WYKŁAD 1. Wprowadzenie w tematykę kursu
|
|
- Radosław Góra
- 9 lat temu
- Przeglądów:
Transkrypt
1 Wrocław University of Technology WYKŁAD 1 Wprowadzenie w tematykę kursu autor: Maciej Zięba Politechnika Wrocławska
2 Informacje dotyczące zajęć Cykl 8 wykładów. Konsultacje odbywają się w sali 121 w budynku C3 w terminach (proszę o wcześniejsze potwierdzenie mailem): PN, CZ, ND, Kontakt do prowadzącego: maciej.zieba@pwr.wroc.pl. Strona prowadzącego: Na ostatnim wykładzie kolokwium zaliczeniowe. 2/34
3 Zawartość merytoryczna (1) 1. Zagadnienia podstawowe: metody pozyskiwania, wykorzystywania i integracji wiedzy; wprowadzenie niezbędnych pojęć związanych z prawdopodobieństwem; typowe rozkłady dyskretne i ciągłe. 2. Modele probabilistyczne: reprezentacja wiedzy w postaci modelu probabilistycznego; wnioskowanie na podstawie modeli probabilistycznych; ekstrakcja wiedzy z modeli probabilistycznych; integracja modeli probabilistycznych; złożone modele probabilistyczne. 3/34
4 Zawartość merytoryczna (2) 3. Modele funkcyjne, reguły i drzewa decyzyjne: metody ekstrakcji wiedzy dla modeli funkcyjnych; metody konstrukcji drzew i reguł decyzyjnych; metody konstrukcji zespołów modeli; metody integracji modeli o różnych reprezentacjach wiedzy. 4. Inne rodzaje reprezentacji wiedzy: zbiory rozmyte; ontologie; 5. Przykłady integracji wiedzy. 4/34
5 Pojęcie wiedzy Pojęcie wiedzy po raz pierwszy wprowadził Platon. Uważał on, że wiedza to prawdziwe i uzasadnione przekonanie. Arystoteles z kolei wyodrębnia wiedzę teoretyczną i praktyczną. Podział wiedzy ze względu na kryterium doświadczenia: Wiedza a priori jest niezależna od zmysłów i dotyczy prawd absolutnych lub uniwersalnych jakimi są prawa logiki, prawa matematyki. Wiedza a posteriori jest wiedzą nabytą poprzez zmysły i jej prawdziwość może być obalona poprzez następne obserwacje. 5/34
6 Pojęcie wiedzy w sztucznej inteligencji Pojęcie wiedzy w sztucznej inteligencji odnosi się do struktur modeli reprezentujących pewne procesy podejmowania decyzji. W zależności od procesu podejmowania decyzji wiedza może być reprezentowana w postaci rozmaitych struktur, takich jak funkcje, drzewa, grafy, reguły, bądź zbiory. Wiedza może mieć charakter: zrozumiały (interpretowalny); niejawny (nieinterpretowalny). Źródła wiedzy: wiedza eksperta; wiedza pozyskana z danych. 6/34
7 Pojęcie wiedzy w sztucznej inteligencji Pojęcie wiedzy w sztucznej inteligencji odnosi się do struktur modeli reprezentujących pewne procesy podejmowania decyzji. W zależności od procesu podejmowania decyzji wiedza może być reprezentowana w postaci rozmaitych struktur, takich jak funkcje, drzewa, grafy, reguły, bądź zbiory. Wiedza może mieć charakter: zrozumiały (interpretowalny); niejawny (nieinterpretowalny). Źródła wiedzy: wiedza eksperta; wiedza pozyskana z danych. 6/34
8 Uczenie maszynowe i eksploracja danych (1) Uczenie maszynowe (ang. machine learning) to proces pozyskiwania wiedzy do rozwiązania pewnego zadania w oparciu o doświadczenie i z wykorzystaniem pewnej miary jakości. Wraz ze wzrostem doświadczenia, następuje przyrost wiedzy potrzebnej do realizacji zadania mierzony z wykorzystaniem miary jakości. Eksploracja (ekstrakcja) danych (ang. data mining) to proces pozyskiwania wiedzy z danych reprezentowanej przez pewne wzorce. ZADANIE Jaka to litera? DOŚWIADCZENIE MIARA JAKOŚCI 7/34
9 Uczenie maszynowe i eksploracja danych (2) Metody uczenia maszynowego: są wykorzystywane jako narzędzia w procesach eksploracji danych. mają wymiar teoretyczny; modelują zjawiska wspomagając się danymi; modelują rzeczywistość w sposób probabilistyczny; zorientowane głownie na modele nieinterpretowalne; Metody eksploracji danych: jako narzędzia wykorzystują metody uczenia maszynowego. mają wymiar praktyczny; koncentrują się na analizie danych; modelują rzeczywistość w sposób deterministyczny; zorientowane głownie na modele interpretowalne. 8/34
10 Dane w uczeniu maszynowym Jeżeli rozważamy problem uczenia nadzorowanego (predykcji), to interesuje nas znalezienie mapowania wartości wejściowych x na wartości wyjściowe y. Mapowanie to odbywa się na podstawie tzn. zbioru uczącego (treningowego), który zawiera pary wejście-wyjście nazywane przykładami: D = {(x n, y n )} N n=1. Każdy element wejściowy x i zawiera zestaw wartości nominalnych i liczbowych, które nazywane są cechami, bądź atrybutami. Każdy element wyjściowy y i reprezentowany jest przez wartość liczbową (regresja), bądź też nominalną (klasyfikacja). Jeżeli rozważamy problem uczenia nienadzorowanego (deskrypcji) to interesuje nas znalezienie ciekawych wzorców w danych: D = {x n } N n=1. 9/34
11 Źródła danych DANE BANKOWE DANE MEDYCZNE DANE DŹWIĘKOWE OBRAZY DANE MAILOWE PORTALE SPOŁECZNOŚCIOWE DANE O KLIENTACH DANE Z CZUJNIKÓW DANE GIEŁDOWE 10/34
12 Problemy uczenia maszynowego Uczenie z nadzorem (ang. supervised learning): klasyfikacja (ang. classification); regresja (ang. regression); Uczenie bez nadzoru (ang. unsupervised learning): grupowanie (klasteryzacja, analiza skupień) (ang. clustering); redukcja wymiarów (ang. dimensionality reduction); uzupełnianie wartości (ang. matrix completion). Uczenie ze wzmocnieniem (ang. reinforcement learning). 11/34
13 Uczenie z nadzorem: Regresja Regresja (ang. Regression): Dysponujemy obserwacjami z odpowiadającymi im wartościami ciągłymi. Celem uczenia jest skonstruowanie modelu regresji na podstawie danych. Model konstruowany jest tak, aby możliwe było przewidywanie nowych obserwacji. 12/34
