Algorytmy graficzne. Charakterystyki oraz wyszukiwanie obrazów cyfrowych
|
|
- Ryszard Zalewski
- 8 lat temu
- Przeglądów:
Transkrypt
1 Algorytmy graficzne Charakterystyki oraz wyszukiwanie obrazów cyfrowych 1
2 Pojęcie i reprezentacje obrazu Obraz cyfrowy, I, definiuje się jako odwzorowanie z przestrzeni pikseli P do przestrzeni kolorów C, tzn. I: P C. Klasy obrazów obrazy k-spektralne. W tym przypadku przestrzeń kolorów to k - wymiarowa przestrzeń wektorowa R k. Przykładem są wielozakresowe obrazy satelitarne lub meteorologiczne. W przypadku obrazów wielozakresowych wykonanych przez próbkowanie poza spektrum widzialnym, konieczne jest kolorowanie przy użyciu sztucznych kolorów. obrazy 3-spektralne (RGB) są szczególnym przypadkiem obrazów k-spektralnych. obrazy w odcieniach szarości. Przestrzeń kolorów jest przestrzenią liczbową (skalarną): C={0,1,2,,L-1}. obrazy binarne przypadek szczególny obrazów z odcieniami szarości. W tym przypadku C={0,1}. Obraz cyfrowy reprezentowany jest najczęściej przez macierz lub zbiór macierzy. Elementy macierzy odpowiadają podstawowym elementom obrazu pikselom. Przyjętymi formatami reprezentacji obrazów cyfrowych są formaty z przeplotem pikseli (pixel interleaved) oraz przeplotem koloru (color interleaved). a b c Rys. 1. Sposoby reprezentacji obrazów cyfrowych. a) reprezentacja obrazu w odcieniach szarości za pomocą pojedynczej macierzy prostokątnej; reprezentacja obrazów RGB w formacie: b) color interleaved za pomocą trzech macierzy kwadratowych. Każda macierz reprezentuje inny kanał barwny; c) pixel interleaved. W tym przypadku, cały obraz jest reprezentowany pojedynczą macierzą, której elementami są wektory trójwymiarowe.
3 Deskryptory obrazu Najprostszymi deskryptorami obrazu są deskryptory statystyczne. Niech dany jest obraz cyfrowy reprezentowany macierzą NxN, dla którego wartości pikseli opisane są funkcją f(x,y). Wówczas: Średnia jasność obrazu a Wariancja (moment centralny drugiego rzędu) b Wariancja niesie informację o dynamice (zróżnicowaniu) obrazu. Stanowi prostą miarę kontrastu: mała wartość wariancji obraz o małym kontraście; duża wartość wariancji obraz o dużym kontraście. W praktyce wykorzystuje się też momenty wyższych rzędów. Dla przykładu, moment centralny trzeciego rzędu jest miarą asymetrii rozkładu prawdopodobieństwa poziomów jasności (asymetrii histogramu). Wartość momentu centralnego dla rozkładów symetrycznych jest zerowy, ujemny dla rozkładów o asymetrii lewostronnej i dodatni dla rozkładów o symetrii prawostronnej. Kontrast: gdzie f max oraz f min stanowią odpowiednio maksymalną oraz minimalną wartość jasności w obrazie lub w bloku (kontrast lokalny). Rys. Obraz (a) średnia: 218, wariancja: , entropia: 5.89, wartość minimalna: 2, wartość maksymalna 255. Obraz (b) średnia: 218, wariancja: 42.17, entropia: 3.80, wartość minimalna: 176, wartość maksymalna: 225 3
4 Histogram Histogram Jest jednym z podstawowych narzędzi wykorzystywanych w przetwarzaniu i analizie obrazów. Jest wykorzystywany m. in. jako etap procedur korekcji jakości wizualnej obrazu, kwantyzacji, kompresji, segmentacji, wyszukiwania obrazów, etc. Histogram jest funkcją przyporządkowującą możliwym poziomom jasności lub możliwym kolorom liczbę odpowiadających im pikseli w obrazie. Jest narzędziem globalnego opisu obrazu zawiera informacje o liczbie wystąpień poszczególnych wartości pikseli, ale nie o ich strukturze przestrzennej!. Odtworzenie obrazu na podstawie znajomości histogramu nie jest praktycznie możliwe. W jakim przypadku na podstawie histogramu obraz można jednak odtworzyć? W praktyce często stosuje się histogramy unormowane: h(k)=n k /N, gdzie N liczba pikseli obrazu. Dla dużych wartości N (teoretycznie, zmierzających do nieskończoności), prawo wielkich liczb pozwala identyfikować częstość wystąpienia poszczególnych wartości jako prawdopodobieństwo ich wystąpienia. Innym deskryptorem obrazu jest dystrybuanta histogramu unormowanego (suma wysokości słupków jest równa 1): a b 500 Histogram c Histogram znormalizowany Rys. Przyk ładowy obraz (a), jego histogram (b) oraz histogram znormalizowany (c)
5 Histogram jako deskryptor obrazu Histogram nie reprezentuje obrazu w sposób jednoznaczny. Wiele obrazów może posiadać identyczny histogram. a b e c d Rys. (a) (d) przykładowe obrazy o rozmiarze 10x10 o identycznym histogramie przedstawionym na rysunku (e). Przykład pokazuje, że w nietrywialnych przypadkach histogram nie jest odwzorowaniem odwracalnym. 5
6 Histogram obrazu (przykłady) Istotne cechy histogramu: liczby punktów dla których wartości w histogramie są niezerowe, szerokość, środek ciężkości, liczba modów, entropia a dziecko.tif b dziecko.tif c dziecko.tif d dziecko.tif Histogram, PDF Histogram, PDF Histogram, PDF Histogram, PDF Dystrybuanta, CDF Dystrybuanta, CDF Dystrybuanta, CDF Dystrybuanta, CDF Rys. Obrazy czterech typów oraz ich histogramy i dystrybuanty histogramów: a) - obraz o średnim kotraście; b) obraz o słabym kontraście; c) obraz prześwietlony; d) obraz niedoświetlony. Entropia obrazów jest równa odpowiednio: 6.99, 2.72, 3.02 oraz
