. XX w.) poznanie i modelowanie zjawisk dotyczących działania umysłu. Uczenie maszynowe (lata 90. XX w.) zastosowanie modeli statystycznych i metod optymalizacji do projektowania algorytmów uczenia maszyn. 2/32
7 Definicja uczenia maszynowego Mówimy, że maszyna uczy się zadania T w oparciu o doświadczenie E i miarę jakości P, jeśli wraz z przyrostem doświadczenia E poprawia się jakość wykonywanego zadania T mierzona przez miarę P. (Tom M. Mitchell, Machine Learning, McGraw Hill, 1997) Przykład: Nauka gry w szachy T : Gra w szachy P : Liczba wygranych partii w turnieju z człowiekiem E: Rozgrywanie partii przeciw sobie 3/32
8 Przykłady danych Cześć 1 4/32
9 Przykłady danych Cześć 2 5/32
10 1. Uczenie z nadzorem (ang. supervised learning) Regresja (ang. regression) Klasyfikacja (ang. classification) 2. Uczenie bez nadzoru (ang. unsupervised learning) Klasteryzacja (ang. clustering) Redukcja wymiarów (ang. dimensionality reduction) 3. Uczenie ze wzmocnieniem (ang. reinforcement learning) 6/32
11 Uczenie z nadzorem: Regresja Regresja (ang. Regression): Dysponujemy obserwacjami z odpowiadającymi im wartościami ciągłymi. Celem uczenia jest skonstruowanie modelu regresji na podstawie danych. Model konstruowany jest tak, aby możliwe było przewidywanie nowych obserwacji. 7/32
12 Uczenie z nadzorem: Regresja Regresja (ang. Regression): Dysponujemy obserwacjami z odpowiadającymi im wartościami ciągłymi. Celem uczenia jest skonstruowanie modelu regresji na podstawie danych. Model konstruowany jest tak, aby możliwe było przewidywanie nowych obserwacji. 7/32
13 Uczenie z nadzorem: Regresja Regresja (ang. Regression): Dysponujemy obserwacjami z odpowiadającymi im wartościami ciągłymi. Celem uczenia jest skonstruowanie modelu regresji na podstawie danych. Model konstruowany jest tak, aby możliwe było przewidywanie nowych obserwacji. 7/32
14 Uczenie z nadzorem: Regresja Regresja (ang. Regression): Dysponujemy obserwacjami z odpowiadającymi im wartościami ciągłymi. Celem uczenia jest skonstruowanie modelu regresji na podstawie danych. Model konstruowany jest tak, aby możliwe było przewidywanie nowych obserwacji. 7/32
15 Regresja: Śledzenie ruchu Cel: Dane: Wyznaczenie następnego położenia obiektu. Sekwencja obrazów z poruszającymi się obiektami. Na podstawie dotychczas zarejestrowanej sekwencji obrazów wyznaczane jest położenie obiektu. 8/32
16 Regresja: Predykcja notowań giełdowych Cel: Dane: Wycena akcji. Notowania akcji z poprzednich okresów oraz inne czynniki wpływające na cenę akcji. Na podstawie notowań historycznych i innych czynników mających wpływ na cenę akcji budowany jest model predykcyjny. Model aktualizowany jest z wykorzystaniem bieżących notowań. 9/32
17 Uczenie z nadzorem: Klasyfikacja Klasyfikacja (ang. Classification): Dysponujemy obserwacjami z etykietami (klasami), które przyjmują wartości nominalne. Celem uczenia jest skonstruowanie klasyfikatora separującego obiekty należące do różnych klas. Klasyfikator konstruowany jest tak, aby możliwe było przewidywanie klas nowych, niesklasyfikowanych obserwacji. 10/32
18 Uczenie z nadzorem: Klasyfikacja Klasyfikacja (ang. Classification): Dysponujemy obserwacjami z etykietami (klasami), które przyjmują wartości nominalne. Celem uczenia jest skonstruowanie klasyfikatora separującego obiekty należące do różnych klas. Klasyfikator konstruowany jest tak, aby możliwe było przewidywanie klas nowych, niesklasyfikowanych obserwacji. 10/32
19 Uczenie z nadzorem: Klasyfikacja Klasyfikacja (ang. Classification): Dysponujemy obserwacjami z etykietami (klasami), które przyjmują wartości nominalne. Celem uczenia jest skonstruowanie klasyfikatora separującego obiekty należące do różnych klas. Klasyfikator konstruowany jest tak, aby możliwe było przewidywanie klas nowych, niesklasyfikowanych obserwacji. 10/32
20 Uczenie z nadzorem: Klasyfikacja Klasyfikacja (ang. Classification): Dysponujemy obserwacjami z etykietami (klasami), które przyjmują wartości nominalne. Celem uczenia jest skonstruowanie klasyfikatora separującego obiekty należące do różnych klas. Klasyfikator konstruowany jest tak, aby możliwe było przewidywanie klas nowych, niesklasyfikowanych obserwacji. 10/32
21 Klasyfikacja: Detekcja obiektów Cel: Dane: Wykrycie obiektu na obrazie. Obraz na którym bada się wystąpienie obiektu, oraz zestaw obrazów treningowych przedstawiających dany obiekt. Do analizy obrazu wykorzystuje się okno przesuwne. W każdym kroku obraz z okna przesuwnego klasyfikowany jest jako obiekt poszukiwany lub nie. 11/32
22 Klasyfikacja: Detekcja SPAMU Cel: Dane: Zbadać, czy dana wiadomość jest SPAMEM. Zestaw zawierający zaetykietowane wiadomości mailowe. Wydobywane są cechy (występowanie słów) różnicujące SPAM od zwykłej poczty. Klasyfikacja nowej wiadomości odbywa się z wykorzystaniem wydobytych cech. 12/32