14 Uczenie z nadzorem: Regresja Regresja (ang. Regression): Dysponujemy obserwacjami z odpowiadającymi im wartościami ciągłymi. Celem uczenia jest skonstruowanie modelu regresji na podstawie danych. Model konstruowany jest tak, aby możliwe było przewidywanie nowych obserwacji. 12/34
15 Uczenie z nadzorem: Regresja Regresja (ang. Regression): Dysponujemy obserwacjami z odpowiadającymi im wartościami ciągłymi. Celem uczenia jest skonstruowanie modelu regresji na podstawie danych. Model konstruowany jest tak, aby możliwe było przewidywanie nowych obserwacji. 12/34
16 Uczenie z nadzorem: Regresja Regresja (ang. Regression): Dysponujemy obserwacjami z odpowiadającymi im wartościami ciągłymi. Celem uczenia jest skonstruowanie modelu regresji na podstawie danych. Model konstruowany jest tak, aby możliwe było przewidywanie nowych obserwacji. 12/34
17 Regresja: Śledzenie ruchu Cel: Dane: Wyznaczenie następnego położenia obiektu. Sekwencja obrazów z poruszającymi się obiektami. Na podstawie dotychczas zarejestrowanej sekwencji obrazów wyznaczane jest położenie obiektu. 13/34
18 Regresja: Predykcja notowań giełdowych Cel: Dane: Wycena akcji. Notowania akcji z poprzednich okresów oraz inne czynniki wpływające na cenę akcji. Na podstawie notowań historycznych i innych czynników mających wpływ na cenę akcji budowany jest model predykcyjny. Model aktualizowany jest z wykorzystaniem bieżących notowań. 14/34
19 Regresja: Predykcja przeżywalności pooperacyjnej Cel: Dane: Określenie jaki okres czasu pacjent przeżyje po operacji. Wyniki badań pacjenta przeprowadzonych przed i po operacji, ogólna charakterystyka zdrowia pacjenta. Na podstawie danych o pacjencie należy określić jaki okres czasu przeżyje on po operacji. 15/34
20 Uczenie z nadzorem: Klasyfikacja Klasyfikacja (ang. Classification): Dysponujemy obserwacjami z etykietami (klasami), które przyjmują wartości nominalne. Celem uczenia jest skonstruowanie klasyfikatora separującego obiekty należące do różnych klas. Klasyfikator konstruowany jest tak, aby możliwe było przewidywanie klas nowych, niesklasyfikowanych obserwacji. 16/34
21 Uczenie z nadzorem: Klasyfikacja Klasyfikacja (ang. Classification): Dysponujemy obserwacjami z etykietami (klasami), które przyjmują wartości nominalne. Celem uczenia jest skonstruowanie klasyfikatora separującego obiekty należące do różnych klas. Klasyfikator konstruowany jest tak, aby możliwe było przewidywanie klas nowych, niesklasyfikowanych obserwacji. 16/34
22 Uczenie z nadzorem: Klasyfikacja Klasyfikacja (ang. Classification): Dysponujemy obserwacjami z etykietami (klasami), które przyjmują wartości nominalne. Celem uczenia jest skonstruowanie klasyfikatora separującego obiekty należące do różnych klas. Klasyfikator konstruowany jest tak, aby możliwe było przewidywanie klas nowych, niesklasyfikowanych obserwacji. 16/34
23 Uczenie z nadzorem: Klasyfikacja Klasyfikacja (ang. Classification): Dysponujemy obserwacjami z etykietami (klasami), które przyjmują wartości nominalne. Celem uczenia jest skonstruowanie klasyfikatora separującego obiekty należące do różnych klas. Klasyfikator konstruowany jest tak, aby możliwe było przewidywanie klas nowych, niesklasyfikowanych obserwacji. 16/34
24 Klasyfikacja: Rozpoznawanie znaków Cel: Dane: Określenie, jaki znak (cyfra, litera) znajduje się na obrazku. Zestaw obrazków treningowych reprezentujących różne znaki wraz z korespondującymi etykietami. Wydobywane są cechy obrazka różnicujące reprezentowane znaki. Na podstawie cech i wykorzystując dane treningowe wykonywana jest klasyfikacja obrazka do najbardziej prawdopodobnego znaku. 17/34
25 Klasyfikacja: Detekcja obiektów Cel: Dane: Wykrycie obiektu na obrazie. Obraz na którym bada się wystąpienie obiektu, oraz zestaw obrazów treningowych przedstawiających dany obiekt. Do analizy obrazu wykorzystuje się okno przesuwne. W każdym kroku obraz z okna przesuwnego klasyfikowany jest jako obiekt poszukiwany lub nie. 18/34
26 Klasyfikacja: Detekcja SPAMU Cel: Dane: Zbadać, czy dana wiadomość jest SPAMEM. Zestaw zawierający zaetykietowane wiadomości mailowe. Wydobywane są cechy (występowanie słów) różnicujące SPAM od zwykłej poczty. Klasyfikacja nowej wiadomości odbywa się z wykorzystaniem wydobytych cech. 19/34
27 Klasyfikacja: Credit Scoring Cel: Dane: Zbadać zdolność kredytową klienta bankowego. Charakterystyki klientów bankowych pochodzące z systemów informatycznych i kwestionariuszy. Wydobywane są cechy mające wpływ na decyzje kredytowe. Klasyfikatory do oceny zdolności kredytowej są powszechnie stosowanym narzędziem. 20/34
28 Uczenie bez nadzoru: Klasteryzacja Klasteryzacja (ang. Clustering): Dysponujemy obserwacjami bez etykiet. Celem uczenia jest znalezienie grup (klastrów), w których skupione są dane. Obserwacje z danej grupy charakteryzują się podobieństwem. Inne nazwy: grupowanie, analiza skupień. 21/34
29 Uczenie bez nadzoru: Klasteryzacja Klasteryzacja (ang. Clustering): Dysponujemy obserwacjami bez etykiet. Celem uczenia jest znalezienie grup (klastrów), w których skupione są dane. Obserwacje z danej grupy charakteryzują się podobieństwem. Inne nazwy: grupowanie, analiza skupień. 21/34
30 Klateryzacja: Grupowanie osób w sieci społecznej Cel: Dane: Wyodrębnienie grup znajomych w sieci społecznej. Dane o interakcji między osobami. Wyodrębnione grupy znajomych przy pomocy TouchGraph dla Facebook a. Znajomi w tych samych klastrach charakteryzują się wewnętrzną interakcją między sobą. 22/34
31 Uczenie bez nadzoru: Redukcja wymiarów Redukcja wymiarów (ang. Dimensionality reduction): Dysponujemy obserwacjami bez etykiet. Celem uczenia jest znalezienie niskowymiarowej podprzestrzeni (rozmaitości), na której leżą dane. Obserwacje mogą zostać zakodowane przy pomocy układu współrzędnych związanego z niskowymiarową podprzestrzenią. 23/34