7 Histogramy wielowymiarowe Histogramy wielowymiarowe (2D) wykorzystywane są do wizualizacji korelacji zachodzących pomiędzy wyróżnionymi składowymi obrazu cyfrowego. Ze względu na łatwość wizualizacji w praktyce wykorzystywane są najczęściej histogramy dwuwymiarowe. Histogramy 3D wykorzystuje się jako narzędzie porównywania obrazów kolorowych w systemach wyszukiwania obrazów. Reprezentują względną liczbę (częstość) wystąpień pikseli przyjmujących określone wartości dwóch lub więcej składowych (korelacje) patrz rysunki. Mogą być wykorzystane do podziału wielowymiarowej przestrzeni atrybutów obrazu we wstępnej fazie kwantyzacji wektorowej. a Rysunek beans.tif Brak pikseli przyjmujących wartości jednocześnie r=[0..10] oraz b=[0..10]. W obrazie przeważają piksele dla których składowe r i b leżą w przedziałach odpowiednio: r=[5..20], b=[10..30] Histogram 2D, RG Histogram 2D, RB c d e Histogram 2D, BG b n Red Green 80 n Red Blue 40 n Blue Rys. (a) - przykładowy obraz RGB; (b) - histogram RGB; odpowiednio (c), (d) oraz (e) - histogram składowych RG; histogram składowych RB; histogram składowych BG. 7
8 Entropia obrazu a b W przypadku, gdy znany jest rozkład prawdopodobieństwa wartości pikseli w obrazie możliwe jest oszacowanie entropii obrazu jako miary ilości informacji w nim zawartej. Zakładając, że wartość piksela obrazu jest zmienną losową przyjmującą wartości n=1,2,,n, entropia jest dana równaniem c d gdzie H(n) odpowiada prawdopodobieństwu wystąpienia piksela o wartości n i jest wartością n-tego słupka histogramu unormowanego do jedności. Takie oszacowanie entropii zakłada, że wartość danego piksela jest zmienną losową i nie zależy od wartości pikseli sąsiednich. W ogólności założenie takie nie jest poprawne, ponieważ w obrazach istnieją bardzo silne korelacje przestrzenne (fakt ten wykorzystuje się w kompresji). Rys. Przykładowe obrazy cyfrowe. Prawdopodobieństwo wystąpienia czarnych pikseli na kolejnych obrazach wynosi odpowiednio 1/2, 95/100, 1 oraz 0. Entropia obrazów wynosi odpowiednio 1.0, 0.29, 0 oraz 0. Ramka wokół obrazu (d) nie stanowi jego fragmentu. Obrazy (c) i (d) są nierozróżnialne z punktu widzenia entropii. Entropię można interpretować jako nieoznaczoność (losowość) związaną z wynikiem eksperymentu (pojawieniem się symbolu źródła, etc.). Entropia jest równa minimalnej liczbie bitów koniecznych do reprezentacji wartości pojedynczego piksela obrazu. Entropia, podobnie jak momenty statystyczne, pozwala reprezentować obrazy w przestrzeni liczb rzeczywistych. Oznacza to radykalną redukcję wymiaru przestrzeni reprezentacji w porównaniu z wielowymiarowymi przestrzeniami wektorowymi histogramów. 8
9 Korelacje w danych obrazowych (1) Jedną z cech charakteryzujących dane obrazowe są silne korelacje przestrzenne objawiające się podobnymi wartościami pikseli sąsiadujących w obrazie (o podobnych współrzędnych przestrzennych). Wielkość korelacji zależy do rodzaju obrazu oraz od przyjętego modelu barw zgodnie z którym obraz jest reprezentowany. Model RGB prowadzi do bardzo dużych korelacji pomiędzy składowymi R, G oraz B. Istnienie korelacji wykorzystuje się w procedurach kompresji danych obrazowych. a b c Rys. Przykład korelacji w obrazie. (a) przykładowy obraz; (b) zależność wartości sąsiednich pikseli w wierszach obrazu; (b) zależność wartości pikseli przesuniętych względem siebie o 5 (w wierszach obrazu). Widoczna koncentracja punktów na prostej y=x. 9
10 Korelacje w danych obrazowych (2) a b Rys. Kolejny przykład korelacji pomiędzy wartościami sąsiednich pikseli. 10
11 Korelacje w danych obrazowych (3) Statystyczną miarą liniowych zależności w zbiorze danych jest kowariancja. Dla dwóch zmiennych losowych X 1 oraz X 2 kowariancja ma postać: W przypadku, gdy zmienne losowe są niezależne kowariancja jest równa zero: Zmienne losowe o takiej własności nazywa się nieskorelowanymi. Kowariancja niesie zatem informację o tym czy zmienne losowe są ze sobą powiązane zależnością liniową. Dla wektora n zmiennych losowych X 1, X 2,, X n utworzyć można macierz kowariancji M, której (i,j) elementem jest cov(x i,x j ), tzn. Macierz korelacji uzyskuje się przez normalizację elementów macierzowych macierzy kowariancji. Elementy macierzy korelacji posiadają własność: 1. 11
12 Korelacje w danych obrazowych (4) a 100 b c d Rys. (a) Losowa macierz kwadratowa 100x100 o wartościach z przedziału [0,255]. Na rysunku (b) przedstawiona jest macierz korelacji wyznaczona dla wierszy macierzy losowej (a). Wyraźnie widoczna jest główna przekątna macierzy na której elementy osiągają maksymalną wartość równą Rysunek (c) przedstawia przykładowy obraz oraz macierz korelacji (d) dla jego wierszy. Postać macierzy kowariancji sugeruje istnienie silnych korelacji pomiędzy wierszami obrazu
