AUTOMATYKA INFORMATYKA
|
|
- Amalia Jankowska
- 7 lat temu
- Przeglądów:
Transkrypt
1 AUTOMATYKA INFORMATYKA Technologie Informacyjne Sieć Semantyczna Przetwarzanie Języka Naturalnego Internet Edytor Serii: Zdzisław Kowalczuk
2 Inteligentne wydobywanie informacji z internetowych serwisów społecznościowych Redakcja: Bogdan Wiszniewski POMORSKIE WYDAWNICTWO NAUKOWO-TECHNICZNE GDAŃSK 2011 PWNT
3 Spis treści Przedmowa Rozdział 1: Jȩzyki i gramatyki formalne Języki formalne, języki programowania i metajęzyki Języki programowania Translatory, kompilatory oraz interpretery Gramatyki formalne Definicja i rodzaje gramatyk formalnych Notacje zapisu gramatyk formalnych Klasyfikacja Chomsky ego Wyrażenia regularne Jednoznaczność, rozstrzygalność i przydatność gramatyk Analiza zdań języka Rozdział 2: Automaty jako narzȩdzia w przetwarzaniu jȩzyka Stany automatu i notacja grafowa Klasyfikacje automatów Funkcja automatu Akceptowane klasy języków Determinizm działania automatu Automaty skończone Deterministyczne automaty skończone (DFA) Niedeterministyczne automaty skończone (NFA) Niedeterministyczne automaty skończone z ɛ-przejściami (ɛ-nfa) Tworzenie automatu na podstawie wyrażenia regularnego Determinizacja automatu Minimalizacja automatu Automat Mealy ego Determinizacja automatu Mealy ego Rozdział 3: Przetwarzanie jȩzyka naturalnego Perspektywy przetwarzania języka naturalnego Zastosowania przetwarzania języka naturalnego Model warstwowy przetwarzania Warstwa segmentacji Warstwa słownikowa Płytka analiza składniowa Warstwa składniowa Warstwa znaczeniowa Warstwa użycia... 44
4 vi 3.4 Jakość przetwarzania Miary jakości Poprawianie pisowni Optymalizacja reguł Rozdział 4: Głȩboka analiza tekstu w jȩzyku polskim Pragmatyka i funkcje tekstów Problem homonimii Analizatory i wyszukiwarki Dehomonimizacja i desynkretyzacja Typy analiz Analiza morfologiczna Analiza składniowa Analiza głęboka Przykładowa analiza zdania Analiza semantyczna Nowe zjawiska językowe Rozdział 5: Metody wspomagania wyszukiwania informacji Języki zapytań wyszukiwarek internetowych Język zapytań w wyszukiwarce Google Język zapytań w innych wyszukiwarkach Interaktywne rozszerzanie zapytań Metody globalne Metody lokalne Tworzenie rankingu użyteczności słów Zapytania powiązane tematycznie Personalizacja Wykorzystanie modelu przestrzeni wektorowej do wspomagania wyszukiwania Wyszukiwanie relewantne Wyszukiwanie zasobów podobnych Klasteryzacja dokumentów Zapytania w języku naturalnym Chmury znaczników Metoda klasteryzacji kierunkowej Rozdział 6: Detekcja obiektów graficznych i ekstrakcja ich parametrów Analiza obrysu obiektu Podział linii brzegowej na tokeny Wykorzystanie symetrii do porównywania kształtów Analiza zawartości obrazu (tekstury) N M-gramy Lokalne wzorce Filtry Gabora Wykrywanie obiektów metodą AdaBoost Wyznaczanie cech Funkcje klasyfikujące Kaskada klasyfikatorów... 88
5 Rozdział 7: Selekcja i ekstrakcja cech Reprezentacja danych Selekcja cech Generowanie podzbioru cech Ocena jakości podzbioru cech Kryterium stopu Ekstrakcja cech Analiza głównych składowych Wielowymiarowe skalowanie Liniowa analiza dyskryminacyjna Rozdział 8: Algorytmy klasyfikacji i uczenia w rozpoznawaniu treści Uczenie a uogólnianie Klasyfikator bayesowski Estymacja parametrów rozkładu normalnego Naiwny klasyfikator bayesowski Klasyfikator najbliższego sąsiada Drzewa decyzyjne Algorytm ID Metody poprawy uogólniania Sztuczne sieci neuronowe (SSN) Uczenie klasyfikatora neuronowego w oparciu o zbiór przykładów Algorytm propagacji wstecznej błędu Metoda wektorów wspierających (SVM) Rozdział 9: Studium przypadku system ISPAD Moduł pozyskiwania danych Moduł zarządzania korpusem Narzędzia do pracy nad tekstami o określonych treściach Testy korpusu ISPAD Moduł analizy danych Normalizacja i segmentacja tekstu Analiza językowa Wnioskowanie Przygotowanie reakcji Moduł zarządzania bazą wiedzy Bibliografia 139 Skorowidz 145 Streszczenie w jȩz. angielskim 149 vii
Inteligentne wydobywanie informacji z internetowych serwisów społecznościowych
Inteligentne wydobywanie informacji z internetowych serwisów społecznościowych AUTOMATYKA INFORMATYKA Technologie Informacyjne Sieć Semantyczna Przetwarzanie Języka Naturalnego Internet Edytor Serii: Zdzisław
Uniwersytet w Białymstoku Wydział Ekonomiczno-Informatyczny w Wilnie SYLLABUS na rok akademicki 2012/2013 http://www.wilno.uwb.edu.