23 Klasyfikacja: Credit Scoring Cel: Dane: Zbadać zdolność kredytową klienta bankowego. Charakterystyki klientów bankowych pochodzące z systemów informatycznych i kwestionariuszy. Wydobywane są cechy mające wpływ na decyzje kredytowe. Klasyfikatory do oceny zdolności kredytowej są powszechnie stosowanym narzędziem. 13/32
24 Klasyfikacja: Rozpoznawanie mowy Cel: Dane: Interpretacja wybranych słów na podstawie wypowiedzi. Próbki dźwięków wraz ich znaczeniem. Wydobywane są cechy dźwięku charakterystyczne dla danego słowa, głoski, bądź zestawu słów. Klasyfikowany sygnał jest przetwarzany, a następnie rozpoznawane jest znaczenie słowa. 14/32
25 Uczenie bez nadzoru: Klasteryzacja Klasteryzacja (ang. Clustering): Dysponujemy obserwacjami bez etykiet. Celem uczenia jest znalezienie grup (klastrów), w których skupione są dane. Obserwacje z danej grupy charakteryzują się podobieństwem. Inne nazwy: grupowanie, analiza skupień. 15/32
26 Uczenie bez nadzoru: Klasteryzacja Klasteryzacja (ang. Clustering): Dysponujemy obserwacjami bez etykiet. Celem uczenia jest znalezienie grup (klastrów), w których skupione są dane. Obserwacje z danej grupy charakteryzują się podobieństwem. Inne nazwy: grupowanie, analiza skupień. 15/32
27 Klateryzacja: Kompresja obrazu Cel: Dane: Kodowanie pikseli wartościami z mniejszego zakresu. Obraz. Zakłada się, że każdy piksel może przyjąć K wartości. Piksele grupowane są do K klastrów algorytmem klasteryzacji. Podobne piksele trafiają do tego samego klastra. Piksel kodowany jest poprzez numer klastra. 16/32
28 Klateryzacja: Grupowanie osób w sieci społecznej Cel: Dane: Wyodrębnienie grup znajomych w sieci społecznej. Dane o interakcji między osobami. Wyodrębnione grupy znajomych przy pomocy TouchGraph dla Facebook a. Znajomi w tych samych klastrach charakteryzują się wewnętrzną interakcją między sobą. 17/32
29 Klateryzacja: Grupowanie słów Cel: Dane: Wyodrębnienie grup słów w tytułach artykułów. Artykuły prasowe. Grupowaniu podlegają słowa, które pojawiły się w tytule artykułu. Słowa uważane są za podobne, jeśli pojawiają się w kontekście tych samych słów z artykułu. Słowa z jednej grupy zazwyczaj opisują to samo zdarzenie. 18/32
30 Uczenie bez nadzoru: Redukcja wymiarów Redukcja wymiarów (ang. Dimensionality Reduction): Dysponujemy obserwacjami bez etykiet. Celem uczenia jest znalezienie niskowymiarowej podprzestrzeni (rozmaitości), na której leżą dane. Obserwacje mogą zostać zakodowane przy pomocy układu współrzędnych związanego z niskowymiarową podprzestrzenią. 19/32
31 Uczenie bez nadzoru: Redukcja wymiarów Redukcja wymiarów (ang. Dimensionality Reduction): Dysponujemy obserwacjami bez etykiet. Celem uczenia jest znalezienie niskowymiarowej podprzestrzeni (rozmaitości), na której leżą dane. Obserwacje mogą zostać zakodowane przy pomocy układu współrzędnych związanego z niskowymiarową podprzestrzenią. 19/32
32 Redukcja wymiarów: Kodowanie i kompresja zdjęć Cel: Znalezienie twarzy bazowych rozpinających niskowymiarową przestrzeń. Dane: Zdjęcia twarzy. Wyróżnione M twarzy bazowych rozpina M-wymiarową podprzestrzeń w przestrzeni twarzy. Twarze mogą być kodowane poprzez położenie na niskowymiarowej przestrzeni. Metoda może służyć, jako automatyczna ekstrakcja cech ze zdjęć. 20/32
33 Redukcja wymiarów: Wizualizacja danych Cel: Dane: Wizualizacja 2D lub 3D wysokowymiarowych danych. Dowolne dane, np. zdjęcia. Redukcja wymiarów pozwala na wizualizację struktury wysokowymiarowych danych. Podobne obserwacje znajdują się blisko siebie w niskowymiarowej przestrzeni. Na rysunku przedstawiono obrazy ręcznie pisanych cyfr oraz zdjęć twarzy z różnej perspektywy. 21/32
34 Uczenie ze wzmocnieniem Uczenie ze wzocnieniem (ang. Reinforcement Learning): Maszyna (agent) wchodzi w interakcje z otoczeniem (środowiskiem), w którym chce osiągnąć określony cel. Maszyna podejmuje akcje aby osiągnąć cel, które są ocenianie przez otoczenie. Akcje są nagradzane lub karane. Maszyna poprzez podejmowanie akcji poznaje otoczenie. 22/32
35 Uczenie ze wzmocnieniem Uczenie ze wzocnieniem (ang. Reinforcement Learning): Maszyna (agent) wchodzi w interakcje z otoczeniem (środowiskiem), w którym chce osiągnąć określony cel. Maszyna podejmuje akcje aby osiągnąć cel, które są ocenianie przez otoczenie. Akcje są nagradzane lub karane. Maszyna poprzez podejmowanie akcji poznaje otoczenie. 22/32
36 Uczenie ze wzmocnieniem Uczenie ze wzocnieniem (ang. Reinforcement Learning): Maszyna (agent) wchodzi w interakcje z otoczeniem (środowiskiem), w którym chce osiągnąć określony cel. Maszyna podejmuje akcje aby osiągnąć cel, które są ocenianie przez otoczenie. Akcje są nagradzane lub karane. Maszyna poprzez podejmowanie akcji poznaje otoczenie. 22/32
37 Uczenie ze wzmocnieniem Uczenie ze wzocnieniem (ang. Reinforcement Learning): Maszyna (agent) wchodzi w interakcje z otoczeniem (środowiskiem), w którym chce osiągnąć określony cel. Maszyna podejmuje akcje aby osiągnąć cel, które są ocenianie przez otoczenie. Akcje są nagradzane lub karane. Maszyna poprzez podejmowanie akcji poznaje otoczenie. 22/32