13 Wyszukiwanie obrazów ze względu na zawartość (CBIR) Rys. Schemat procesu wyszukiwania obrazów ze względu na zawartość. Wyszukiwanie obrazów ze względu na zawartość (content-based image retrieval, CBIR) jest techniką przeszukiwania dużych kolekcji obrazów w oparciu o ich własności wizualne. W odróżnieniu od tradycyjnych metod wyszukiwania ze względu na format, rozmiar, czas utworzenia, algorytm kompresji, rozdzielczość, etc. metody wyszukiwania ze względu na zawartość dążą do symulowania procesu wyszukiwania właściwego dla człowieka wyszukiwania ze względu na treść obrazu. Wykorzystanie tekstowego opisu obrazów w wielu przypadkach jest niewystarczające i niepraktyczne. Operacje oceny podobieństwa obrazów wykorzystujące odpowiednią funkcję podobieństwa operują na deskryptorach (wektorach cech) obrazów, a nie bezpośrednio na obrazach. Kluczowym zagadnieniem jest ekstrakcja cech wizualnych obrazów. Proces ten wykonywany w trybie off-line. Wyszukiwanie obrazów ze względu na zawartość wymaga technik automatycznej ekstrakcji takich własności wizualnych. Do najczęściej wykorzystywanych własności należą: kolor (histogram, momenty statystyczne, etc.), tekstura, kształt (wymaga segmentacji, tzn. podziału obrazu na obszary o jednakowym kolorze lub poziomie jasności) oraz lokalizacja (położenie segmentów, kolorów i kształtów w obrazie). Sformułowanie zapytania (query) przez użytkownika polega na zadaniu obrazu wzorca, określonego kształtu, tekstury lub określeniu własności statystycznych obrazów, które powinny być wyszukane. W systemie QBIC (Query By Image Content, IBM) własnościami wizualnymi na podstawie których przebiega proces wyszukiwania mogą być: procentowy udział kolorów w obrazie, kształty, tekstury oraz ich lokalizacja w obrazie. Wyszukiwanie polega na porównywaniu deskryptora wyznaczonego na podstawie zapytania użytkownika z deskryptorami obrazów przechowywanych w bazie. Konieczne jest zadanie funkcji porównania. Sprzężenie zwrotne (dla polepszenia jakości wyszukiwania). 13
14 Problemy związane z CBIR Problem 1: Jakie własności wybrać jako reprezentację (treści) obrazu? Odpowiedź: Niezmiennicze (odporne) ze względu na zmienne warunki, w których obraz może być pozyskany (zmiany poziomu oświetlenia, przesłanianie, przestawianie elementów sceny, odległość kamera-obiekt, etc.) Posługiwanie się cechami o takich własnościach może zapewnić poprawne klasyfikowanie obrazów obiektów w różnych warunkach. Najczęściej wykorzystywane deskryptory to: momenty statystyczne, histogram, tekstura, kształty. Przed określeniem wartości poszczególnych cech najczęściej wykonywana jest odpowiednia modyfikacja obrazu umożliwiająca pozyskanie cech reprezentujących obraz. Modyfikacja może sprowadzać się do: zmiany przestrzeni barw, kwantyzacji, segmentacji, wyodrębnienia określonych fragmentów obrazu, wyeliminowania szumu, etc. Nie istnieje uniwersalna przestrzeń nadająca się do opisu obrazów niezależnie od zastosowania. Najczęściej wykorzystywanymi przestrzeniami barw są: rgb, CIELUV, CIELAB, Munsell, HSV oraz modele barw przeciwstawnych. W wielu zastosowaniach pożądaną cechą przestrzeni barw jest percepcyjna jednorodność (spośród wymienionych, cechę tę posiadają CIELUV oraz CIELAB). Problem 2: Miary podobieństwa. Jakich miar podobieństwa wektorów cech użyć? Różne miary prowadzą do różnej efektywności procesu wyszukiwania. Nie istnieje miara idealna, niezależna od zastosowania. W praktyce wykorzystuje się również funkcje, które nie są metrykami (odległościami). Problem 3: Z jednej strony, użytkownik zainteresowany jest wyszukiwaniem ze względu na treść obrazu. Z drugiej strony, wyszukiwanie polega na ustalaniu stopnia podobieństwa wektora cech obrazów, a nie ich treści. W zależności od konkretnego zastosowania należy więc zapewnić reprezentowanie obrazu przez takie cechy, które mogą zapewnić związek (korelacje) z treścią obrazu. Problem tzw. przepaści semantycznej (semantic gap). a b c d e f Rys. Kwantyzacja sześcianu barw RGB. (a) obraz oryginalny; (b)-(f) obraz po kwantyzacji do odpowiednio 64, 16, 8, 4 oraz 2 wartości na każdą składową wektora koloru. Zadaniem kwantyzacji jest zmniejszenie dynamiki wartości pikseli na potrzeby procesu wyszukiwania. Kwantyzacja niweluje również nieistotne fluktuacje wartości pikseli. 14
15 Deskryptory obrazu Najczęściej wykorzystywaną własnością do definiowania deskryptorów obrazu jest kolor. Informacja o poziomach szarości (luminancja) jest niewystarczająca do porównywania obrazów. Deskryptory Momenty statystyczne. Najczęściej wykorzystuje się trzy pierwsze momenty statystyczne: średnia, wariancja oraz moment trzeciego rzędu, będący miarą asymetrii. W przypadku obrazów o trzech składowych koloru, obraz reprezentowany jest przez 9 liczb: 3 deskryptory dla każdej z trzech składowych. Wyszukiwanie w oparciu o momenty statystyczne może stanowić etap wstępny służący do zawężenia przestrzeni poszukiwań, po którym następuje proces wyszukiwania w oparciu o inne cechy. Entropia. Prosty deskryptor, ale o mocno ograniczonej efektywności. Entropia względna (odległości Kullbacka-Leiblera) i funkcje z nią związane. Histogramy składowych barwy. Histogram uważany jest za bardzo efektywną i zwięzłą reprezentację zawartości wizualnej obrazu cyfrowego. Do