SYLLABUS na rok akademicki 01/013 Tryb studiów Studia stacjonarne Kierunek studiów Informatyka Poziom studiów Pierwszego stopnia Rok studiów/ semestr /3 Specjalność Bez specjalności Kod katedry/zakładu
Techniki uczenia maszynowego nazwa przedmiotu SYLABUS
Techniki uczenia maszynowego nazwa SYLABUS Obowiązuje od cyklu kształcenia: 2014/20 Część A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej studiów Poziom kształcenia Profil studiów
1.7. Eksploracja danych: pogłębianie, przeszukiwanie i wyławianie
Wykaz tabel Wykaz rysunków Przedmowa 1. Wprowadzenie 1.1. Wprowadzenie do eksploracji danych 1.2. Natura zbiorów danych 1.3. Rodzaje struktur: modele i wzorce 1.4. Zadania eksploracji danych 1.5. Komponenty
PODYPLOMOWE STUDIA ZAAWANSOWANE METODY ANALIZY DANYCH I DATA MINING W BIZNESIE
UNIWERSYTET WARMIŃSKO-MAZURSKI W OLSZTYNIE PODYPLOMOWE STUDIA ZAAWANSOWANE METODY ANALIZY DANYCH I DATA MINING W BIZNESIE http://matman.uwm.edu.pl/psi e-mail: psi@matman.uwm.edu.pl ul. Słoneczna 54 10-561
4.1. Wprowadzenie...70 4.2. Podstawowe definicje...71 4.3. Algorytm określania wartości parametrów w regresji logistycznej...74
3 Wykaz najważniejszych skrótów...8 Przedmowa... 10 1. Podstawowe pojęcia data mining...11 1.1. Wprowadzenie...12 1.2. Podstawowe zadania eksploracji danych...13 1.3. Główne etapy eksploracji danych...15
Metody klasyfikacji danych - część 1 p.1/24
Metody klasyfikacji danych - część 1 Inteligentne Usługi Informacyjne Jerzy Dembski Metody klasyfikacji danych - część 1 p.1/24 Plan wykładu - Zadanie klasyfikacji danych - Przeglad problemów klasyfikacji
Algorytmy decyzyjne będące alternatywą dla sieci neuronowych
Algorytmy decyzyjne będące alternatywą dla sieci neuronowych Piotr Dalka Przykładowe algorytmy decyzyjne Sztuczne sieci neuronowe Algorytm k najbliższych sąsiadów Kaskada klasyfikatorów AdaBoost Naiwny
Analiza danych tekstowych i języka naturalnego
Kod szkolenia: Tytuł szkolenia: ANA/TXT Analiza danych tekstowych i języka naturalnego Dni: 3 Opis: Adresaci szkolenia Dane tekstowe stanowią co najmniej 70% wszystkich danych generowanych w systemach
Python : podstawy nauki o danych / Alberto Boschetti, Luca Massaron. Gliwice, cop Spis treści
Python : podstawy nauki o danych / Alberto Boschetti, Luca Massaron. Gliwice, cop. 2017 Spis treści O autorach 9 0 recenzencie 10 Wprowadzenie 11 Rozdział 1. Pierwsze kroki 15 Wprowadzenie do nauki o danych
Metody i techniki sztucznej inteligencji / Leszek Rutkowski. wyd. 2, 3 dodr. Warszawa, Spis treści
Metody i techniki sztucznej inteligencji / Leszek Rutkowski. wyd. 2, 3 dodr. Warszawa, 2012 Spis treści Przedmowa do wydania drugiego Przedmowa IX X 1. Wstęp 1 2. Wybrane zagadnienia sztucznej inteligencji
Forma. Główny cel kursu. Umiejętności nabywane przez studentów. Wymagania wstępne:
WYDOBYWANIE I WYSZUKIWANIE INFORMACJI Z INTERNETU Forma wykład: 30 godzin laboratorium: 30 godzin Główny cel kursu W ramach kursu studenci poznają podstawy stosowanych powszechnie metod wyszukiwania informacji
Prof. Stanisław Jankowski
Prof. Stanisław Jankowski Zakład Sztucznej Inteligencji Zespół Statystycznych Systemów Uczących się p. 228 sjank@ise.pw.edu.pl Zakres badań: Sztuczne sieci neuronowe Maszyny wektorów nośnych SVM Maszyny
Widzenie komputerowe (computer vision)
Widzenie komputerowe (computer vision) dr inż. Marcin Wilczewski 2018/2019 Organizacja zajęć Tematyka wykładu Cele Python jako narzędzie uczenia maszynowego i widzenia komputerowego. Binaryzacja i segmentacja
Ekstrakcja informacji oraz stylometria na usługach psychologii Część 2
Ekstrakcja informacji oraz stylometria na usługach psychologii Część 2 ws.clarin-pl.eu/websty.shtml Tomasz Walkowiak, Maciej Piasecki Politechnika Wrocławska Grupa Naukowa G4.19 Katedra Inteligencji Obliczeniowej
Przetwarzanie i analiza danych w języku Python / Marek Gągolewski, Maciej Bartoszuk, Anna Cena. Warszawa, Spis treści
Przetwarzanie i analiza danych w języku Python / Marek Gągolewski, Maciej Bartoszuk, Anna Cena. Warszawa, 2016 Spis treści Przedmowa XI I Podstawy języka Python 1. Wprowadzenie 3 1.1. Język i środowisko
TEORETYCZNE PODSTAWY INFORMATYKI
1 TEORETYCZNE PODSTAWY INFORMATYKI WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Wykład 16 2 Data Science: Uczenie maszynowe Uczenie maszynowe: co to znaczy? Metody Regresja Klasyfikacja Klastering