32 Uczenie bez nadzoru: Redukcja wymiarów Redukcja wymiarów (ang. Dimensionality reduction): Dysponujemy obserwacjami bez etykiet. Celem uczenia jest znalezienie niskowymiarowej podprzestrzeni (rozmaitości), na której leżą dane. Obserwacje mogą zostać zakodowane przy pomocy układu współrzędnych związanego z niskowymiarową podprzestrzenią. 23/34
33 Redukcja wymiarów: Kodowanie i kompresja zdjęć Cel: Znalezienie twarzy bazowych rozpinających niskowymiarową przestrzeń. Dane: Zdjęcia twarzy. Wyróżnione M twarzy bazowych rozpina M-wymiarową podprzestrzeń w przestrzeni twarzy. Twarze mogą być kodowane poprzez położenie na niskowymiarowej przestrzeni. Metoda może służyć, jako automatyczna ekstrakcja cech ze zdjęć. 24/34
34 Uczenie bez nadzoru: Uzupełnianie wartości Uzupełnianie wartości (ang. Matrix completion): Dysponujemy obserwacjami bez etykiet. Celem uczenia jest znalezienie brakujących wartości dla niekompletnych obserwacji. Obserwacje uzupełniane są poprzez wstawienie najbardziej prawdopodobnych wartości. 25/34
35 Uczenie bez nadzoru: Uzupełnianie wartości Uzupełnianie wartości (ang. Matrix completion): Dysponujemy obserwacjami bez etykiet. Celem uczenia jest znalezienie brakujących wartości dla niekompletnych obserwacji. Obserwacje uzupełniane są poprzez wstawienie najbardziej prawdopodobnych wartości. 25/34
36 Uczenie bez nadzoru: Uzupełnianie wartości Uzupełnianie wartości (ang. Matrix completion): Dysponujemy obserwacjami bez etykiet. Celem uczenia jest znalezienie brakujących wartości dla niekompletnych obserwacji. Obserwacje uzupełniane są poprzez wstawienie najbardziej prawdopodobnych wartości. 25/34
37 Uzupełnianie wartości: Rekonstrukcja obrazu Cel: Dane: Odtworzyć zakłócony obraz. Zestaw niezakłóconych zdjęć, oraz zakłócony obraz do rekonstrukcji. W oparciu o niezakłócone zdjęcia i analizowany obraz konstruowany jest rozkład prawdopodobieństwa na brakujące piksele. Na podstawie rozkładu uzupełniane są brakujące wartości pikseli poprzez wstawianie wartości najbardziej prawdopodobnych. 26/34
38 Uzupełnianie wartości: Rekomendacja produktów Cel: Dane: Zaproponować klientowi produkty, które skłonny jest kupić. Produkty do tej pory kupione przez klienta i transakcje zrealizowane przez innych klientów. W oparciu o zakupiony koszyk produktów nabytych przez klienta i zestaw transakcji konstruowany jest rozkład prawdopodobieństwa na produkty. Na podstawie rozkładu wybierane do rekomendacji są produkty charakteryzujące się najwyższym prawdopodobieństwem. 27/34
39 Reprezentacje wiedzy Wiedza w postaci funkcyjnej Wiedza reprezentowania jest w postaci funkcji i jej parametrów. Proces podejmowania decyzji odbywa się poprzez wyznaczenie wartości funkcji dla zadanych wartości argumentów. Uczenie najczęściej odbywa się poprzez estymację parametrów w procesie optymalizacji pewnego kryterium. Przykład: f(w ZROST, W AGA) = 2 W AGA + W ZROST 320. f(176, 85) = 26 > 0; Wniosek: osoba, która ma 176 cm wzrostu i waży 85 kg jest rugbistą. 28/34
40 Reprezentacje wiedzy Wiedza w postaci funkcyjnej Wiedza reprezentowania jest w postaci funkcji i jej parametrów. Proces podejmowania decyzji odbywa się poprzez wyznaczenie wartości funkcji dla zadanych wartości argumentów. Uczenie najczęściej odbywa się poprzez estymację parametrów w procesie optymalizacji pewnego kryterium. Przykład: f(w ZROST, W AGA) = 2 W AGA + W ZROST 320. f(176, 85) = 26 > 0; Wniosek: osoba, która ma 176 cm wzrostu i waży 85 kg jest rugbistą. 28/34
41 Reprezentacje wiedzy Wiedza w postaci funkcyjnej Wiedza reprezentowania jest w postaci funkcji i jej parametrów. Proces podejmowania decyzji odbywa się poprzez wyznaczenie wartości funkcji dla zadanych wartości argumentów. Uczenie najczęściej odbywa się poprzez estymację parametrów w procesie optymalizacji pewnego kryterium. Przykład: f(w ZROST, W AGA) = 2 W AGA + W ZROST 320. f(176, 85) = 26 > 0; Wniosek: osoba, która ma 176 cm wzrostu i waży 85 kg jest rugbistą. 28/34
42 Reprezentacje wiedzy Wiedza w postaci probabilistycznej Wiedza reprezentowania jest w postaci rozkładów prawdopodobieństwa. Proces podejmowania decyzji odbywa się poprzez wybór najbardziej prawdopodobnego wariantu. Uczenie realizowane jest poprzez estymację rozkładów prawdopodobieństwa. Przykład: p(176, 85 rugbista) = 0.17; p(176, 85 skoczek) = Wniosek: bardziej prawdopodobne jest, że jeśli osoba jest rugbistą, to ma 176 cm wzrostu i waży 85 kg. 29/34
43 Reprezentacje wiedzy Wiedza w postaci probabilistycznej Wiedza reprezentowania jest w postaci rozkładów prawdopodobieństwa. Proces podejmowania decyzji odbywa się poprzez wybór najbardziej prawdopodobnego wariantu. Uczenie realizowane jest poprzez estymację rozkładów prawdopodobieństwa. Przykład: p(176, 85 rugbista) = 0.17; p(176, 85 skoczek) = Wniosek: bardziej prawdopodobne jest, że jeśli osoba jest rugbistą, to ma 176 cm wzrostu i waży 85 kg. 29/34
44 Reprezentacje wiedzy Wiedza w postaci reguł decyzyjnych Wiedza reprezentowania jest w postaci reguł decyzyjnych. Każda reguła opisana jest w formie implikacji, na którą składa się koniunkcja wartości atrybutów (lewa strona implikacji), oraz jeden z możliwych wariantów decyzyjnych (prawa strona implikacji). Proces podejmowania decyzji odbywa się poprzez wybór odpowiedniej reguły (bądź reguł) decyzyjnych, która dotyczy (pokrywa) danego zagadnienia i na jej podstawie przeprowadzenie procesu wnioskowania. Uczenie polega na znalezieniu zestawu reguł najlepiej opisujących rzeczywistość. Interpretowalna reprezentacja wiedzy. Przykładowa reguła: (Kwota kredytu > 700) (Dochod < 1100) (status = odmowa)) 30/34