jego zalet należą prostota wyznaczenia, odporność ze względu na translacje i obroty osi widzenia, oraz ograniczona wrażliwość na zmianę skali, przesłanianie i zmianę kąta widzenia. Histogram nie zawiera jednak informacji o strukturze przestrzennej. Histogramy można interpretować jako elementy wielowymiarowych przestrzeni wektorowych. Wymiarem przestrzeni można regulować przez proces kwantyzacji obrazów. Wektor spójności koloru (Color Coherence Vector). Wektor spójności stanowi rozszerzenie koncepcji histogramu o informacje przestrzenne. Dany kolor (słupek histogramu, składowa koloru) jest klasyfikowany jako spójny (coherent) lub niespójny (coherent) w zależności od tego, czy piksele go reprezentujące tworzą spójny, zamknięty obszar w obrazie, czy też są rozproszone. Wektor spójności ma postać: { (a 1,b 1 ), (a 2,b 2 ),, (a N,b N )}, gdzie a i oznacza liczbę pikseli tworzących spójny obszar, b i liczbę pikseli obszarów niespójnych. 15
16 Konstrukcja histogramu jako deskryptora Jak budować histogramy jako wektory cech? Stosowanie histogramów obrazów nieprzetworzonych, np. histogram RGB, gdzie każda składowa przyjmuje 256 różnych wartości jest niepraktyczne, wymaga bowiem posługiwania się wektorami o składowych! W praktyce przeprowadza się redukcję liczby możliwych kolorów w drodze kwantyzacji. Grupowanie słupków histogramu. Technika ta polega na zmniejszaniu liczby kolorów występujących w obrazie przez utożsamianie ze sobą sąsiednich wartości (słupków) składowych koloru, np. wartości [0,3] składowej R w obrazie RGB sklejane są ze sobą i reprezentowane przez wartość 0; wartości [5,8] reprezentowane przez 1; wartości [10,13] reprezentowane przez 2 itd. dla całego dopuszczalnego zakresu i wszystkich składowych. Efektywnie jest to równoważne kwantyzacji obrazu; w tym przypadku kwantyzacji do 256/4=64 wartości dla jednej składowej, co daje histogramy o rozmiarze Składowe wektora opisujące kolor piksela nie muszą być kwantyzowane w jednakowy sposób. W przypadku przestrzeni HSV uzasadniona może być silna kwantyzacja składowych S i/lub V, podczas gdy składowa H powinna być kwantowana w sposób znacznie słabszy. Kafelkowanie obrazu polega na pokryciu całego obrazu oknami (kafelkami) o ustalonym rozmiarze, np. 4x4 i wyznaczeniu dla każdego takiego bloku średniej wartości poszczególnych składowych. Lista średnich wziętych ze wszystkich bloków obrazu stanowi listę możliwych wartości jakie przyjmują składowe koloru. Histogram obrazu nie zawiera informacji o rozkładzie przestrzennym pikseli. Istnieje wiele różnych sposobów włączenia takiej informacji do histogramu. Do najprostszych należy podział każdego słupka histogramu na określoną liczbę składowych, które opisują liczbę pikseli danego koloru leżących w określonych partiach (blokach) obrazu. Metoda ta wymaga podziału obrazu na rozdzielne bloki (patrz rysunek). W takim przypadku zwiększa się wymiar wektora cech. a 1 b c Rys. (a) - Przykładowy podział obrazu na bloki; (b) W standardowym przypadku wszystkie piksele określonej wartości reprezentowane są przez słupek histogramu; (c) Podział słupka histogramu na części opisujące liczbę pikseli danej wartości w poszczególnych blokach obrazu. 16
17 Funkcje podobieństwa histogramów W przypadku porównywania obrazów reprezentowanych przez histogramy zaproponowanych zostało wiele różnych miar podobieństwa. Niech dane są dwa obrazy cyfrowe reprezentowane przez odpowiednio histogramy H 1 oraz H 2. Niech obrazy są jednakowego rozmiaru (dlaczego to założenie jest istotne), a kolory pikseli opisane są w N wymiarowej przestrzeni wektorowej (histogramy są wówczas N-wymiarowymi wektorami). Odległość Manhattan Odległość Euklidesa Odległość kosinusowa Miara przekroju histogramów Unormowana korelacja wzajemna 17
18 Odległości Manhattan oraz Euklidesa (1) Odległości Manhattan oraz Euklidesa są przykładami miar wywodzących się od uogólnionej metryki Minkowskiego. Ich wykorzystanie jest uzasadnione wtedy, gdy składowe wektora cech (w tym przypadku słupki histogramów) są od siebie niezależne i posiadają jednakową wagę. Chociaż warunki te nie są najczęściej spełnione (dlaczego?), to miary tego typu należą do najbardziej popularnych i najczęściej wykorzystywanych. H 1 H Przykład. Niech dane są trzy obrazy o jednakowej liczbie pikseli równej N, których histogramy (nieunormowane) przedstawione są na rysunku obok (wysokość każdego słupka jest równa 1/3 N). Histogramy zostały uporządkowane w taki sposób, że sąsiednie słupki histogramów odpowiadają barwom percepcyjnie podobnym. Odległości obrazów w przestrzeni histogramów obliczone na podstawie odległości Manhattan są równe odpowiednio: Podobnie, wykorzystując odległość Euklidesa otrzymujemy: H W obu przypadkach odległość w przestrzeni histogramów nie odpowiada percepcyjnemu podobieństwu obrazów. Obrazem percepcyjnie najbardziej podobnym do (1) jest obraz (2). W przestrzeni histogramów obrazem bliższym jest jednak obraz (3)