Grupy pytań na egzamin inżynierski na kierunku Informatyka
Grupy pytań na egzamin inżynierski na kierunku Informatyka Dla studentów studiów dziennych Należy wybrać dwie grupy pytań. Na egzaminie zadane zostaną 3 pytania, każde z innego przedmiotu, pochodzącego
Hierarchia Chomsky ego Maszyna Turinga
Hierarchia Chomsky ego Maszyna Turinga Języki formalne i automaty Dr inż. Janusz Majewski Katedra Informatyki Gramatyka Gramatyką G nazywamy czwórkę uporządkowaną gdzie: G = V skończony zbiór
Sieci neuronowe do przetwarzania informacji / Stanisław Osowski. wyd. 3. Warszawa, Spis treści
Sieci neuronowe do przetwarzania informacji / Stanisław Osowski. wyd. 3. Warszawa, 2013 Spis treści Przedmowa 7 1. Wstęp 9 1.1. Podstawy biologiczne działania neuronu 9 1.2. Pierwsze modele sieci neuronowej
SI w procesach przepływu i porządkowania informacji. Paweł Buchwald Wyższa Szkoła Biznesu
SI w procesach przepływu i porządkowania informacji Paweł Buchwald Wyższa Szkoła Biznesu Początki SI John MC Carthy prekursor SI Alan Thuring pomysłodawca testu na określenie inteligencji maszyn Powolny
Szczegółowy opis przedmiotu zamówienia
ZP/ITS/19/2013 SIWZ Załącznik nr 1.1 do Szczegółowy opis przedmiotu zamówienia Przedmiotem zamówienia jest: Przygotowanie zajęć dydaktycznych w postaci kursów e-learningowych przeznaczonych dla studentów
Matematyczne podstawy informatyki Mathematical Foundations of Computational Sciences. Matematyka Poziom kwalifikacji: II stopnia
Nazwa przedmiotu: Kierunek: Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Rodzaj zajęć: wykład, ćwiczenia Matematyczne podstawy informatyki Mathematical Foundations of Computational Sciences
Obliczenia równoległe i rozproszone. Praca zbiorowa pod redakcją Andrzeja Karbowskiego i Ewy Niewiadomskiej-Szynkiewicz
Obliczenia równoległe i rozproszone Praca zbiorowa pod redakcją Andrzeja Karbowskiego i Ewy Niewiadomskiej-Szynkiewicz 15 czerwca 2001 Spis treści Przedmowa............................................
Języki formalne i automaty Ćwiczenia 7
Języki formalne i automaty Ćwiczenia 7 Autor: Marcin Orchel Spis treści Spis treści... 1 Wstęp teoretyczny... 2 Automaty... 2 Cechy automatów... 4 Łączenie automatów... 4 Konwersja automatu do wyrażenia
Kierunek:Informatyka- - inż., rok I specjalność: Grafika komputerowa
:Informatyka- - inż., rok I specjalność: Grafika komputerowa Rok akademicki 018/019 Metody uczenia się i studiowania. 1 Podstawy prawne. 1 Podstawy ekonomii. 1 Matematyka dyskretna. 1 30 Wprowadzenie do
1. Historia 2. Podstawy neurobiologii 3. Definicje i inne kłamstwa 4. Sztuczny neuron i zasady działania SSN. Agenda
Sieci neuropodobne 1. Historia 2. Podstawy neurobiologii 3. Definicje i inne kłamstwa 4. Sztuczny neuron i zasady działania SSN Agenda Trochę neurobiologii System nerwowy w organizmach żywych tworzą trzy
Ontogeniczne sieci neuronowe. O sieciach zmieniających swoją strukturę
Norbert Jankowski Ontogeniczne sieci neuronowe O sieciach zmieniających swoją strukturę Warszawa 2003 Opracowanie książki było wspierane stypendium Uniwersytetu Mikołaja Kopernika Spis treści Wprowadzenie
Diagnostyka procesów przemysłowych Kod przedmiotu
Diagnostyka procesów przemysłowych - opis przedmiotu Informacje ogólne Nazwa przedmiotu Diagnostyka procesów przemysłowych Kod przedmiotu 06.0-WE-AiRP-DPP Wydział Kierunek Wydział Informatyki, Elektrotechniki
Kierunek:Informatyka- - inż., rok I specjalność: Grafika komputerowa, Inżynieria oprogramowania, Technologie internetowe
:Informatyka- - inż., rok I specjalność: Grafika komputerowa, Inżynieria oprogramowania, Technologie internetowe Metody uczenia się i studiowania 1 Podstawy prawa i ergonomii pracy 1 25 2 Podstawy ekonomii
Semantyczne podobieństwo stron internetowych
Uniwersytet Mikołaja Kopernika Wydział Matematyki i Informatyki Marcin Lamparski Nr albumu: 184198 Praca magisterska na kierunku Informatyka Semantyczne podobieństwo stron internetowych Praca wykonana
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA SYSTEMY ROZMYTE Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki i Inżynierii Biomedycznej Laboratorium
S O M SELF-ORGANIZING MAPS. Przemysław Szczepańczyk Łukasz Myszor
S O M SELF-ORGANIZING MAPS Przemysław Szczepańczyk Łukasz Myszor Podstawy teoretyczne Map Samoorganizujących się stworzył prof. Teuvo Kohonen (1982 r.). SOM wywodzi się ze sztucznych sieci neuronowych.