45 Reprezentacje wiedzy Wiedza w postaci drzew decyzyjnych Wiedza reprezentowania jest w strukturze drzewa. Drzewo decyzyjne w wierzchołkach przechowuje atrybuty, krawędzie reprezentują podział wartości dla danego atrybutu, natomiast w liściach przechowywane są możliwe warianty decyzyjne. Proces podejmowania decyzji odbywa się poprzez przejście jedną z możliwych ścieżek w drzewie i odczytaniu wariantu decyzyjnego z liścia. Uczenie odbywa się poprzez wybór najbardziej informacyjnej cechy, umieszczenie jej w danym wierzchołku i wprowadzenie najbardziej informacyjnego podziału jej wartości. Interpretowalna reprezentacja wiedzy. Każda ścieżka reprezentuje odrębną regułę decyzyjną. Zbiór wszystkich ścieżek reprezentuje kompletny i niesprzeczny zestaw reguł. 31/34
46 Reprezentacje wiedzy Przykład drzewa decyzyjnego <0 $ Checking account status >= 0 $ Credit amount Employment status < $ > = $ full-time unemployment Employment status bad good part-time bad full-time unemployment part-time Credit amount good bad < $ > = $ good good Duration of credit <18 months > =18 months good divorced or widowed Personal status married single good good bad 32/34
47 Integracja wiedzy Integracja wiedzy (bądź danych na potrzeby pozyskania wiedzy) odbywa się głównie celem: podejmowania decyzji na podstawie wielu modeli; wydobywanie interpretowalnej wiedzy na podstawie wielu modeli; integracja danych rozłożonych danych w różnych obszarach przestrzeni. 33/34
48 Literatura Należy zapoznać się z treścią książki (Rozdział 1 i 2): Murphy, Kevin P. Machine learning: a probabilistic perspective. MIT Press, /34
SPOTKANIE 2: Wprowadzenie cz. I
Wrocław University of Technology SPOTKANIE 2: Wprowadzenie cz. I Piotr Klukowski Studenckie Koło Naukowe Estymator piotr.klukowski@pwr.edu.pl 17.10.2016 UCZENIE MASZYNOWE 2/27 UCZENIE MASZYNOWE = Konstruowanie
SPOTKANIE 1: Wprowadzenie do uczenia maszynowego
Wrocław University of Technology SPOTKANIE 1: Wprowadzenie do uczenia maszynowego Adam Gonczarek Studenckie Koło Naukowe Estymator adam.gonczarek@pwr.wroc.pl 18.10.2013 Początki uczenia maszynowego Cybernetyka
Wrocław University of Technology. Wprowadzenie cz. I. Adam Gonczarek. Rozpoznawanie Obrazów, Lato 2015/2016
Wrocław University of Technology Wprowadzenie cz. I Adam Gonczarek adam.gonczarek@pwr.edu.pl Rozpoznawanie Obrazów, Lato 2015/2016 ROZPOZNAWANIE OBRAZÓW / WZORCÓW Definicja z Wikipedii 2/39 ROZPOZNAWANIE
WYKŁAD 6. Reguły decyzyjne
Wrocław University of Technology WYKŁAD 6 Reguły decyzyjne autor: Maciej Zięba Politechnika Wrocławska Reprezentacje wiedzy Wiedza w postaci reguł decyzyjnych Wiedza reprezentowania jest w postaci reguł
WYKŁAD 3. Klasyfikacja: modele probabilistyczne
Wrocław University of Technology WYKŁAD 3 Klasyfikacja: modele probabilistyczne Maciej Zięba Politechnika Wrocławska Klasyfikacja Klasyfikacja (ang. Classification): Dysponujemy obserwacjami z etykietami
WYKŁAD 2. Problem regresji - modele liniowe
Wrocław University of Technology WYKŁAD 2 Problem regresji - modele liniowe Maciej Zięba Politechnika Wrocławska Regresja Regresja (ang. Regression): Dysponujemy obserwacjami z odpowiadającymi im wartościami
WYKŁAD 4. Podejmowanie decyzji dla modeli probabilistycznych Modelowanie Gaussowskie. autor: Maciej Zięba. Politechnika Wrocławska
Wrocław University of Technology WYKŁAD 4 Podejmowanie decyzji dla modeli probabilistycznych Modelowanie Gaussowskie autor: Maciej Zięba Politechnika Wrocławska Klasyfikacja Klasyfikacja (ang. Classification):
Widzenie komputerowe (computer vision)
Widzenie komputerowe (computer vision) dr inż. Marcin Wilczewski 2018/2019 Organizacja zajęć Tematyka wykładu Cele Python jako narzędzie uczenia maszynowego i widzenia komputerowego. Binaryzacja i segmentacja
Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej. Adam Meissner. Elementy uczenia maszynowego
Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej Adam Meissner Adam.Meissner@put.poznan.pl http://www.man.poznan.pl/~ameis Elementy uczenia maszynowego Literatura [1] Bolc L., Zaremba
Algorytmy decyzyjne będące alternatywą dla sieci neuronowych
Algorytmy decyzyjne będące alternatywą dla sieci neuronowych Piotr Dalka Przykładowe algorytmy decyzyjne Sztuczne sieci neuronowe Algorytm k najbliższych sąsiadów Kaskada klasyfikatorów AdaBoost Naiwny
Analiza skupień. Analiza Skupień W sztucznej inteligencji istotną rolę ogrywają algorytmy grupowania
Analiza skupień W sztucznej inteligencji istotną rolę ogrywają algorytmy grupowania Analiza Skupień Elementy składowe procesu grupowania obiekt Ekstrakcja cech Sprzężenie zwrotne Grupowanie klastry Reprezentacja
Plan prezentacji 0 Wprowadzenie 0 Zastosowania 0 Przykładowe metody 0 Zagadnienia poboczne 0 Przyszłość 0 Podsumowanie 7 Jak powstaje wiedza? Dane Informacje Wiedza Zrozumienie 8 Przykład Teleskop Hubble
Eksploracja Danych. wykład 4. Sebastian Zając. 10 maja 2017 WMP.SNŚ UKSW. Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 10 maja / 18
Eksploracja Danych wykład 4 Sebastian Zając WMP.SNŚ UKSW 10 maja 2017 Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 10 maja 2017 1 / 18 Klasyfikacja danych Klasyfikacja Najczęściej stosowana (najstarsza)
ALGORYTM RANDOM FOREST
SKRYPT PRZYGOTOWANY NA ZAJĘCIA INDUKOWANYCH REGUŁ DECYZYJNYCH PROWADZONYCH PRZEZ PANA PAWŁA WOJTKIEWICZA ALGORYTM RANDOM FOREST Katarzyna Graboś 56397 Aleksandra Mańko 56699 2015-01-26, Warszawa ALGORYTM
Klasyfikacja obiektów Drzewa decyzyjne (drzewa klasyfikacyjne)