19 Odległości Manhattan oraz Euklidesa (2) Rozwiązaniem problemu przedstawionego na poprzednim rysunku może być posługiwanie się odległościami Manhattan oraz Euklidesa w przestrzeni skumulowanych histogramów (odpowiedniki dystrybuant), zamiast w przestrzeniach samych histogramów. Ilustruje to poniższy przykład. h 1 Rysunki przedstawiają skumulowane histogramy (dystrybuanty) obrazów opisanych na poprzedniej stronie. Odległości Manhattan oraz Euklidesa dla dystrybuant są równe odpowiednio: h 2 oraz Wniosek: W tym przypadku wyznaczone odległości odpowiadają percepcyjnemu podobieństwu obrazów h
20 Odległość biliniowa (kwadratowa) a H 1 H 2 Z odległością Euklidesa związana jest odległość biliniowa, zaproponowana w jednym z pierwszych systemów wyszukiwania obrazów systemie QBIC. Odległość pary obrazów definiuje się zgodnie z równaniem: H b Rys. (a) - Histogramy trzech przykładowych obrazów, których piksele są elementami trójwymiarowej przestrzeni barw: (czerwony, pomarańczowy, zielony). Dla uproszczenia przyjęto, że obrazy zawierają piksele tylko jednego koloru oraz, że są identycznego rozmiaru (każdy zawiera N pikseli). (b) Przykładowa macierz podobieństwa w rozpatrywanej trójwymiarowej przestrzeni barw. Jest jasne, że odległości Manhattan pomiędzy histogramami H1 i H2 oraz H1 i H3 są identyczne i równe N. Odległość kwadratowa pomiędzy tymi samymi histogramami jest równa odpowiednio: N oraz 1.41 N. Sugeruje to, że obraz reprezentowany przez H1 jest bardziej podobny do obrazu reprezentowanego przez H2 niż obrazu reprezentowanego przez H3. Jest to zbieżne z wrażeniem postrzeganym przez człowieka. gdzie H 1 oraz H 2 reprezentują histogramy obrazów (uporządkowane w postaci wektorów), natomiast A jest macierzą podobieństwa kolorów w rozpatrywanej przestrzeni barw (w której opisane są kolory obrazów). Macierz podobieństwa kolorów A jest kwadratową macierzą symetryczną, której element (i,j) określa podobieństwo kolorów C i oraz C j w przestrzeni barw: W macierzy podobieństwa elementy diagonalne osiągają wartość maksymalną równą 1, ponieważ podobieństwo barwy do samej siebie jest równe 1. Podobieństwo barw najbardziej odległych jest równe 0. Działanie macierzy podobieństwa sprowadza się do ważenia różnic wartości histogramów tak, by uwzględnić podobieństwo lub brak określonych barw obrazu. W tym przypadku barwy powinny być reprezentowane w przestrzeniach percepcyjnie jednorodnych (odległość proporcjonalna do postrzeganego podobieństwa pomiędzy barwami). W przeciwieństwie do wcześniej opisanych funkcji, odległość tego typu uwzględnia wzajemne podobieństwo barw. 20
21 Entropia względna (odległość Kullbacka-Leiblera) Entropia Shannona pozwala reprezentować obrazy w przestrzeni jednowymiarowej (przestrzeń wartości entropii), podobnie jak pojedyncze momenty statystyczne. Entropia względna (odległość Kullbacka-Leiblera) jest funkcją określającą podobieństwo dwóch rozkładów prawdopodobieństwa. Entropia względna dwóch dyskretnych rozkładów prawdopodobieństwa określona jest równaniem: gdzie dla zapewnienia ciągłości wymaga się by: Entropia względna nie jest stabilna numerycznie (nieskończoności) dlatego w praktyce stosować można funkcję Jeffreya zdefiniowaną w następujący sposób: 21
22 Ocena efektywności procesu wyszukiwania Zaproponowanych zostało kilka miar służących ocenie efektywności wyszukiwania informacji (niekoniecznie obrazów). Powszechnie stosowanymi miarami jest dokładność (precision) oraz kompletność (recall) dokładność (precision) jest miarą zdefiniowaną jako stosunek liczby dokumentów istotnych (na temat, relewantnych) podanych w odpowiedzi na zapytanie do całkowitej liczby dokumentów wygenerowanych jako odpowiedź na zapytanie. Miara ta przyjmuje wartości z przedziału [0,1]. Wartość 1 przyjmuje gdy wszystkie dokumenty podane w odpowiedzi są relewantne (odpowiadają wzorcowi). W kontekście wyszukiwania obrazów, w przypadku gdy zbiór obrazów podzielony jest na rozłączne kategorie, dokładność określa stosunek liczby obrazów wygenerowanych na wyjściu i pochodzących z kategorii identycznej z kategorią wzorca do całkowitej liczby obrazów na wyjściu. kompletność (recall) jest definiowana jako stosunek liczby dokumentów istotnych obecnych w odpowiedzi na zapytanie do całkowitej liczby dokumentów istotnych w zbiorze dokumentów. Kompletność przyjmuje wartości z przedziału [0,1]. Aby zapewnić możliwość przyjęcia wartości 1 liczba dokumentów na wyjściu powinna być równa co najmniej liczbie elementów istotnych. Parametr ten nazywany jest czasem czułością metody. R(q) Q(q) Rys. Ilustracja miar dokładności i kompletności. R(q) oraz Q(q) oznaczają odpowiednio zbiór elementów istotnych skojarzonych z wzorcem q oraz zbiór elementów wygenerowanych jako odpowiedź na zapytanie. 22
23 Ilustracja Rys. Przykładowy podzbiór obrazów wykorzystanych do prezentacji algorytmu wyszukiwania obrazów ze względu na zawartość. 23
24 Ilustracja a b c Rys. Rezultat wyszukiwania w zbiorze obrazów obrazu najbardziej podobnego do obrazu podanego w pierwszej kolumnie. (a), (b) i (c) stanowią wyniki wyszukiwania z miarą podobieństwa, odpowiednio: odległość Euklidesa, modułowa, przekrój histogramów. Obrazy uszeregowane są w wierszu ze względu na stopień podobieństwa (podobieństwo maleje w kierunku do prawej). 24