4 Zasoby językowe Korpusy obcojęzyczne Korpusy języka polskiego Słowniki Sposoby gromadzenia danych...
Spis treści 1 Wstęp 11 1.1 Do kogo adresowana jest ta książka... 12 1.2 Historia badań nad mową i językiem... 12 1.3 Obecne główne trendy badań... 16 1.4 Opis zawartości rozdziałów... 18 2 Wyzwania i możliwe
Automatyczna predykcja. Materiały/konsultacje. Co to jest uczenie maszynowe? Przykład 6/10/2013. Google Prediction API, maj 2010
Materiały/konsultacje Automatyczna predykcja http://www.ibp.pwr.wroc.pl/kotulskalab Konsultacje wtorek, piątek 9-11 (uprzedzić) D1-115 malgorzata.kotulska@pwr.wroc.pl Co to jest uczenie maszynowe? Uczenie
Ontologie, czyli o inteligentnych danych
1 Ontologie, czyli o inteligentnych danych Bożena Deka Andrzej Tolarczyk PLAN 2 1. Korzenie filozoficzne 2. Ontologia w informatyce Ontologie a bazy danych Sieć Semantyczna Inteligentne dane 3. Zastosowania
Języki formalne i automaty Ćwiczenia 8
Języki formalne i automaty Ćwiczenia 8 Autor: Marcin Orchel Spis treści Spis treści... 1 Wstęp teoretyczny... 2 Konwersja NFA do DFA... 2 Minimalizacja liczby stanów DFA... 4 Konwersja automatu DFA do
SYSTEMY UCZĄCE SIĘ WYKŁAD 10. PRZEKSZTAŁCANIE ATRYBUTÓW. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska.
SYSTEMY UCZĄCE SIĘ WYKŁAD 10. PRZEKSZTAŁCANIE ATRYBUTÓW Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska INFORMACJE WSTĘPNE Hipotezy do uczenia się lub tworzenia
Analiza metod wykrywania przekazów steganograficznych. Magdalena Pejas Wydział EiTI PW magdap7@gazeta.pl
Analiza metod wykrywania przekazów steganograficznych Magdalena Pejas Wydział EiTI PW magdap7@gazeta.pl Plan prezentacji Wprowadzenie Cel pracy Tezy pracy Koncepcja systemu Typy i wyniki testów Optymalizacja
3. Podaj elementy składowe jakie powinna uwzględniać definicja informatyki.
1. Podaj definicję informatyki. 2. W jaki sposób można definiować informatykę? 3. Podaj elementy składowe jakie powinna uwzględniać definicja informatyki. 4. Co to jest algorytm? 5. Podaj neumanowską architekturę
CLARIN rozproszony system technologii językowych dla różnych języków europejskich
CLARIN rozproszony system technologii językowych dla różnych języków europejskich Maciej Piasecki Politechnika Wrocławska Instytut Informatyki G4.19 Research Group maciej.piasecki@pwr.wroc.pl Projekt CLARIN
STUDIA I MONOGRAFIE NR
STUDIA I MONOGRAFIE NR 21 WYBRANE ZAGADNIENIA INŻYNIERII WIEDZY Redakcja naukowa: Andrzej Cader Jacek M. Żurada Krzysztof Przybyszewski Łódź 2008 3 SPIS TREŚCI WPROWADZENIE 7 SYSTEMY AGENTOWE W E-LEARNINGU
KARTA MODUŁU KSZTAŁCENIA
KARTA MODUŁU KSZTAŁCENIA I. Informacje ogólne 1 Nazwa modułu kształcenia Sztuczna inteligencja 2 Nazwa jednostki prowadzącej moduł Instytut Informatyki, Zakład Informatyki Stosowanej 3 Kod modułu (wypełnia
mgr inż. Magdalena Deckert Poznań, r. Uczenie się klasyfikatorów przy zmieniającej się definicji klas.