38 Uczenie ze wzmocnieniem Uczenie ze wzocnieniem (ang. Reinforcement Learning): Maszyna (agent) wchodzi w interakcje z otoczeniem (środowiskiem), w którym chce osiągnąć określony cel. Maszyna podejmuje akcje aby osiągnąć cel, które są ocenianie przez otoczenie. Akcje są nagradzane lub karane. Maszyna poprzez podejmowanie akcji poznaje otoczenie. 22/32
39 Uczenie ze wzmocnieniem: Gra w szachy Cel: Dane: Wyuczyć algorytm gry w szachy. Rozgrywki szachowe. Zakładano, że komputer zawsze gra białymi. Znany był ostatni stan szachownicy i ocena (1 dla wygranej białych, 0 dla remisu, 1 dla wygranej czarnych), natomiast maszyna miała się nauczyć jakie akcje podejmować, aby osiągnąć wygraną. Stan szachownicy reprezentowano za pomocą sieci neuronalnej. 23/32
40 Uczenie ze wzmocnieniem: Sterowanie helikopterem Cel: Dane: Wyuczyć algorytm sterowania helikopterem. Sterowanie helikopterem przez pilota (operatora). Dane posłużyły do określenia dynamiki helikoptera oraz określenia funkcji nagrody. Następnie zastosowano algorytm uczenia ze wzmocnieniem do nauki sterowania helikopterem. Projekt wykonano na Stanford University ( 24/32
41 Projekty naszej grupy Anna Gut Mateusz Kucharczyk Przemysław Kłysz Szymon Zaręba Celem projektu jest ocena atrakcyjności człowieka na podstawie zdjęcia. Stosowane techniki uczenia maszynowego: 1. Probabilistyczne Modele Grafowe 2. Procesy Gaussa 3. Principal Component Analysis 4. Support Vector Machine 25/32
42 Projekty naszej grupy Piotr Klukowski (Max Planck Dresden) Michał Walczak (ETH Zürich) Adam Gonczarek Celem projektu jest automatyczne oznaczenie pików na obrazach z Magnetycznego Rezonansu Jądrowego (NMR). Stosowane techniki uczenia maszynowego: 1. Support Vector Machine 2. Probabilistyczne Modele Grafowe (PGM) 26/32
43 Projekty naszej grupy Adam Gonczarek Celem projektu jest odtworzenie konfiguracji człowieka na podstawie obrazu z kamer. Stosowane techniki uczenia maszynowego: 1. Filtry cząsteczkowe 2. Metody próbkowania 3. Nieliniowa redukcja wymiarów (GPLVM) 4. Wnioskowanie bayesowskie 5. Support Vector Machine 27/32
44 Projekty naszej grupy Jakub M. Tomczak Celem projektu jest wspomaganie terapii cukrzycy na podstawie pomiarów. Stosowane techniki uczenia maszynowego: 1. Indukcja reguł decyzyjnych 2. Uczenie przyrostowe 3. Mechanizm zapominania wykładniczego 4. Procesy Gaussa 5. Ukryte łańcuchy Markowa 28/32
45 Projekty naszej grupy Jakub M. Tomczak Celem projektu jest modelowanie procesów wnioskowania w ludzkim mózgu. Stosowane techniki uczenia maszynowego: 1. Modelowanie Bayesowskie 2. Regularyzacja i wiedza a priori 3. Modele Isinga 4. Maszyny Boltzmanna 29/32
46 Projekty naszej grupy Maciej Zięba Celem projektu jest opracowanie modeli predykcji okresu przeżycia pacjenta po operacji raka płuc. Stosowane techniki uczenia maszynowego: 1. Klasyfikatory SVM dla problemów niezbalansowania 2. Klasyfikatory typu Ensemble 3. Metody próbkowania typu SMOTE 4. Metody uczenia wrażliwe na koszt 30/32
47 Projekty naszej grupy Adam Gonczarek Jakub Tomczak Szymon Zaręba Celem projektu jest rozpoznawanie obrazów z użyciem uczenia głębokiego i architektur głębokich. Stosowane techniki uczenia maszynowego: 1. Maszyny Boltzmanna 2. Algorytm Contrastive Divergence 3. DropOut 31/32
48 Zespół 32/32
SPOTKANIE 2: Wprowadzenie cz. I
Wrocław University of Technology SPOTKANIE 2: Wprowadzenie cz. I Piotr Klukowski Studenckie Koło Naukowe Estymator piotr.klukowski@pwr.edu.pl 17.10.2016 UCZENIE MASZYNOWE 2/27 UCZENIE MASZYNOWE = Konstruowanie
Wrocław University of Technology. Wprowadzenie cz. I. Adam Gonczarek. Rozpoznawanie Obrazów, Lato 2015/2016
Wrocław University of Technology Wprowadzenie cz. I Adam Gonczarek adam.gonczarek@pwr.edu.pl Rozpoznawanie Obrazów, Lato 2015/2016 ROZPOZNAWANIE OBRAZÓW / WZORCÓW Definicja z Wikipedii 2/39 ROZPOZNAWANIE
WYKŁAD 1. Wprowadzenie w tematykę kursu
Wrocław University of Technology WYKŁAD 1 Wprowadzenie w tematykę kursu autor: Maciej Zięba Politechnika Wrocławska Informacje dotyczące zajęć Cykl 8 wykładów. Konsultacje odbywają się w sali 121 w budynku
WYKŁAD 2. Problem regresji - modele liniowe
Wrocław University of Technology WYKŁAD 2 Problem regresji - modele liniowe Maciej Zięba Politechnika Wrocławska Regresja Regresja (ang. Regression): Dysponujemy obserwacjami z odpowiadającymi im wartościami
WYKŁAD 3. Klasyfikacja: modele probabilistyczne
Wrocław University of Technology WYKŁAD 3 Klasyfikacja: modele probabilistyczne Maciej Zięba Politechnika Wrocławska Klasyfikacja Klasyfikacja (ang. Classification): Dysponujemy obserwacjami z etykietami
Metody systemowe i decyzyjne w informatyce
Metody systemowe i decyzyjne w informatyce Laboratorium JAVA Zadanie nr 2 Rozpoznawanie liter autorzy: A. Gonczarek, J.M. Tomczak Cel zadania Celem zadania jest zapoznanie się z problemem klasyfikacji
Prof. Stanisław Jankowski