Klasyfikacja obiektów Drzewa decyzyjne (drzewa klasyfikacyjne) Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski Klasyfikacja i predykcja. Odkrywaniem reguł klasyfikacji nazywamy proces znajdowania
Systemy agentowe. Uwagi organizacyjne i wprowadzenie. Jędrzej Potoniec
Systemy agentowe Uwagi organizacyjne i wprowadzenie Jędrzej Potoniec Kontakt mgr inż. Jędrzej Potoniec Jedrzej.Potoniec@cs.put.poznan.pl http://www.cs.put.poznan.pl/jpotoniec https://github.com/jpotoniec/sa
Metody systemowe i decyzyjne w informatyce
Metody systemowe i decyzyjne w informatyce Laboratorium JAVA Zadanie nr 2 Rozpoznawanie liter autorzy: A. Gonczarek, J.M. Tomczak Cel zadania Celem zadania jest zapoznanie się z problemem klasyfikacji
Data Mining Wykład 9. Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster. Plan wykładu. Sformułowanie problemu
Data Mining Wykład 9 Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster Plan wykładu Wprowadzanie Definicja problemu Klasyfikacja metod grupowania Grupowanie hierarchiczne Sformułowanie problemu
Pattern Classification
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley & Sons, 2000 with the permission of the authors
CLUSTERING. Metody grupowania danych
CLUSTERING Metody grupowania danych Plan wykładu Wprowadzenie Dziedziny zastosowania Co to jest problem klastrowania? Problem wyszukiwania optymalnych klastrów Metody generowania: k centroidów (k - means
Systemy pomiarowo-diagnostyczne. Metody uczenia maszynowego wykład I dr inż. 2015/2016
Systemy pomiarowo-diagnostyczne Metody uczenia maszynowego wykład I dr inż. Bogumil.Konopka@pwr.edu.pl 2015/2016 1 Wykład I - plan Sprawy organizacyjne Uczenie maszynowe podstawowe pojęcia Proces modelowania
SPOTKANIE 9: Metody redukcji wymiarów
Wrocław University of Technology SPOTKANIE 9: Metody redukcji wymiarów Piotr Klukowski* Studenckie Koło Naukowe Estymator piotr.klukowski@pwr.wroc.pl 08.12.2015 *Część slajdów pochodzi z prezentacji dr
PODSTAWY BAZ DANYCH. 19. Perspektywy baz danych. 2009/2010 Notatki do wykładu "Podstawy baz danych"
PODSTAWY BAZ DANYCH 19. Perspektywy baz danych 1 Perspektywy baz danych Temporalna baza danych Temporalna baza danych - baza danych posiadająca informację o czasie wprowadzenia lub czasie ważności zawartych
Wprowadzenie do technologii informacyjnej.
Wprowadzenie do technologii informacyjnej. Data mining i jego biznesowe zastosowania dr Tomasz Jach Definicje Eksploracja danych polega na torturowaniu danych tak długo, aż zaczną zeznawać. Eksploracja
Systemy uczące się Lab 4
Systemy uczące się Lab 4 dr Przemysław Juszczuk Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny 26 X 2018 Projekt zaliczeniowy Podstawą zaliczenia ćwiczeń jest indywidualne wykonanie projektu uwzględniającego
Klasyfikatory: k-nn oraz naiwny Bayesa. Agnieszka Nowak Brzezińska Wykład IV
Klasyfikatory: k-nn oraz naiwny Bayesa Agnieszka Nowak Brzezińska Wykład IV Naiwny klasyfikator Bayesa Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną
Wprowadzenie do uczenia maszynowego
Wprowadzenie do uczenia maszynowego Agnieszka Ławrynowicz 12 stycznia 2017 Co to jest uczenie maszynowe? dziedzina nauki, która zajmuje się sprawianiem aby komputery mogły uczyć się bez ich zaprogramowania
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 10. WNIOSKOWANIE W LOGICE ROZMYTEJ Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska WNIOSKOWANIE W LOGICE DWUWARTOŚCIOWEJ W logice
WSTĘP I TAKSONOMIA METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING. Adrian Horzyk. Akademia Górniczo-Hutnicza
METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING WSTĘP I TAKSONOMIA Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra
Metody tworzenia efektywnych komitetów klasyfikatorów jednoklasowych Bartosz Krawczyk Katedra Systemów i Sieci Komputerowych Politechnika Wrocławska
Metody tworzenia efektywnych komitetów klasyfikatorów jednoklasowych Bartosz Krawczyk Katedra Systemów i Sieci Komputerowych Politechnika Wrocławska e-mail: bartosz.krawczyk@pwr.wroc.pl Czym jest klasyfikacja
data mining machine learning data science
data mining machine learning data science deep learning, AI, statistics, IoT, operations research, applied mathematics KISIM, WIMiIP, AGH 1 Machine Learning / Data mining / Data science Uczenie maszynowe
Indukowane Reguły Decyzyjne I. Wykład 3
Indukowane Reguły Decyzyjne I Wykład 3 IRD Wykład 3 Plan Powtórka Grafy Drzewa klasyfikacyjne Testy wstęp Klasyfikacja obiektów z wykorzystaniem drzewa Reguły decyzyjne generowane przez drzewo 2 Powtórzenie
Wybrane zagadnienia uczenia maszynowego. Zastosowania Informatyki w Informatyce W2 Krzysztof Krawiec
Wybrane zagadnienia uczenia maszynowego Zastosowania Informatyki w Informatyce W2 Krzysztof Krawiec Przygotowane na podstawie T. Mitchell, Machine Learning S.J. Russel, P. Norvig, Artificial Intelligence
SYSTEMY UCZĄCE SIĘ WYKŁAD 4. DRZEWA REGRESYJNE, INDUKCJA REGUŁ. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska
SYSTEMY UCZĄCE SIĘ WYKŁAD 4. DRZEWA REGRESYJNE, INDUKCJA REGUŁ Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska DRZEWO REGRESYJNE Sposób konstrukcji i przycinania
Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej. Adam Meissner. Elementy uczenia maszynowego
Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej Adam Meissner Adam.Meissner@put.poznan.pl http://www.man.poznan.pl/~ameis Elementy uczenia maszynowego Literatura [1] Bolc L., Zaremba
Systemy uczące się wykład 1
Systemy uczące się wykład 1 dr Przemysław Juszczuk Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny 5 X 2018 e-mail: przemyslaw.juszczuk@ue.katowice.pl Konsultacje: na stronie katedry + na stronie domowej