mgr inż. Magdalena Deckert Poznań, 01.06.2010r. Uczenie się klasyfikatorów przy zmieniającej się definicji klas. Plan prezentacji Wstęp Concept drift Typy zmian Podział algorytmów stosowanych w uczeniu
Odniesienie do efektów kształcenia dla obszaru nauk EFEKTY KSZTAŁCENIA Symbol
KIERUNKOWE EFEKTY KSZTAŁCENIA Wydział Informatyki i Zarządzania Kierunek studiów INFORMATYKA (INF) Stopień studiów - pierwszy Profil studiów - ogólnoakademicki Projekt v1.0 z 18.02.2015 Odniesienie do
ID1SII4. Informatyka I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) stacjonarne (stacjonarne / niestacjonarne)
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu ID1SII4 Nazwa modułu Systemy inteligentne 1 Nazwa modułu w języku angielskim Intelligent
UCZENIE MASZYNOWE I SZTUCZNA INTELIGENCJA Jako narzędzia wspomagania decyzji w zarządzaniu kapitałem ludzkim organizacji
UCZENIE MASZYNOWE I SZTUCZNA INTELIGENCJA Jako narzędzia wspomagania decyzji w zarządzaniu kapitałem ludzkim organizacji Filip Wójcik Wydział Zarządzania, Informatyki i Finansów Instytut Informatyki Ekonomicznej
PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W NYSIE
PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W NYSIE Efekty uczenia się Kierunek Informatyka Studia pierwszego stopnia Profil praktyczny Umiejscowienie kierunku informatyka w obszarze kształcenia: Obszar wiedzy: nauki
ZAGADNIENIA DO EGZAMINU DYPLOMOWEGO NA STUDIACH INŻYNIERSKICH. Matematyka dyskretna, algorytmy i struktury danych, sztuczna inteligencja
Kierunek Informatyka Rok akademicki 2016/2017 Wydział Matematyczno-Przyrodniczy Uniwersytet Rzeszowski ZAGADNIENIA DO EGZAMINU DYPLOMOWEGO NA STUDIACH INŻYNIERSKICH Technika cyfrowa i architektura komputerów
Opis efektów kształcenia dla modułu zajęć
Nazwa modułu: Eksploracja danych Rok akademicki: 2030/2031 Kod: MIS-2-105-MT-s Punkty ECTS: 5 Wydział: Inżynierii Metali i Informatyki Przemysłowej Kierunek: Informatyka Stosowana Specjalność: Modelowanie
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: obowiązkowy w ramach treści kierunkowych, moduł kierunkowy oólny Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK
Analiza danych. http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU
Analiza danych Wstęp Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Różne aspekty analizy danych Reprezentacja graficzna danych Metody statystyczne: estymacja parametrów
Multi-wyszukiwarki. Mediacyjne Systemy Zapytań wprowadzenie. Architektury i technologie integracji danych Systemy Mediacyjne
Architektury i technologie integracji danych Systemy Mediacyjne Multi-wyszukiwarki Wprowadzenie do Mediacyjnych Systemów Zapytań (MQS) Architektura MQS Cechy funkcjonalne MQS Cechy implementacyjne MQS
NEURAL NETWORK ) FANN jest biblioteką implementującą SSN, którą moŝna wykorzystać. w C, C++, PHP, Pythonie, Delphi a nawet w środowisku. Mathematica.
Wykorzystanie sztucznych sieci neuronowych do rozpoznawania języków: polskiego, angielskiego i francuskiego Tworzenie i nauczanie sieci przy pomocy języka C++ i biblioteki FANN (Fast Artificial Neural
Studia podyplomowe w zakresie przetwarzanie, zarządzania i statystycznej analizy danych
Studia podyplomowe w zakresie przetwarzanie, zarządzania i statystycznej analizy danych PRZEDMIOT (liczba godzin konwersatoriów/ćwiczeń) Statystyka opisowa z elementami analizy regresji (4/19) Wnioskowanie
Inżynieria danych I stopień Praktyczny Studia stacjonarne Wszystkie specjalności Katedra Inżynierii Produkcji Dr Małgorzata Lucińska
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 205/206 Z-ID-602 Wprowadzenie do uczenia maszynowego Introduction to Machine Learning
KLASYFIKACJA. Słownik języka polskiego
KLASYFIKACJA KLASYFIKACJA Słownik języka polskiego Klasyfikacja systematyczny podział przedmiotów lub zjawisk na klasy, działy, poddziały, wykonywany według określonej zasady Klasyfikacja polega na przyporządkowaniu