25 Ilustracja a b c Wnioski? Rys. Inny przykład wyszukiwania obraz z funkcjami jak na poprzednim slajdzie. 25
26 Projekt (laboratorium) Projekt w wersji podstawowej obejmuje: Przygotowanie systemu wyszukiwania obrazów cyfrowych barwnych w zbiorze co najmniej 70 obrazów o jednakowych wymiarach (np. 100x100 pikseli). Obrazy powinny pochodzić z różnych (nazwanych) kategorii tematycznych (co najmniej 5 kategorii), każda kategoria reprezentowana przez zbliżoną liczbę obrazów. Poza tym obrazy powinny być wybierane bez konkretnego klucza. Uproszczony interfejs, pełna funkcjonalność systemu. Redukcja liczby kolorów przez kwantyzację do zadanej liczby poziomów oraz praca w przestrzeni RGB. Porównanie efektywności wyszukiwania na podstawie porównania momentów statystycznych oraz zastosowania różnych funkcji odległości histogramów: Manhattan, Euklidesa, przekroju histogramów, Jeffreya, Kullbacka-Leiblera. Komentarz. Wnioski. Przykłady zapytania i generowanych przez system odpowiedzi. Kod. Opis użytych funkcji, klas, etc Dokumentacja opublikowana w sieci lub w postaci wydruku. Całość: 10 punktów Bonusy: Praca w przestrzeni rgb lub HSV: +0.5 punktu. Każda dodatkowa przestrzeń: +1 punkt. Uwzględnienie rozkładu przestrzennego wartości pikseli: +2 punkty. Każda dodatkowa miara podobieństwa (inna niż podana na wykładzie, konieczne wskazanie źródła): punktu. Czas i warunki: Czas na przygotowanie projektu: 4 tygodnie. Projekty oddawane w trakcie laboratorium. Każdy tydzień spóźnienia: -3 punkty (spóźnienie >3 tygodnie: 0 punktów) Oddanie projektów skopiowanych (w całości lub części): 0 punktów za projekt lub całość laboratorium. 26
Wyszukiwanie obrazów 1
Wyszukiwanie obrazów 1 Wyszukiwanie według zawartości Wyszukiwanie wg zawartości jest procesem wyszukiwania w bazach danych (zbiorach dokumentów ) obiektów o treści najbardziej zbliżonej do zadanego wzorca.
Algorytmy graficzne. Charakterystyki oraz wyszukiwanie obrazów cyfrowych
Algorytmy graficzne Charakterystyki oraz wyszukiwanie obrazów cyfrowych 1 Pojęcie i reprezentacje obrazu Obraz cyfrowy, I, definiuje się jako odwzorowanie z przestrzeni pikseli P do przestrzeni kolorów
Parametryzacja obrazu na potrzeby algorytmów decyzyjnych
Parametryzacja obrazu na potrzeby algorytmów decyzyjnych Piotr Dalka Wprowadzenie Z reguły nie stosuje się podawania na wejście algorytmów decyzyjnych bezpośrednio wartości pikseli obrazu Obraz jest przekształcany
Marcin Wilczewski Politechnika Gdańska, 2013/14
Algorytmy graficzne Marcin Wilczewski Politechnika Gdańska, 213/14 1 Zagadnienia, wykład, laboratorium Wykład: Światło i barwa. Modele barw. Charakterystyki obrazu. Reprezentacja i opis. Kwantyzacja skalarna
Obraz jako funkcja Przekształcenia geometryczne
Cyfrowe przetwarzanie obrazów I Obraz jako funkcja Przekształcenia geometryczne dr. inż Robert Kazała Definicja obrazu Obraz dwuwymiarowa funkcja intensywności światła f(x,y); wartość f w przestrzennych
Akwizycja obrazów. Zagadnienia wstępne
Akwizycja obrazów. Zagadnienia wstępne Wykorzystane materiały: R. Tadeusiewicz, P. Korohoda, Komputerowa analiza i przetwarzanie obrazów, Wyd. FPT, Kraków, 1997 A. Przelaskowski, Techniki Multimedialne,
dr inż. Jacek Naruniec email: J.Naruniec@ire.pw.edu.pl
dr inż. Jacek Naruniec email: J.Naruniec@ire.pw.edu.pl Coraz większa ilość danych obrazowych How much information, University of California Berkeley, 2002: przyrost zdjęć rentgenowskich to 17,2 PB rocznie
Analiza składowych głównych
Analiza składowych głównych Wprowadzenie (1) W przypadku regresji naszym celem jest predykcja wartości zmiennej wyjściowej za pomocą zmiennych wejściowych, wykrycie związku między wielkościami wejściowymi
Laboratorium. Cyfrowe przetwarzanie sygnałów. Ćwiczenie 9. Przetwarzanie sygnałów wizyjnych. Politechnika Świętokrzyska.
Politechnika Świętokrzyska Laboratorium Cyfrowe przetwarzanie sygnałów Ćwiczenie 9 Przetwarzanie sygnałów wizyjnych. Cel ćwiczenia Celem ćwiczenia jest zapoznanie studentów z funkcjami pozwalającymi na
Analiza skupień. Analiza Skupień W sztucznej inteligencji istotną rolę ogrywają algorytmy grupowania
Analiza skupień W sztucznej inteligencji istotną rolę ogrywają algorytmy grupowania Analiza Skupień Elementy składowe procesu grupowania obiekt Ekstrakcja cech Sprzężenie zwrotne Grupowanie klastry Reprezentacja
Hierarchiczna analiza skupień
Hierarchiczna analiza skupień Cel analizy Analiza skupień ma na celu wykrycie w zbiorze obserwacji klastrów, czyli rozłącznych podzbiorów obserwacji, wewnątrz których obserwacje są sobie w jakimś określonym
Przetwarzanie obrazu
Przetwarzanie obrazu Przegląd z uwzględnieniem obrazowej bazy danych Tatiana Jaworska Jaworska@ibspan.waw.pl www.ibspan.waw.pl/~jaworska Umiejscowienie przetwarzania obrazu Plan prezentacji Pojęcia podstawowe
SYSTEMY UCZĄCE SIĘ WYKŁAD 10. PRZEKSZTAŁCANIE ATRYBUTÓW. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska.