Analiza danych. http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU
Analiza danych Wstęp Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Różne aspekty analizy danych Reprezentacja graficzna danych Metody statystyczne: estymacja parametrów
Techniki uczenia maszynowego nazwa przedmiotu SYLABUS
Techniki uczenia maszynowego nazwa SYLABUS Obowiązuje od cyklu kształcenia: 2014/20 Część A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej studiów Poziom kształcenia Profil studiów
2. Empiryczna wersja klasyfikatora bayesowskiego
Algorytmy rozpoznawania obrazów 2. Empiryczna wersja klasyfikatora bayesowskiego dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. Brak pełnej informacji probabilistycznej Klasyfikator bayesowski
KARTA PRZEDMIOTU. 1. Informacje ogólne. 2. Ogólna charakterystyka przedmiotu. Metody drążenia danych D1.3
KARTA PRZEDMIOTU 1. Informacje ogólne Nazwa przedmiotu i kod (wg planu studiów): Nazwa przedmiotu (j. ang.): Kierunek studiów: Specjalność/specjalizacja: Poziom kształcenia: Profil kształcenia: Forma studiów:
Algorytmy rozpoznawania obrazów. 11. Analiza skupień. dr inż. Urszula Libal. Politechnika Wrocławska
Algorytmy rozpoznawania obrazów 11. Analiza skupień dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. Analiza skupień Określenia: analiza skupień (cluster analysis), klasteryzacja (clustering), klasyfikacja
Automatyczna predykcja. Materiały/konsultacje. Co to jest uczenie maszynowe? Przykład 6/10/2013. Google Prediction API, maj 2010
Materiały/konsultacje Automatyczna predykcja http://www.ibp.pwr.wroc.pl/kotulskalab Konsultacje wtorek, piątek 9-11 (uprzedzić) D1-115 malgorzata.kotulska@pwr.wroc.pl Co to jest uczenie maszynowe? Uczenie
WYKŁAD 11 Uczenie maszynowe drzewa decyzyjne
WYKŁAD 11 Uczenie maszynowe drzewa decyzyjne Reprezentacja wiedzy w postaci drzew decyzyjnych entropia, przyrost informacji algorytmy ID3, C4.5 problem przeuczenia wyznaczanie reguł rzykładowe drzewo decyzyjne
TEORETYCZNE PODSTAWY INFORMATYKI
1 TEORETYCZNE PODSTAWY INFORMATYKI WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Wykład 16 2 Data Science: Uczenie maszynowe Uczenie maszynowe: co to znaczy? Metody Regresja Klasyfikacja Klastering
Wstęp do Metod Systemowych i Decyzyjnych Opracowanie: Jakub Tomczak
Wstęp do Metod Systemowych i Decyzyjnych Opracowanie: Jakub Tomczak 1 Wprowadzenie. Zmienne losowe Podczas kursu interesować nas będzie wnioskowanie o rozpatrywanym zjawisku. Poprzez wnioskowanie rozumiemy
SYSTEMY UCZĄCE SIĘ WYKŁAD 1. INFORMACJE WSTĘPNE. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska.
SYSTEMY UCZĄCE SIĘ WYKŁAD 1. INFORMACJE WSTĘPNE Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska PLAN WYKŁADU WSTĘP W 1 Uczenie się w ujęciu algorytmicznym. W
Hurtownie danych i business intelligence. Plan na dziś : Wprowadzenie do przedmiotu
i business intelligence Paweł Skrobanek, C-3 pok. 321 pawel.skrobanek@pwr.wroc.pl Wrocław 2005-2012 Plan na dziś : 1. Wprowadzenie do przedmiotu (co będzie omawiane oraz jak będę weryfikował zdobytą wiedzę
Algorytmy klasyfikacji
Algorytmy klasyfikacji Konrad Miziński Instytut Informatyki Politechnika Warszawska 6 maja 2015 1 Wnioskowanie 2 Klasyfikacja Zastosowania 3 Drzewa decyzyjne Budowa Ocena jakości Przycinanie 4 Lasy losowe
TADEUSZ KWATER 1, ROBERT PĘKALA 2, ALEKSANDRA SALAMON 3
Wydawnictwo UR 2016 ISSN 2080-9069 ISSN 2450-9221 online Edukacja Technika Informatyka nr 4/18/2016 www.eti.rzeszow.pl DOI: 10.15584/eti.2016.4.46 TADEUSZ KWATER 1, ROBERT PĘKALA 2, ALEKSANDRA SALAMON
Elementy modelowania matematycznego
Elementy modelowania matematycznego Modelowanie algorytmów klasyfikujących. Podejście probabilistyczne. Naiwny klasyfikator bayesowski. Modelowanie danych metodą najbliższych sąsiadów. Jakub Wróblewski
Agnieszka Nowak Brzezińska Wykład III
Agnieszka Nowak Brzezińska Wykład III Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną niezależność zmiennych niezależnych (tu naiwność) Bardziej opisowe
Text mining w programie RapidMiner Michał Bereta www.michalbereta.pl
Text mining w programie RapidMiner Michał Bereta www.michalbereta.pl 1. Wstęp Aby skorzystać z możliwości RapidMinera w zakresie analizy tekstu, należy zainstalować Text Mining Extension. Wybierz: 1 Po
Zastosowania sieci neuronowych
Zastosowania sieci neuronowych klasyfikacja LABORKA Piotr Ciskowski zadanie 1. klasyfikacja zwierząt sieć jednowarstwowa żródło: Tadeusiewicz. Odkrywanie własności sieci neuronowych, str. 159 Przykład
Analiza danych i data mining.
Analiza danych i data mining. mgr Katarzyna Racka Wykładowca WNEI PWSZ w Płocku Przedsiębiorczy student 2016 15 XI 2016 r. Cel warsztatu Przekazanie wiedzy na temat: analizy i zarządzania danymi (data
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa, Andrzej Rutkowski Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2018-10-15 Projekt
Eksploracja danych. Grupowanie. Wprowadzanie Definicja problemu Klasyfikacja metod grupowania Grupowanie hierarchiczne. Grupowanie wykład 1
Grupowanie Wprowadzanie Definicja problemu Klasyfikacja metod grupowania Grupowanie hierarchiczne Grupowanie wykład 1 Sformułowanie problemu Dany jest zbiór obiektów (rekordów). Znajdź naturalne pogrupowanie
SAS wybrane elementy. DATA MINING Część III. Seweryn Kowalski 2006
SAS wybrane elementy DATA MINING Część III Seweryn Kowalski 2006 Algorytmy eksploracji danych Algorytm eksploracji danych jest dobrze zdefiniowaną procedurą, która na wejściu otrzymuje dane, a na wyjściu
Eksploracja danych. KLASYFIKACJA I REGRESJA cz. 2. Wojciech Waloszek. Teresa Zawadzka.