Języki, automaty i obliczenia
Języki, automaty i obliczenia Wykład 12: Gramatyki i inne modele równoważne maszynom Turinga. Wstęp do złożoności obliczeniowej Sławomir Lasota Uniwersytet Warszawski 20 maja 2015 Plan 1 Gramatyki 2 Języki
Systemy uczące się wykład 1
Systemy uczące się wykład 1 dr Przemysław Juszczuk Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny 5 X 2018 e-mail: przemyslaw.juszczuk@ue.katowice.pl Konsultacje: na stronie katedry + na stronie domowej
W poszukiwaniu sensu w świecie widzialnym
W poszukiwaniu sensu w świecie widzialnym Andrzej Śluzek Nanyang Technological University Singapore Uniwersytet Mikołaja Kopernika Toruń AGH, Kraków, 28 maja 2010 1 Podziękowania Przedstawione wyniki powstały
Opis efektów kształcenia dla modułu zajęć
Nazwa modułu: Systemy inteligentne Rok akademicki: 2013/2014 Kod: RME-2-108-SI-s Punkty ECTS: 7 Wydział: Inżynierii Mechanicznej i Robotyki Kierunek: Mechatronika Specjalność: Systemy inteligentne Poziom
Systemy uczące się wykład 2
Systemy uczące się wykład 2 dr Przemysław Juszczuk Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny 19 X 2018 Podstawowe definicje Fakt; Przesłanka; Konkluzja; Reguła; Wnioskowanie. Typy wnioskowania
I. KARTA PRZEDMIOTU CEL PRZEDMIOTU
I. KARTA PRZEDMIOTU 1. Nazwa przedmiotu: TECHNOLOGIA INFORMACYJNA 2. Kod przedmiotu: Ot 3. Jednostka prowadząca: Wydział Mechaniczno-Elektryczny 4. Kierunek: Automatyka i Robotyka 5. Specjalność: Informatyka
PODSTAWY BAZ DANYCH. 19. Perspektywy baz danych. 2009/2010 Notatki do wykładu "Podstawy baz danych"
PODSTAWY BAZ DANYCH 19. Perspektywy baz danych 1 Perspektywy baz danych Temporalna baza danych Temporalna baza danych - baza danych posiadająca informację o czasie wprowadzenia lub czasie ważności zawartych
Informatyka Studia II stopnia
Wydział Elektrotechniki, Elektroniki, Informatyki i Automatyki Politechnika Łódzka Informatyka Studia II stopnia Katedra Informatyki Stosowanej Program kierunku Informatyka Specjalności Administrowanie
Podstawy Sztucznej Inteligencji (PSZT)
Podstawy Sztucznej Inteligencji (PSZT) Paweł Wawrzyński Uczenie maszynowe Sztuczne sieci neuronowe Plan na dziś Uczenie maszynowe Problem aproksymacji funkcji Sieci neuronowe PSZT, zima 2013, wykład 12
SYLABUS DOTYCZY CYKLU KSZTAŁCENIA Bieżący sylabus w semestrze zimowym roku 2016/17
Załącznik nr 4 do Uchwały Senatu nr 430/01/2015 SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2016-2018 Bieżący sylabus w semestrze zimowym roku 2016/17 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/
Plan wykładu. Kompilatory. Literatura. Translatory. Literatura Translatory. Paweł J. Matuszyk
Plan wykładu (1) Paweł J. Matuszyk AGH Kraków 1 2 tor leksykalny tor syntaktyczny Generator pośredniego Generator wynikowego Hopcroft J. E., Ullman J. D., Wprowadzenie do teorii automatów, języków i obliczeń,
Automatyczne rozpoznawanie mowy - wybrane zagadnienia / Ryszard Makowski. Wrocław, Spis treści
Automatyczne rozpoznawanie mowy - wybrane zagadnienia / Ryszard Makowski. Wrocław, 2011 Spis treści Przedmowa 11 Rozdział 1. WPROWADZENIE 13 1.1. Czym jest automatyczne rozpoznawanie mowy 13 1.2. Poziomy
Gramatyki, wyprowadzenia, hierarchia Chomsky ego. Gramatyka
Gramatyki, wyprowadzenia, hierarchia Chomsky ego Teoria automatów i języków formalnych Dr inŝ. Janusz Majewski Katedra Informatyki Gramatyka Gramatyką G nazywamy czwórkę uporządkowaną gdzie: G =
EFEKTY KSZTAŁCENIA DLA KIERUNKU STUDIÓW
EFEKTY KSZTAŁCENIA DLA KIERUNKU STUDIÓW WYDZIAŁ KIERUNEK z obszaru nauk POZIOM KSZTAŁCENIA FORMA STUDIÓW PROFIL JĘZYK STUDIÓW Podstawowych Problemów Techniki Informatyka technicznych 6 poziom, studia inżynierskie
Kierunek Informatyka stosowana Studia stacjonarne Studia pierwszego stopnia