Prof. Stanisław Jankowski Zakład Sztucznej Inteligencji Zespół Statystycznych Systemów Uczących się p. 228 sjank@ise.pw.edu.pl Zakres badań: Sztuczne sieci neuronowe Maszyny wektorów nośnych SVM Maszyny
SPOTKANIE 9: Metody redukcji wymiarów
Wrocław University of Technology SPOTKANIE 9: Metody redukcji wymiarów Piotr Klukowski* Studenckie Koło Naukowe Estymator piotr.klukowski@pwr.wroc.pl 08.12.2015 *Część slajdów pochodzi z prezentacji dr
Widzenie komputerowe (computer vision)
Widzenie komputerowe (computer vision) dr inż. Marcin Wilczewski 2018/2019 Organizacja zajęć Tematyka wykładu Cele Python jako narzędzie uczenia maszynowego i widzenia komputerowego. Binaryzacja i segmentacja
Pattern Classification
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley & Sons, 2000 with the permission of the authors
WYKŁAD 4. Podejmowanie decyzji dla modeli probabilistycznych Modelowanie Gaussowskie. autor: Maciej Zięba. Politechnika Wrocławska
Wrocław University of Technology WYKŁAD 4 Podejmowanie decyzji dla modeli probabilistycznych Modelowanie Gaussowskie autor: Maciej Zięba Politechnika Wrocławska Klasyfikacja Klasyfikacja (ang. Classification):
Analiza skupień. Analiza Skupień W sztucznej inteligencji istotną rolę ogrywają algorytmy grupowania
Analiza skupień W sztucznej inteligencji istotną rolę ogrywają algorytmy grupowania Analiza Skupień Elementy składowe procesu grupowania obiekt Ekstrakcja cech Sprzężenie zwrotne Grupowanie klastry Reprezentacja
Algorytmy decyzyjne będące alternatywą dla sieci neuronowych
Algorytmy decyzyjne będące alternatywą dla sieci neuronowych Piotr Dalka Przykładowe algorytmy decyzyjne Sztuczne sieci neuronowe Algorytm k najbliższych sąsiadów Kaskada klasyfikatorów AdaBoost Naiwny
Wprowadzenie do uczenia maszynowego
Wprowadzenie do uczenia maszynowego Agnieszka Ławrynowicz 12 stycznia 2017 Co to jest uczenie maszynowe? dziedzina nauki, która zajmuje się sprawianiem aby komputery mogły uczyć się bez ich zaprogramowania
Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej. Adam Meissner. Elementy uczenia maszynowego
Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej Adam Meissner Adam.Meissner@put.poznan.pl http://www.man.poznan.pl/~ameis Elementy uczenia maszynowego Literatura [1] Bolc L., Zaremba
PODSTAWY BAZ DANYCH. 19. Perspektywy baz danych. 2009/2010 Notatki do wykładu "Podstawy baz danych"
PODSTAWY BAZ DANYCH 19. Perspektywy baz danych 1 Perspektywy baz danych Temporalna baza danych Temporalna baza danych - baza danych posiadająca informację o czasie wprowadzenia lub czasie ważności zawartych
Rozpoznawanie obrazów
Rozpoznawanie obrazów Ćwiczenia lista zadań nr 7 autorzy: A. Gonczarek, J.M. Tomczak Przykładowe problemy Klasyfikacja binarna Dla obrazu x zaproponowano dwie cechy φ(x) = (φ 1 (x) φ 2 (x)) T. Na obrazie
AUTOMATYKA INFORMATYKA
AUTOMATYKA INFORMATYKA Technologie Informacyjne Sieć Semantyczna Przetwarzanie Języka Naturalnego Internet Edytor Serii: Zdzisław Kowalczuk Inteligentne wydobywanie informacji z internetowych serwisów
Wprowadzenie do teorii systemów ekspertowych
Myślące komputery przyszłość czy utopia? Wprowadzenie do teorii systemów ekspertowych Roman Simiński siminski@us.edu.pl Wizja inteligentnych maszyn jest od wielu lat obecna w literaturze oraz filmach z
1 Programowanie urządzen mobilnych Sztuczna inteligencja i systemy 2 ekspertowe
SPECJALNOŚĆ: Programowanie Komputerów i Sieci Informatyczne Obowiązuje od roku akademickiego: 2007 / 2008 Przedmioty specjalnościowe oraz profili 1 Programowanie urządzen mobilnych 15 5 20 3 15 5 3 Sztuczna
Metody systemowe i decyzyjne w informatyce
Metody systemowe i decyzyjne w informatyce Laboratorium MATLAB Zadanie nr 2 Detekcja twarzy autorzy: A. Gonczarek, J.M. Tomczak Cel zadania Celem zadania jest zapoznanie się algorytmem gradientu prostego
Informatyka- studia I-go stopnia
SPECJALNOŚĆ: Informatyka w Zarządzaniu Obowiązuje od roku akademickiego: 2007 / 2008 1 Modelowanie procesów biznesowych 30 30 60 6 2 2 6 2 Eksploracja danych 30 3 1 1 3 3 Wspomaganie decyzji w warunkach
Klasyfikatory: k-nn oraz naiwny Bayesa. Agnieszka Nowak Brzezińska Wykład IV
Klasyfikatory: k-nn oraz naiwny Bayesa Agnieszka Nowak Brzezińska Wykład IV Naiwny klasyfikator Bayesa Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną
SPOTKANIE 11: Reinforcement learning
Wrocław University of Technology SPOTKANIE 11: Reinforcement learning Adam Gonczarek Studenckie Koło Naukowe Estymator adam.gonczarek@pwr.edu.pl 19.01.2016 Uczenie z nadzorem (ang. supervised learning)
Metody systemowe i decyzyjne w informatyce
Metody systemowe i decyzyjne w informatyce Laboratorium ZALICZENIE Zadanie nr 3 Rozpoznawanie ręcznie pisanych cyfr autorzy: A. Gonczarek, P. Klukowski, J.M. Tomczak, S. Zaręba, M. Zięba Cel zadania Celem
Data Mining Wykład 9. Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster. Plan wykładu. Sformułowanie problemu
Data Mining Wykład 9 Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster Plan wykładu Wprowadzanie Definicja problemu Klasyfikacja metod grupowania Grupowanie hierarchiczne Sformułowanie problemu