Eksploracja danych KLASYFIKACJA I REGRESJA cz. 2 Wojciech Waloszek wowal@eti.pg.gda.pl Teresa Zawadzka tegra@eti.pg.gda.pl Katedra Inżynierii Oprogramowania Wydział Elektroniki, Telekomunikacji i Informatyki
Wprowadzenie. Data Science Uczenie się pod nadzorem
Wprowadzenie Wprowadzenie Wprowadzenie Wprowadzenie Machine Learning Mind Map Historia Wstęp lub uczenie się z przykładów jest procesem budowy, na bazie dostępnych danych wejściowych X i oraz wyjściowych
Klasyfikator. ˆp(k x) = 1 K. I(ρ(x,x i ) ρ(x,x (K) ))I(y i =k),k =1,...,L,
Klasyfikator Jedną z najistotniejszych nieparametrycznych metod klasyfikacji jest metoda K-najbliższych sąsiadów, oznaczana przez K-NN. W metodzie tej zaliczamy rozpoznawany obiekt do tej klasy, do której
Algorytmy zachłanne. dr inż. Urszula Gałązka
Algorytmy zachłanne dr inż. Urszula Gałązka Algorytm zachłanny O Dokonuje wyboru, który w danej chwili wydaje się najkorzystniejszy. O Mówimy, że jest to wybór lokalnie optymalny O W rzeczywistości nie
INDUKOWANE REGUŁY DECYZYJNE ALORYTM APRIORI JAROSŁAW FIBICH
INDUKOWANE REGUŁY DECYZYJNE ALORYTM APRIORI JAROSŁAW FIBICH 1. Czym jest eksploracja danych Eksploracja danych definiowana jest jako zbiór technik odkrywania nietrywialnych zależności i schematów w dużych
Algorytmy, które estymują wprost rozkłady czy też mapowania z nazywamy algorytmami dyskryminacyjnymi.
Spis treści 1 Wstęp: generatywne algorytmy uczące 2 Gaussowska analiza dyskryminacyjna 2.1 Gaussowska analiza dyskryminacyjna a regresja logistyczna 3 Naiwny Klasyfikator Bayesa 3.1 Wygładzanie Laplace'a
Archipelag Sztucznej Inteligencji
Archipelag Sztucznej Inteligencji Istniejące metody sztucznej inteligencji mają ze sobą zwykle niewiele wspólnego, więc można je sobie wyobrażać jako archipelag wysp, a nie jako fragment stałego lądu.
Systemy uczące się wykład 2
Systemy uczące się wykład 2 dr Przemysław Juszczuk Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny 19 X 2018 Podstawowe definicje Fakt; Przesłanka; Konkluzja; Reguła; Wnioskowanie. Typy wnioskowania
Drzewa klasyfikacyjne Lasy losowe. Wprowadzenie
Wprowadzenie Konstrukcja binarnych drzew klasyfikacyjnych polega na sekwencyjnym dzieleniu podzbiorów przestrzeni próby X na dwa rozłączne i dopełniające się podzbiory, rozpoczynając od całego zbioru X.
AUTOMATYKA INFORMATYKA
AUTOMATYKA INFORMATYKA Technologie Informacyjne Sieć Semantyczna Przetwarzanie Języka Naturalnego Internet Edytor Serii: Zdzisław Kowalczuk Inteligentne wydobywanie informacji z internetowych serwisów
Agnieszka Nowak Brzezińska Wykład III
Agnieszka Nowak Brzezińska Wykład III Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną niezależność zmiennych niezależnych (tu naiwność) Bardziej opisowe
Mail: Pokój 214, II piętro
Wykład 2 Mail: agnieszka.nowak@us.edu.pl Pokój 214, II piętro http://zsi.tech.us.edu.pl/~nowak Predykcja zdolność do wykorzystania wiedzy zgromadzonej w systemie do przewidywania wartości dla nowych danych,
Uniwersytet w Białymstoku Wydział Ekonomiczno-Informatyczny w Wilnie SYLLABUS na rok akademicki 2012/2013 http://www.wilno.uwb.edu.
SYLLABUS na rok akademicki 01/013 Tryb studiów Studia stacjonarne Kierunek studiów Informatyka Poziom studiów Pierwszego stopnia Rok studiów/ semestr /3 Specjalność Bez specjalności Kod katedry/zakładu
1.7. Eksploracja danych: pogłębianie, przeszukiwanie i wyławianie
Wykaz tabel Wykaz rysunków Przedmowa 1. Wprowadzenie 1.1. Wprowadzenie do eksploracji danych 1.2. Natura zbiorów danych 1.3. Rodzaje struktur: modele i wzorce 1.4. Zadania eksploracji danych 1.5. Komponenty
Metody probabilistyczne klasyfikatory bayesowskie
Konwersatorium Matematyczne Metody Ekonomii narzędzia matematyczne w eksploracji danych First Prev Next Last Go Back Full Screen Close Quit Metody probabilistyczne klasyfikatory bayesowskie Wykład 8 Marcin
Metody systemowe i decyzyjne w informatyce
Metody systemowe i decyzyjne w informatyce Ćwiczenia lista zadań nr 3 Metody estymacji. Estymator największej wiarygodności Zad. 1 Pojawianie się spamu opisane jest zmienną losową y o rozkładzie zero-jedynkowym
Rozpoznawanie obrazów
Rozpoznawanie obrazów Ćwiczenia lista zadań nr 7 autorzy: A. Gonczarek, J.M. Tomczak Przykładowe problemy Klasyfikacja binarna Dla obrazu x zaproponowano dwie cechy φ(x) = (φ 1 (x) φ 2 (x)) T. Na obrazie
Agnieszka Nowak Brzezińska
Agnieszka Nowak Brzezińska jeden z algorytmów regresji nieparametrycznej używanych w statystyce do prognozowania wartości pewnej zmiennej losowej. Może również byd używany do klasyfikacji. - Założenia
Hurtownie danych i business intelligence. Plan na dziś : Wprowadzenie do przedmiotu
i business intelligence Paweł Skrobanek, C-3 pok. 321 pawel.skrobanek@pwr.wroc.pl Wrocław 2005-2007 Plan na dziś : 1. Wprowadzenie do przedmiotu (co będzie omawiane oraz jak będę weryfikował zdobytą wiedzę
Metody klasyfikacji danych - część 1 p.1/24
Metody klasyfikacji danych - część 1 Inteligentne Usługi Informacyjne Jerzy Dembski Metody klasyfikacji danych - część 1 p.1/24 Plan wykładu - Zadanie klasyfikacji danych - Przeglad problemów klasyfikacji
Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych
Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych ELEMENTY SZTUCZNEJ INTELIGENCJI Laboratorium nr 6 SYSTEMY ROZMYTE TYPU MAMDANIEGO
4.1. Wprowadzenie...70 4.2. Podstawowe definicje...71 4.3. Algorytm określania wartości parametrów w regresji logistycznej...74