Studia pierwszego stopnia I rok Matematyka dyskretna 30 30 Egzamin 5 Analiza matematyczna 30 30 Egzamin 5 Algebra liniowa 30 30 Egzamin 5 Statystyka i rachunek prawdopodobieństwa 30 30 Egzamin 5 Opracowywanie
Myśl w języku Python! : nauka programowania / Allen B. Downey. Gliwice, cop Spis treści
Myśl w języku Python! : nauka programowania / Allen B. Downey. Gliwice, cop. 2017 Spis treści Przedmowa 11 1. Jak w programie 21 Czym jest program? 21 Uruchamianie interpretera języka Python 22 Pierwszy
SYLABUS DOTYCZY CYKLU KSZTAŁCENIA REALIZACJA W ROKU AKADEMICKIM 2016/2017
SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2014-2018 REALIZACJA W ROKU AKADEMICKIM 2016/2017 1.1. Podstawowe informacje o przedmiocie/module Nazwa przedmiotu/ modułu Metody eksploracji danych Kod przedmiotu/ modułu*
Zagadnienia egzaminacyjne INFORMATYKA. stacjonarne. I-go stopnia. (INT) Inżynieria internetowa STOPIEŃ STUDIÓW TYP STUDIÓW SPECJALNOŚĆ
(INT) Inżynieria internetowa 1.Tryby komunikacji między procesami w standardzie Message Passing Interface. 2. HTML DOM i XHTML cel i charakterystyka. 3. Asynchroniczna komunikacja serwerem HTTP w technologii
Rozpoznawanie twarzy za pomocą sieci neuronowych
Rozpoznawanie twarzy za pomocą sieci neuronowych Michał Bereta http://torus.uck.pk.edu.pl/~beretam Praktyczna przydatność Bardzo szerokie praktyczne zastosowanie Ochrona Systemy bezpieczeństwa (np. lotniska)
Transformacja wiedzy w budowie i eksploatacji maszyn
Uniwersytet Technologiczno Przyrodniczy im. Jana i Jędrzeja Śniadeckich w Bydgoszczy Wydział Mechaniczny Transformacja wiedzy w budowie i eksploatacji maszyn Bogdan ŻÓŁTOWSKI W pracy przedstawiono proces
KIERUNKOWE EFEKTY KSZTAŁCENIA
WYDZIAŁ INFORMATYKI I ZARZĄDZANIA Kierunek studiów: INFORMATYKA Stopień studiów: STUDIA I STOPNIA Obszar Wiedzy/Kształcenia: OBSZAR NAUK TECHNICZNYCH Obszar nauki: DZIEDZINA NAUK TECHNICZNYCH Dyscyplina
KIERUNKOWE EFEKTY KSZTAŁCENIA
WYDZIAŁ INFORMATYKI I ZARZĄDZANIA Kierunek studiów: INFORMATYKA Stopień studiów: STUDIA I STOPNIA Obszar Wiedzy/Kształcenia: OBSZAR NAUK TECHNICZNYCH Obszar nauki: DZIEDZINA NAUK TECHNICZNYCH Dyscyplina
Sposoby wyszukiwania multimedialnych zasobów w Internecie
Sposoby wyszukiwania multimedialnych zasobów w Internecie Lidia Derfert-Wolf Biblioteka Główna Uniwersytetu Technologiczno-Przyrodniczego w Bydgoszczy e-mail: lidka@utp.edu.pl III seminarium z cyklu INFOBROKER:
Spis treści 377 379 WSTĘP... 9
Spis treści 377 379 Spis treści WSTĘP... 9 ZADANIE OPTYMALIZACJI... 9 PRZYKŁAD 1... 9 Założenia... 10 Model matematyczny zadania... 10 PRZYKŁAD 2... 10 PRZYKŁAD 3... 11 OPTYMALIZACJA A POLIOPTYMALIZACJA...
6. Algorytmy ochrony przed zagłodzeniem dla systemów Linux i Windows NT.
WYDZIAŁ: GEOLOGII, GEOFIZYKI I OCHRONY ŚRODOWISKA KIERUNEK STUDIÓW: INFORMATYKA STOSOWANA RODZAJ STUDIÓW: STACJONARNE I STOPNIA ROK AKADEMICKI 2014/2015 WYKAZ PRZEDMIOTÓW EGZAMINACYJNYCH: I. Systemy operacyjne
Analiza skupień. Analiza Skupień W sztucznej inteligencji istotną rolę ogrywają algorytmy grupowania
Analiza skupień W sztucznej inteligencji istotną rolę ogrywają algorytmy grupowania Analiza Skupień Elementy składowe procesu grupowania obiekt Ekstrakcja cech Sprzężenie zwrotne Grupowanie klastry Reprezentacja
Spis treúci. Księgarnia PWN: Paweł Kobis - Marketing z Google. Podziękowania O Autorze Wstęp... 13
Spis treúci Księgarnia PWN: Paweł Kobis - Marketing z Google Podziękowania... 9 O Autorze... 11 Wstęp... 13 1. Pozycjonowanie stron... 15 1.1. Dlaczego warto pozycjonować strony?... 16 1.2. Dlaczego pozycjonowanie,
I. KARTA PRZEDMIOTU CEL PRZEDMIOTU
I. KARTA PRZEDMIOTU 1. Nazwa przedmiotu: TECHNOLOGIA INFORMACYJNA 2. Kod przedmiotu: Ot 3. Jednostka prowadząca: Wydział Mechaniczno-Elektryczny 4. Kierunek: Automatyka i Robotyka 5. Specjalność: Elektroautomatyka
PROGRAM NAUCZANIA DLA ZAWODU TECHNIK INFORMATYK, 351203 O STRUKTURZE PRZEDMIOTOWEJ