SYSTEMY UCZĄCE SIĘ WYKŁAD 10. PRZEKSZTAŁCANIE ATRYBUTÓW Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska INFORMACJE WSTĘPNE Hipotezy do uczenia się lub tworzenia
dr inż. Piotr Odya dr inż. Piotr Suchomski
dr inż. Piotr Odya dr inż. Piotr Suchomski Podział grafiki wektorowa; matematyczny opis rysunku; małe wymagania pamięciowe (i obliczeniowe); rasteryzacja konwersja do postaci rastrowej; rastrowa; tablica
Ćwiczenie 6. Transformacje skali szarości obrazów
Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 6. Transformacje skali szarości obrazów 1. Obraz cyfrowy Obraz w postaci cyfrowej
W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych:
W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych: Zmienne losowe skokowe (dyskretne) przyjmujące co najwyżej przeliczalnie wiele wartości Zmienne losowe ciągłe
Analiza składowych głównych. Wprowadzenie
Wprowadzenie jest techniką redukcji wymiaru. Składowe główne zostały po raz pierwszy zaproponowane przez Pearsona(1901), a następnie rozwinięte przez Hotellinga (1933). jest zaliczana do systemów uczących
Według raportu ISO z 1988 roku algorytm JPEG składa się z następujących kroków: 0.5, = V i, j. /Q i, j
Kompresja transformacyjna. Opis standardu JPEG. Algorytm JPEG powstał w wyniku prac prowadzonych przez grupę ekspertów (ang. Joint Photographic Expert Group). Prace te zakończyły się w 1991 roku, kiedy
Cyfrowe przetwarzanie obrazów i sygnałów Wykład 3 AiR III
1 Niniejszy dokument zawiera materiały do wykładu z przedmiotu Cyfrowe Przetwarzanie Obrazów i Sygnałów. Jest on udostępniony pod warunkiem wykorzystania wyłącznie do własnych, prywatnych potrzeb i może
Założenia i obszar zastosowań. JPEG - algorytm kodowania obrazu. Geneza algorytmu KOMPRESJA OBRAZÓW STATYCZNYCH - ALGORYTM JPEG
Założenia i obszar zastosowań KOMPRESJA OBRAZÓW STATYCZNYCH - ALGORYTM JPEG Plan wykładu: Geneza algorytmu Założenia i obszar zastosowań JPEG kroki algorytmu kodowania obrazu Założenia: Obraz monochromatyczny
MODELE KOLORÓW. Przygotował: Robert Bednarz
MODELE KOLORÓW O czym mowa? Modele kolorów,, zwane inaczej systemami zapisu kolorów,, są różnorodnymi sposobami definiowania kolorów oglądanych na ekranie, na monitorze lub na wydruku. Model RGB nazwa
WYKŁAD 12. Analiza obrazu Wyznaczanie parametrów ruchu obiektów
WYKŁAD 1 Analiza obrazu Wyznaczanie parametrów ruchu obiektów Cel analizy obrazu: przedstawienie każdego z poszczególnych obiektów danego obrazu w postaci wektora cech dla przeprowadzenia procesu rozpoznania
Grafika Komputerowa Wykład 2. Przetwarzanie obrazów. mgr inż. Michał Chwesiuk 1/38
Wykład 2 Przetwarzanie obrazów mgr inż. 1/38 Przetwarzanie obrazów rastrowych Jedna z dziedzin cyfrowego obrazów rastrowych. Celem przetworzenia obrazów rastrowych jest użycie edytujących piksele w celu
Klasyfikacja w oparciu o metrykę budowaną poprzez dystrybuanty empiryczne na przestrzeni wzorców uczących
Klasyfikacja w oparciu o metrykę budowaną poprzez dystrybuanty empiryczne na przestrzeni wzorców uczących Cezary Dendek Wydział Matematyki i Nauk Informacyjnych PW Plan prezentacji Plan prezentacji Wprowadzenie
Robert Susmaga. Instytut Informatyki ul. Piotrowo 2 Poznań
... Robert Susmaga Instytut Informatyki ul. Piotrowo 2 Poznań kontakt mail owy Robert.Susmaga@CS.PUT.Poznan.PL kontakt osobisty Centrum Wykładowe, blok informatyki, pok. 7 Wyłączenie odpowiedzialności
Przetwarzanie obrazów rastrowych macierzą konwolucji
Przetwarzanie obrazów rastrowych macierzą konwolucji 1 Wstęp Obrazy rastrowe są na ogół reprezentowane w dwuwymiarowych tablicach złożonych z pikseli, reprezentowanych przez liczby określające ich jasność
Histogram obrazu, modyfikacje histogramu
March 15, 2013 Histogram Jeden z graficznych sposobów przedstawiania rozkładu cechy. Składa się z szeregu prostokatów umieszczonych na osi współrzędnych. Prostokaty te sa z jednej strony wyznaczone przez
Przetwarzanie obrazów Grafika komputerowa. dr inż. Marcin Wilczewski 2016/2017
Przetwarzanie obrazów Grafika komputerowa dr inż. Marcin Wilczewski 216/217 1 Zagadnienia, wykład, laboratorium Wykład: Reprezentacja danych multimedialnych na przykładzie obrazów cyfrowych oraz wideo.
Wykład 5: Statystyki opisowe (część 2)
Wykład 5: Statystyki opisowe (część 2) Wprowadzenie Na poprzednim wykładzie wprowadzone zostały statystyki opisowe nazywane miarami położenia (średnia, mediana, kwartyle, minimum i maksimum, modalna oraz
PODSTAWY AUTOMATYKI. MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.
WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI Katedra Inżynierii Systemów Sterowania PODSTAWY AUTOMATYKI MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.