Metody tworzenia efektywnych komitetów klasyfikatorów jednoklasowych Bartosz Krawczyk Katedra Systemów i Sieci Komputerowych Politechnika Wrocławska
Metody tworzenia efektywnych komitetów klasyfikatorów jednoklasowych Bartosz Krawczyk Katedra Systemów i Sieci Komputerowych Politechnika Wrocławska e-mail: bartosz.krawczyk@pwr.wroc.pl Czym jest klasyfikacja
Algorytmy rozpoznawania obrazów. 11. Analiza skupień. dr inż. Urszula Libal. Politechnika Wrocławska
Algorytmy rozpoznawania obrazów 11. Analiza skupień dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. Analiza skupień Określenia: analiza skupień (cluster analysis), klasteryzacja (clustering), klasyfikacja
Systemy agentowe. Uwagi organizacyjne i wprowadzenie. Jędrzej Potoniec
Systemy agentowe Uwagi organizacyjne i wprowadzenie Jędrzej Potoniec Kontakt mgr inż. Jędrzej Potoniec Jedrzej.Potoniec@cs.put.poznan.pl http://www.cs.put.poznan.pl/jpotoniec https://github.com/jpotoniec/sa
Automatyczna predykcja. Materiały/konsultacje. Co to jest uczenie maszynowe? Przykład 6/10/2013. Google Prediction API, maj 2010
Materiały/konsultacje Automatyczna predykcja http://www.ibp.pwr.wroc.pl/kotulskalab Konsultacje wtorek, piątek 9-11 (uprzedzić) D1-115 malgorzata.kotulska@pwr.wroc.pl Co to jest uczenie maszynowe? Uczenie
Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej. Adam Meissner. Elementy uczenia maszynowego
Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej Adam Meissner Adam.Meissner@put.poznan.pl http://www.man.poznan.pl/~ameis Elementy uczenia maszynowego Literatura [1] Bolc L., Zaremba
ALGORYTM RANDOM FOREST
SKRYPT PRZYGOTOWANY NA ZAJĘCIA INDUKOWANYCH REGUŁ DECYZYJNYCH PROWADZONYCH PRZEZ PANA PAWŁA WOJTKIEWICZA ALGORYTM RANDOM FOREST Katarzyna Graboś 56397 Aleksandra Mańko 56699 2015-01-26, Warszawa ALGORYTM
Metody i techniki sztucznej inteligencji / Leszek Rutkowski. wyd. 2, 3 dodr. Warszawa, Spis treści
Metody i techniki sztucznej inteligencji / Leszek Rutkowski. wyd. 2, 3 dodr. Warszawa, 2012 Spis treści Przedmowa do wydania drugiego Przedmowa IX X 1. Wstęp 1 2. Wybrane zagadnienia sztucznej inteligencji
Ewolucja sieci Sztuczna inteligencja i uczenie maszynowe
Ewolucja sieci Sztuczna inteligencja i uczenie maszynowe dr hab. inż. Piotr Chołda Katedra Telekomunikacji AGH 27 marca 2019 r. Plan prezentacji 1 O co chodzi? 2 Podstawowe definicje 3 Przegląd metod Ewolucja
Python : podstawy nauki o danych / Alberto Boschetti, Luca Massaron. Gliwice, cop Spis treści
Python : podstawy nauki o danych / Alberto Boschetti, Luca Massaron. Gliwice, cop. 2017 Spis treści O autorach 9 0 recenzencie 10 Wprowadzenie 11 Rozdział 1. Pierwsze kroki 15 Wprowadzenie do nauki o danych
Narzędzia AI. Jakub Wróblewski jakubw@pjwstk.edu.pl Pokój 312. http://zajecia.jakubw.pl SZTUCZNA INTELIGENCJA (ARTIFICIAL INTELLIGENCE)
Narzędzia AI Jakub Wróblewski jakubw@pjwstk.edu.pl Pokój 312 http://zajecia.jakubw.pl SZTUCZNA INTELIGENCJA (ARTIFICIAL INTELLIGENCE) Nauka o maszynach realizujących zadania, które wymagają inteligencji
Informatyka w medycynie Punkt widzenia kardiologa
Informatyka w medycynie Punkt widzenia kardiologa Lech Poloński Mariusz Gąsior Informatyka medyczna Dział informatyki zajmujący się jej zastosowaniem w ochronie zdrowia (medycynie) Stymulacja rozwoju informatyki
Metody systemowe i decyzyjne w informatyce
Metody systemowe i decyzyjne w informatyce Laboratorium MATLAB Zadanie nr 3 Detekcja twarzy autorzy: A. Gonczarek, J.M. Tomczak, S. Zaręba, M. Zięba Cel zadania Celem zadania jest zaimplementowanie algorytmów
1.7. Eksploracja danych: pogłębianie, przeszukiwanie i wyławianie
Wykaz tabel Wykaz rysunków Przedmowa 1. Wprowadzenie 1.1. Wprowadzenie do eksploracji danych 1.2. Natura zbiorów danych 1.3. Rodzaje struktur: modele i wzorce 1.4. Zadania eksploracji danych 1.5. Komponenty
Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe.
Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe. zajecia.jakubw.pl/nai Literatura: S. Osowski, Sieci neuronowe w ujęciu algorytmicznym. WNT, Warszawa 997. PODSTAWOWE ZAGADNIENIA TECHNICZNE AI
Ewolucja sieci Sztuczna inteligencja i uczenie maszynowe
Ewolucja sieci Sztuczna inteligencja i uczenie maszynowe Piotr Chołda Katedra Telekomunikacji AGH 11 kwietnia 2018 r. Plan prezentacji 1 O co chodzi? 2 Podstawowe definicje 3 Przegląd metod Ewolucja sieci:
Inteligentne wydobywanie informacji z internetowych serwisów społecznościowych
Inteligentne wydobywanie informacji z internetowych serwisów społecznościowych AUTOMATYKA INFORMATYKA Technologie Informacyjne Sieć Semantyczna Przetwarzanie Języka Naturalnego Internet Edytor Serii: Zdzisław
WSTĘP I TAKSONOMIA METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING. Adrian Horzyk. Akademia Górniczo-Hutnicza
METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING WSTĘP I TAKSONOMIA Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra
4 Zasoby językowe Korpusy obcojęzyczne Korpusy języka polskiego Słowniki Sposoby gromadzenia danych...
Spis treści 1 Wstęp 11 1.1 Do kogo adresowana jest ta książka... 12 1.2 Historia badań nad mową i językiem... 12 1.3 Obecne główne trendy badań... 16 1.4 Opis zawartości rozdziałów... 18 2 Wyzwania i możliwe
Rozpoznawanie obrazów
Rozpoznawanie obrazów Laboratorium Python Zadanie nr 3 Regresja logistyczna autorzy: A. Gonczarek, J.M. Tomczak, S. Zaręba, M. Zięba, J. Kaczmar Cel zadania Celem zadania jest zaimplementowanie modelu
Sztuczna inteligencja stan wiedzy, perspektywy rozwoju i problemy etyczne. Piotr Bilski Instytut Radioelektroniki i Technik Multimedialnych
Sztuczna inteligencja stan wiedzy, perspektywy rozwoju i problemy etyczne Piotr Bilski Instytut Radioelektroniki i Technik Multimedialnych Plan wystąpienia Co to jest sztuczna inteligencja? Pojęcie słabej
Systemy uczące się wykład 2
Systemy uczące się wykład 2 dr Przemysław Juszczuk Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny 19 X 2018 Podstawowe definicje Fakt; Przesłanka; Konkluzja; Reguła; Wnioskowanie. Typy wnioskowania
SPOTKANIE 7: Redukcja wymiarów: PCA, Probabilistic PCA
Wrocław University of Technology SPOTKANIE 7: Redukcja wymiarów: PCA, Probabilistic PCA Maciej Zięba Studenckie Koło Naukowe Estymator jakub.tomczak@pwr.wroc.pl 18.01.2013 Redukcja wymiarów Zmienne wejściowe
Ontogeniczne sieci neuronowe. O sieciach zmieniających swoją strukturę
Norbert Jankowski Ontogeniczne sieci neuronowe O sieciach zmieniających swoją strukturę Warszawa 2003 Opracowanie książki było wspierane stypendium Uniwersytetu Mikołaja Kopernika Spis treści Wprowadzenie
4.1. Wprowadzenie...70 4.2. Podstawowe definicje...71 4.3. Algorytm określania wartości parametrów w regresji logistycznej...74
3 Wykaz najważniejszych skrótów...8 Przedmowa... 10 1. Podstawowe pojęcia data mining...11 1.1. Wprowadzenie...12 1.2. Podstawowe zadania eksploracji danych...13 1.3. Główne etapy eksploracji danych...15
Uniwersytet w Białymstoku Wydział Ekonomiczno-Informatyczny w Wilnie SYLLABUS na rok akademicki 2012/2013 http://www.wilno.uwb.edu.
SYLLABUS na rok akademicki 01/013 Tryb studiów Studia stacjonarne Kierunek studiów Informatyka Poziom studiów Pierwszego stopnia Rok studiów/ semestr /3 Specjalność Bez specjalności Kod katedry/zakładu
O badaniach nad SZTUCZNĄ INTELIGENCJĄ
O badaniach nad SZTUCZNĄ INTELIGENCJĄ Jak określa się inteligencję naturalną? Jak określa się inteligencję naturalną? Inteligencja wg psychologów to: Przyrodzona, choć rozwijana w toku dojrzewania i uczenia
Systemy pomiarowo-diagnostyczne. Metody uczenia maszynowego wykład I dr inż. 2015/2016
Systemy pomiarowo-diagnostyczne Metody uczenia maszynowego wykład I dr inż. Bogumil.Konopka@pwr.edu.pl 2015/2016 1 Wykład I - plan Sprawy organizacyjne Uczenie maszynowe podstawowe pojęcia Proces modelowania
METODY CHEMOMETRYCZNE W IDENTYFIKACJI ŹRÓDEŁ POCHODZENIA
METODY CHEMOMETRYCZNE W IDENTYFIKACJI ŹRÓDEŁ POCHODZENIA AMFETAMINY Waldemar S. Krawczyk Centralne Laboratorium Kryminalistyczne Komendy Głównej Policji, Warszawa (praca obroniona na Wydziale Chemii Uniwersytetu
O badaniach nad SZTUCZNĄ INTELIGENCJĄ
O badaniach nad SZTUCZNĄ INTELIGENCJĄ Wykład 7. O badaniach nad sztuczną inteligencją Co nazywamy SZTUCZNĄ INTELIGENCJĄ? szczególny rodzaj programów komputerowych, a niekiedy maszyn. SI szczególną własność
Aproksymacja funkcji a regresja symboliczna
Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(x), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(x), zwaną funkcją aproksymującą
Spis treści Przedmowa
Spis treści Przedmowa 1. Wprowadzenie do problematyki konstruowania - Marek Dietrich (p. 1.1, 1.2), Włodzimierz Ozimowski (p. 1.3 -i-1.7), Jacek Stupnicki (p. l.8) 1.1. Proces konstruowania 1.2. Kryteria
CLUSTERING. Metody grupowania danych
CLUSTERING Metody grupowania danych Plan wykładu Wprowadzenie Dziedziny zastosowania Co to jest problem klastrowania? Problem wyszukiwania optymalnych klastrów Metody generowania: k centroidów (k - means
SPOTKANIE 6: Klasteryzacja: K-Means, Expectation Maximization
Wrocław University of Technology SPOTKANIE 6: Klasteryzacja: K-Means, Expectation Maximization Jakub M. Tomczak Studenckie Koło Naukowe Estymator jakub.tomczak@pwr.wroc.pl 4.1.213 Klasteryzacja Zmienne
7. Maszyny wektorów podpierajacych SVMs
Algorytmy rozpoznawania obrazów 7. Maszyny wektorów podpierajacych SVMs dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. Maszyny wektorów podpierajacych - SVMs Maszyny wektorów podpierających (ang.
Spis treści. Przedmowa 11
Podstawy konstrukcji maszyn. T. 1 / autorzy: Marek Dietrich, Stanisław Kocańda, Bohdan Korytkowski, Włodzimierz Ozimowski, Jacek Stupnicki, Tadeusz Szopa ; pod redakcją Marka Dietricha. wyd. 3, 2 dodr.