3 Wykaz najważniejszych skrótów...8 Przedmowa... 10 1. Podstawowe pojęcia data mining...11 1.1. Wprowadzenie...12 1.2. Podstawowe zadania eksploracji danych...13 1.3. Główne etapy eksploracji danych...15
Diagramy ERD. Model struktury danych jest najczęściej tworzony z wykorzystaniem diagramów pojęciowych (konceptualnych). Najpopularniejszym
Diagramy ERD. Model struktury danych jest najczęściej tworzony z wykorzystaniem diagramów pojęciowych (konceptualnych). Najpopularniejszym konceptualnym modelem danych jest tzw. model związków encji (ERM
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-10-11 1 Modelowanie funkcji logicznych
Indukowane Reguły Decyzyjne I. Wykład 8
Indukowane Reguły Decyzyjne I Wykład 8 IRD Wykład 8 Plan Powtórka Krzywa ROC = Receiver Operating Characteristic Wybór modelu Statystyka AUC ROC = pole pod krzywą ROC Wybór punktu odcięcia Reguły decyzyjne
Inżynieria danych I stopień Praktyczny Studia stacjonarne Wszystkie specjalności Katedra Inżynierii Produkcji Dr Małgorzata Lucińska
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 205/206 Z-ID-602 Wprowadzenie do uczenia maszynowego Introduction to Machine Learning
LEMRG algorytm generowania pokoleń reguł decyzji dla baz danych z dużą liczbą atrybutów
LEMRG algorytm generowania pokoleń reguł decyzji dla baz danych z dużą liczbą atrybutów Łukasz Piątek, Jerzy W. Grzymała-Busse Katedra Systemów Ekspertowych i Sztucznej Inteligencji, Wydział Informatyki
Scoring kredytowy w pigułce
Analiza danych Data mining Sterowanie jakością Analityka przez Internet Scoring kredytowy w pigułce Mariola Kapla Biuro Informacji Kredytowej S.A. StatSoft Polska Sp. z o.o. ul. Kraszewskiego 36 30-110
Literatura. Sztuczne sieci neuronowe. Przepływ informacji w systemie nerwowym. Budowa i działanie mózgu
Literatura Wykład : Wprowadzenie do sztucznych sieci neuronowych Małgorzata Krętowska Wydział Informatyki Politechnika Białostocka Tadeusiewicz R: Sieci neuronowe, Akademicka Oficyna Wydawnicza RM, Warszawa
Rozpoznawanie obrazów
Rozpoznawanie obrazów Laboratorium Python Zadanie nr 2 κ-nn i Naive Bayes autorzy: M. Zięba, J.M. Tomczak, A. Gonczarek, S. Zaręba, J. Kaczmar Cel zadania Celem zadania jest implementacja klasyfikatorów
Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe.
Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe. zajecia.jakubw.pl/nai Literatura: S. Osowski, Sieci neuronowe w ujęciu algorytmicznym. WNT, Warszawa 997. PODSTAWOWE ZAGADNIENIA TECHNICZNE AI
Systemy ekspertowe i ich zastosowania. Katarzyna Karp Marek Grabowski
Systemy ekspertowe i ich zastosowania Katarzyna Karp Marek Grabowski Plan prezentacji Wstęp Własności systemów ekspertowych Rodzaje baz wiedzy Metody reprezentacji wiedzy Metody wnioskowania Języki do
Lektura obowiązkowa dla każdego, kto poważnie myśli o wykorzystaniu okazji, jakie niosą ze sobą wielkie zbiory danych.
Wszystko co powinieneś wiedzieć o eksploracji danych i myśleniu w kategoriach analityki danych. Wyciągaj trafne wnioski! Lektura obowiązkowa dla każdego, kto poważnie myśli o wykorzystaniu okazji, jakie
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 3. SYSTEMY UCZĄCE SIĘ Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska LITERATURA [Cic] * Cichosz P.: Systemy uczące się. WNT, 2003
Uczenie się maszyn. Dariusz Banasiak. Katedra Informatyki Technicznej Wydział Elektroniki
Dariusz Banasiak Katedra Informatyki Technicznej Wydział Elektroniki Machine Learning (uczenie maszynowe, uczenie się maszyn, systemy uczące się) interdyscyplinarna nauka, której celem jest stworzenie
Rozpoznawanie obrazów
Rozpoznawanie obrazów Laboratorium Python Zadanie nr 1 Regresja liniowa autorzy: A. Gonczarek, J.M. Tomczak, S. Zaręba, M. Zięba, J. Kaczmar Cel zadania Celem zadania jest implementacja liniowego zadania
Lekcja 5: Sieć Kohonena i sieć ART
Lekcja 5: Sieć Kohonena i sieć ART S. Hoa Nguyen 1 Materiał Sieci Kohonena (Sieć samo-organizująca) Rysunek 1: Sieć Kohonena Charakterystyka sieci: Jednowarstwowa jednokierunkowa sieć. Na ogół neurony
Inteligentne Multimedialne Systemy Uczące
Działanie realizowane w ramach projektu Absolwent informatyki lub matematyki specjalistą na rynku pracy Matematyka i informatyka może i trudne, ale nie nudne Inteligentne Multimedialne Systemy Uczące dr
Wybrane zagadnienia uczenia maszynowego
Przygotowane na podstawie Wybrane zagadnienia uczenia maszynowego Zastosowania Informatyki w Informatyce W2 Krzysztof Krawiec 1. T. Mitchell, Machine Learning 2. S.J. Russel, P. Norvig, Artificial Intelligence
w ekonomii, finansach i towaroznawstwie
w ekonomii, finansach i towaroznawstwie spotykane określenia: zgłębianie danych, eksploracyjna analiza danych, przekopywanie danych, męczenie danych proces wykrywania zależności w zbiorach danych poprzez
SYLABUS DOTYCZY CYKLU KSZTAŁCENIA REALIZACJA W ROKU AKADEMICKIM 2016/2017
SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2014-2018 REALIZACJA W ROKU AKADEMICKIM 2016/2017 1.1. Podstawowe informacje o przedmiocie/module Nazwa przedmiotu/ modułu Metody eksploracji danych Kod przedmiotu/ modułu*
Zalew danych skąd się biorą dane? są generowane przez banki, ubezpieczalnie, sieci handlowe, dane eksperymentalne, Web, tekst, e_handel
według przewidywań internetowego magazynu ZDNET News z 8 lutego 2001 roku eksploracja danych (ang. data mining ) będzie jednym z najbardziej rewolucyjnych osiągnięć następnej dekady. Rzeczywiście MIT Technology