PROGRAM NAUCZANIA DLA ZAWODU TECHNIK INFORMATYK, 351203 O STRUKTURZE PRZEDMIOTOWEJ Systemy baz danych 1. 2 Wstęp do baz danych 2. 2 Relacyjny model baz danych. 3. 2 Normalizacja baz danych. 4. 2 Cechy
Grafika i Systemy Multimedialne (IGM)
Nowa Specjalność na Kierunku Informatyka Informatyka Techniczna (ITN) Grafika i Systemy Multimedialne (IGM) dr inż. Jacek Mazurkiewicz (K-9) Motywacja 2 narastająca potrzeba aktualizacji, modernizacji
Maszyna Turinga języki
Maszyna Turinga języki Teoria automatów i języków formalnych Dr inż. Janusz Majewski Katedra Informatyki Maszyna Turinga (1) b b b A B C B D A B C b b Q Zależnie od symbolu obserwowanego przez głowicę
1. Tabela odniesień efektów kierunkowych do efektów obszarowych z komentarzami
EFEKTY KSZTAŁCENIA 1. Tabela odniesień efektów kierunkowych do efektów obszarowych z komentarzami Kierunkowy efekt kształcenia - symbol K_W01 K_W02 K_W03 K_W04 K_W05 K_W06 K_W07 K_W08 Kierunkowy efekt
INFORMATYKA Pytania ogólne na egzamin dyplomowy
INFORMATYKA Pytania ogólne na egzamin dyplomowy 1. Wyjaśnić pojęcia problem, algorytm. 2. Podać definicję złożoności czasowej. 3. Podać definicję złożoności pamięciowej. 4. Typy danych w języku C. 5. Instrukcja
Zagadnienia na egzamin dyplomowy. Studia jednolite magisterskie WFMiI rok akad. 2010/11
Zagadnienia na egzamin dyplomowy Studia jednolite magisterskie WFMiI rok akad. 2010/11 Lp PRZEDMIOT PYTANIE 1 2 3 4 Jakie jest główne zastosowanie mechanizmu Samba? Proszę omówić możliwości ochrony serwerów
Języki, automaty i obliczenia
Języki, automaty i obliczenia Wykład 10: Maszyny Turinga Sławomir Lasota Uniwersytet Warszawski 29 kwietnia 2015 Plan Maszyny Turinga (Niedeterministyczna) maszyna Turinga M = (A, Q, q 0, F, T, B, δ) A
Przetwarzanie Języka Naturalnego dr inż. Krzysztof Rzecki. Przetwarzanie Języka Naturalnego konspekt (30 godzin) Dr inż.
Przetwarzanie Języka Naturalnego konspekt (30 godzin) Dr inż. Krzysztof Rzecki Literatura: W. Lubaszewski, Słowniki komputerowe i automatyczna ekstrakcja informacji z tekstu, AGH Kraków 2009. Kłopotek
Rozkład materiału do nauczania informatyki w liceum ogólnokształcącym Wersja I
Zespół TI Instytut Informatyki Uniwersytet Wrocławski ti@ii.uni.wroc.pl http://www.wsip.com.pl/serwisy/ti/ Rozkład materiału do nauczania informatyki w liceum ogólnokształcącym Wersja I Rozkład zgodny
Google Trends - Poradnik z analizą frazy SEO
Google Trends - Poradnik z analizą frazy SEO Co to jest Google Trends? Google Trends użyteczne narzędzie bazujące na zapytaniach, słowach kluczowych wpisywanych do wyszukiwarki Google i wyszukiwarki YouTube.
Algorytmy klasyfikacji
Algorytmy klasyfikacji Konrad Miziński Instytut Informatyki Politechnika Warszawska 6 maja 2015 1 Wnioskowanie 2 Klasyfikacja Zastosowania 3 Drzewa decyzyjne Budowa Ocena jakości Przycinanie 4 Lasy losowe
5 Moduył do wyboru II *[zobacz opis poniżej] 4 Projektowanie i konfiguracja sieci komputerowych Z
1. Nazwa kierunku informatyka 2. Cykl rozpoczęcia 2016/2017L 3. Poziom kształcenia studia drugiego stopnia 4. Profil kształcenia ogólnoakademicki 5. Forma prowadzenia studiów stacjonarna Specjalizacja:
Rozkład materiału do nauczania informatyki w liceum ogólnokształcącym Wersja II
Zespół TI Instytut Informatyki Uniwersytet Wrocławski ti@ii.uni.wroc.pl http://www.wsip.com.pl/serwisy/ti/ Rozkład materiału do nauczania informatyki w liceum ogólnokształcącym Wersja II Rozkład wymagający
Spis treści. Przedmowa. Podstawy R
Spis treści Przedmowa Podstawy R 1. Środowisko R i program RStudio 1.1. Cechy języka R 1.2. Organizacja pracy w R i RStudio 1.2.1. Konsola R 1.2.2. Program RStudio 1.2.3. Pierwsze kroki w trybie interaktywnym
Semantyczny Monitoring Cyberprzestrzeni
Semantyczny Monitoring Cyberprzestrzeni Partnerzy projektu: Katedra Informatyki Ekonomicznej Uniwersytet Ekonomiczny w Poznaniu Partnerzy projektu: Zarys problemu Źródło internetowe jako zasób użytecznych