Systemy uczące się Lab 4
Systemy uczące się Lab 4 dr Przemysław Juszczuk Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny 26 X 2018 Projekt zaliczeniowy Podstawą zaliczenia ćwiczeń jest indywidualne wykonanie projektu uwzględniającego
Optymalizacja systemów
Optymalizacja systemów Laboratorium - problem detekcji twarzy autorzy: A. Gonczarek, J.M. Tomczak, S. Zaręba, P. Klukowski Cel zadania Celem zadania jest zapoznanie się z gradientowymi algorytmami optymalizacji
data mining machine learning data science
data mining machine learning data science deep learning, AI, statistics, IoT, operations research, applied mathematics KISIM, WIMiIP, AGH 1 Machine Learning / Data mining / Data science Uczenie maszynowe
w ekonomii, finansach i towaroznawstwie
w ekonomii, finansach i towaroznawstwie spotykane określenia: zgłębianie danych, eksploracyjna analiza danych, przekopywanie danych, męczenie danych proces wykrywania zależności w zbiorach danych poprzez
Agnieszka Nowak Brzezińska Wykład III
Agnieszka Nowak Brzezińska Wykład III Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną niezależność zmiennych niezależnych (tu naiwność) Bardziej opisowe
Rozpoznawanie obrazów
Rozpoznawanie obrazów Laboratorium Python Zadanie nr 1 Regresja liniowa autorzy: A. Gonczarek, J.M. Tomczak, S. Zaręba, M. Zięba, J. Kaczmar Cel zadania Celem zadania jest implementacja liniowego zadania
Nazwa przedmiotu. 1 Matematyka. 2 Fizyka. 3 Informatyka. 4 Rysunek techniczny. 12 Język angielski. 14 Podstawy elektroniki. 15 Architektura komputerów
Plan studiów dla kierunku: INFORMATYKA Specjalności: Bezpieczeństwo sieciowych systemów informatycznych, Informatyka techniczna, Technologie internetowe i techniki multimedialne E Z Σh W C L S P W C L
Plan studiów dla kierunku:
Plan studiów dla kierunku: INFORMATYKA Specjalności: Bezpieczeństwo sieciowych systemów informatycznych, Informatyka techniczna, Technologie internetowe i techniki multimedialne Ogółem Semestr 1 Semestr
Agnieszka Nowak Brzezińska
Agnieszka Nowak Brzezińska jeden z algorytmów regresji nieparametrycznej używanych w statystyce do prognozowania wartości pewnej zmiennej losowej. Może również byd używany do klasyfikacji. - Założenia
Wstęp do Metod Systemowych i Decyzyjnych Opracowanie: Jakub Tomczak
Wstęp do Metod Systemowych i Decyzyjnych Opracowanie: Jakub Tomczak 1 Wprowadzenie. Zmienne losowe Podczas kursu interesować nas będzie wnioskowanie o rozpatrywanym zjawisku. Poprzez wnioskowanie rozumiemy
Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe
Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe wykład 1. Właściwości sieci neuronowych Model matematyczny sztucznego neuronu Rodzaje sieci neuronowych Przegląd d głównych g
Rozpoznawanie obrazów
Rozpoznawanie obrazów Ćwiczenia lista zadań nr 5 autorzy: A. Gonczarek, J.M. Tomczak Przykładowe problemy Klasyfikacja binarna Dla obrazu x zaproponowano dwie cechy φ(x) = (φ 1 (x) φ 2 (x)) T. Na obrazie
Agnieszka Nowak Brzezińska Wykład III
Agnieszka Nowak Brzezińska Wykład III Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną niezależność zmiennych niezależnych (tu naiwność) Bardziej opisowe
w analizie wyników badań eksperymentalnych, w problemach modelowania zjawisk fizycznych, w analizie obserwacji statystycznych.
Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(), zwaną funkcją aproksymującą
Metody zbiorów przybliżonych w uczeniu się podobieństwa z wielowymiarowych zbiorów danych
Metody zbiorów przybliżonych w uczeniu się podobieństwa z wielowymiarowych zbiorów danych WMIM, Uniwersytet Warszawski ul. Banacha 2, 02-097 Warszawa, Polska andrzejanusz@gmail.com 13.06.2013 Dlaczego
Automatyczne rozpoznawanie mowy - wybrane zagadnienia / Ryszard Makowski. Wrocław, Spis treści
Automatyczne rozpoznawanie mowy - wybrane zagadnienia / Ryszard Makowski. Wrocław, 2011 Spis treści Przedmowa 11 Rozdział 1. WPROWADZENIE 13 1.1. Czym jest automatyczne rozpoznawanie mowy 13 1.2. Poziomy
Inspiracje kognitywne w procesie analizy pozycji szachowej
Inspiracje kognitywne w procesie analizy pozycji szachowej C. Dendek J. Mańdziuk Warsaw University of Technology, Faculty of Mathematics and Information Science Abstrakt Główny cel Poprawa efektywności
Laboratorium 11. Regresja SVM.
Laboratorium 11 Regresja SVM. 1. Uruchom narzędzie Oracle Data Miner i połącz się z serwerem bazy danych. 2. Z menu głównego wybierz Activity Build. Na ekranie powitalnym kliknij przycisk Dalej>. 3. Z
Kierunek: Inżynieria i Analiza Danych Poziom studiów: Studia I stopnia Forma studiów: Stacjonarne. audytoryjne. Wykład Ćwiczenia
Wydział: Geologii, Geofizyki i Ochrony Środowiska Kierunek: Inżynieria i Analiza Danych Poziom studiów: Studia I stopnia Forma studiów: Stacjonarne Rocznik: 2019/2020 Język wykładowy: Polski Semestr 1
Analiza danych tekstowych i języka naturalnego
Kod szkolenia: Tytuł szkolenia: ANA/TXT Analiza danych tekstowych i języka naturalnego Dni: 3 Opis: Adresaci szkolenia Dane tekstowe stanowią co najmniej 70% wszystkich danych generowanych w systemach
Sztuczna inteligencja
Sztuczna inteligencja Przykładowe zastosowania Piotr Fulmański Wydział Matematyki i Informatyki, Uniwersytet Łódzki, Polska 12 czerwca 2008 Plan 1 Czym jest (naturalna) inteligencja? 2 Czym jest (sztuczna)
Techniki uczenia maszynowego nazwa przedmiotu SYLABUS
Techniki uczenia maszynowego nazwa SYLABUS Obowiązuje od cyklu kształcenia: 2014/20 Część A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej studiów Poziom kształcenia Profil studiów
Sieci Kohonena Grupowanie
Sieci Kohonena Grupowanie http://zajecia.jakubw.pl/nai UCZENIE SIĘ BEZ NADZORU Załóżmy, że mamy za zadanie pogrupować następujące słowa: cup, roulette, unbelievable, cut, put, launderette, loveable Nie
Eksploracja Danych. wykład 4. Sebastian Zając. 10 maja 2017 WMP.SNŚ UKSW. Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 10 maja / 18
Eksploracja Danych wykład 4 Sebastian Zając WMP.SNŚ UKSW 10 maja 2017 Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 10 maja 2017 1 / 18 Klasyfikacja danych Klasyfikacja Najczęściej stosowana (najstarsza)
SZTUCZNA INTELIGENCJA
Stefan Sokołowski SZTUCZNA INTELIGENCJA Inst Informatyki UG, Gdańsk, 2009/2010 Wykład1,17II2010,str1 SZTUCZNA INTELIGENCJA reguły gry Zasadnicze informacje: http://infugedupl/ stefan/dydaktyka/sztintel/
O badaniach nad SZTUCZNĄ INTELIGENCJĄ
O badaniach nad SZTUCZNĄ INTELIGENCJĄ SZTUCZNA INTELIGENCJA dwa podstawowe znaczenia Co nazywamy sztuczną inteligencją? zaawansowane systemy informatyczne (np. uczące się), pewną dyscyplinę badawczą (dział
Elementy modelowania matematycznego
Elementy modelowania matematycznego Modelowanie algorytmów klasyfikujących. Podejście probabilistyczne. Naiwny klasyfikator bayesowski. Modelowanie danych metodą najbliższych sąsiadów. Jakub Wróblewski
Kierunek:Informatyka- - inż., rok I specjalność: Grafika komputerowa, Inżynieria oprogramowania, Technologie internetowe
:Informatyka- - inż., rok I specjalność: Grafika komputerowa, Inżynieria oprogramowania, Technologie internetowe Metody uczenia się i studiowania 1 Podstawy prawa i ergonomii pracy 1 25 2 Podstawy ekonomii
Optymalizacja optymalizacji
7 maja 2008 Wstęp Optymalizacja lokalna Optymalizacja globalna Algorytmy genetyczne Badane czasteczki Wykorzystane oprogramowanie (Algorytm genetyczny) 2 Sieć neuronowa Pochodne met-enkefaliny Optymalizacja
T2A_W01 T2A_W01 T2A_W02 3 SI_W03 Posiada szeroką wiedzę w zakresie teorii grafów T2A_W01
Efekty dla studiów drugiego stopnia profil ogólnoakademicki, na kierunku Informatyka w języku polskim, na specjalnościach Metody sztucznej inteligencji oraz Projektowanie systemów CAD/CAM, na Wydziale
Symbol efektu kształcenia
Efekty dla studiów drugiego stopnia - profil ogólnoakademicki, na kierunku Informatyka, na specjalnościach Metody sztucznej inteligencji (Tabela 1), Projektowanie systemów CAD/CAM (Tabela 2) oraz Przetwarzanie
Nazwa przedmiotu. Załącznik nr 1 do Uchwały nr 70/2016/2017 Rady Wydziału Elektrycznego Politechniki Częstochowskiej z dnia r.
Plan studiów dla kierunku: INFORMATYKA Specjalności: Bezpieczeństwo sieciowych systemów informatycznych, Informatyka techniczna, Technologie internetowe i techniki multimedialne Ogółem Semestr 1 Semestr
S PECJALNO S C I NTELIGENTNE S YSTEMY D ECYZYJNE
KATEDRA SYSTEMÓW DECYZYJNYCH POLITECHNIKA GDA N SKA S PECJALNO S C I NTELIGENTNE S YSTEMY D ECYZYJNE prof. dr hab. inz. Zdzisław Kowalczuk Katedra Systemów Decyzyjnych Wydział Elektroniki Telekomunikacji
SI w procesach przepływu i porządkowania informacji. Paweł Buchwald Wyższa Szkoła Biznesu
SI w procesach przepływu i porządkowania informacji Paweł Buchwald Wyższa Szkoła Biznesu Początki SI John MC Carthy prekursor SI Alan Thuring pomysłodawca testu na określenie inteligencji maszyn Powolny
Tabela odniesień efektów kierunkowych do efektów obszarowych
Umiejscowienie kierunku w obszarze kształcenia Kierunek studiów automatyka i robotyka należy do obszaru kształcenia w zakresie nauk technicznych i jest powiązany z takimi kierunkami studiów jak: mechanika
Stefan Sokołowski SZTUCZNAINTELIGENCJA. Inst. Informatyki UG, Gdańsk, 2009/2010
Stefan Sokołowski SZTUCZNAINTELIGENCJA Inst. Informatyki UG, Gdańsk, 2009/2010 Wykład1,17II2010,str.1 SZTUCZNA INTELIGENCJA reguły gry Zasadnicze informacje: http://inf.ug.edu.pl/ stefan/dydaktyka/sztintel/
Opisy efektów kształcenia dla modułu
Karta modułu - Śledzenie ruchu 1 / 5 Nazwa modułu: Śledzenie ruchu Rocznik: 2012/2013 Kod: IIN-2-103-s Punkty ECTS: 3 Wydział: Informatyki, Elektroniki i Telekomunikacji Poziom studiów: Studia II stopnia
Przestrzeń algorytmów klastrowania
20 listopada 2008 Plan prezentacji 1 Podstawowe pojęcia Przykłady algorytmów klastrowania 2 Odległość algorytmów klastrowania Odległość podziałów 3 Dane wejściowe Eksperymenty Praca źródłowa Podstawowe