Zamiana reprezentacji wektorowej na rastrową - rasteryzacja
MODEL RASTROWY Siatka kwadratów lub prostokątów stanowi elementy rastra. Piksel - pojedynczy element jest najmniejszą rozróŝnialną jednostką powierzchniową, której własności są opisane atrybutami. Model
Teoria światła i barwy
Teoria światła i barwy Powstanie wrażenia barwy Światło może docierać do oka bezpośrednio ze źródła światła lub po odbiciu od obiektu. Z oka do mózgu Na siatkówce tworzony pomniejszony i odwrócony obraz
Proste metody przetwarzania obrazu
Operacje na pikselach obrazu (operacje punktowe, bezkontekstowe) Operacje arytmetyczne Dodanie (odjęcie) do obrazu stałej 1 Mnożenie (dzielenie) obrazu przez stałą Operacje dodawania i mnożenia są operacjami
EKSPLORACJA ZASOBÓW INTERNETU LABORATORIUM VIII WYSZUKIWANIE OBRAZÓW
EKSPLORACJA ZASOBÓW INTERNETU LABORATORIUM VIII WYSZUKIWANIE OBRAZÓW 1. Motywacja Strony internetowe zawierają 70% multimediów Tradycyjne wyszukiwarki wspierają wyszukiwanie tekstu Kolekcje obrazów: Dwie
Przedmowa 11 Ważniejsze oznaczenia 14 Spis skrótów i akronimów 15 Wstęp 21 W.1. Obraz naturalny i cyfrowe przetwarzanie obrazów 21 W.2.
Przedmowa 11 Ważniejsze oznaczenia 14 Spis skrótów i akronimów 15 Wstęp 21 W.1. Obraz naturalny i cyfrowe przetwarzanie obrazów 21 W.2. Technika obrazu 24 W.3. Normalizacja w zakresie obrazu cyfrowego
Analiza korespondencji
Analiza korespondencji Kiedy stosujemy? 2 W wielu badaniach mamy do czynienia ze zmiennymi jakościowymi (nominalne i porządkowe) typu np.: płeć, wykształcenie, status palenia. Punktem wyjścia do analizy
Biostatystyka, # 3 /Weterynaria I/
Biostatystyka, # 3 /Weterynaria I/ dr n. mat. Zdzisław Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Głęboka 28, p. 221 bud. CIW, e-mail: zdzislaw.otachel@up.lublin.pl
Data Mining Wykład 9. Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster. Plan wykładu. Sformułowanie problemu
Data Mining Wykład 9 Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster Plan wykładu Wprowadzanie Definicja problemu Klasyfikacja metod grupowania Grupowanie hierarchiczne Sformułowanie problemu
Ważne rozkłady i twierdzenia c.d.
Ważne rozkłady i twierdzenia c.d. Funkcja charakterystyczna rozkładu Wielowymiarowy rozkład normalny Elipsa kowariacji Sploty rozkładów Rozkłady jednostajne Sploty z rozkładem normalnym Pobieranie próby
Prawdopodobieństwo i statystyka
Wykład XV: Zagadnienia redukcji wymiaru danych 2 lutego 2015 r. Standaryzacja danych Standaryzacja danych Własności macierzy korelacji Definicja Niech X będzie zmienną losową o skończonym drugim momencie.
Dane obrazowe. R. Robert Gajewski omklnx.il.pw.edu.pl/~rgajewski
Dane obrazowe R. Robert Gajewski omklnx.il.pw.edu.pl/~rgajewski www.il.pw.edu.pl/~rg s-rg@siwy.il.pw.edu.pl Przetwarzanie danych obrazowych! Przetwarzanie danych obrazowych przyjmuje trzy formy:! Grafikę
Spośród licznych filtrów nieliniowych najlepszymi właściwościami odznacza się filtr medianowy prosty i skuteczny.
Filtracja nieliniowa może być bardzo skuteczną metodą polepszania jakości obrazów Filtry nieliniowe Filtr medianowy Spośród licznych filtrów nieliniowych najlepszymi właściwościami odznacza się filtr medianowy
Sztuczne sieci neuronowe. Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyki, p. 335
Sztuczne sieci neuronowe Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyki, p. 335 Wykład 10 Mapa cech Kohonena i jej modyfikacje - uczenie sieci samoorganizujących się - kwantowanie wektorowe
POPRAWIANIE JAKOŚCI OBRAZU W DZIEDZINIE PRZESTRZENNEJ (spatial image enhancement)
POPRAWIANIE JAKOŚCI OBRAZU W DZIEDZINIE PRZESTRZENNEJ (spatial image enhancement) Przetwarzanie obrazów cyfrowych w celu wydobycia / uwydatnienia specyficznych cech obrazu dla określonych zastosowań. Brak
Grafika Komputerowa Wykład 6. Teksturowanie. mgr inż. Michał Chwesiuk 1/23
Wykład 6 mgr inż. 1/23 jest to technika w grafice komputerowej, której celem jest zwiększenie szczegółowości renderowanych powierzchni za pomocą tekstur. jest to pewna funkcja (najczęściej w formie bitmapy)
Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16
Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego
Elementy modelowania matematycznego
Elementy modelowania matematycznego Modelowanie algorytmów klasyfikujących. Podejście probabilistyczne. Naiwny klasyfikator bayesowski. Modelowanie danych metodą najbliższych sąsiadów. Jakub Wróblewski
Rozdział 1. Zmienne losowe, ich rozkłady i charakterystyki. 1.1 Definicja zmiennej losowej
Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Zbiór możliwych wyników eksperymentu będziemy nazywać przestrzenią zdarzeń elementarnych i oznaczać Ω, natomiast
Cyfrowe przetwarzanie obrazów i sygnałów Wykład 8 AiR III
1 Niniejszy dokument zawiera materiały do wykładu z przedmiotu Cyfrowe Przetwarzanie Obrazów i Sygnałów. Jest on udostępniony pod warunkiem wykorzystania wyłącznie do własnych, prywatnych potrzeb i może
Kodowanie transformacyjne. Plan 1. Zasada 2. Rodzaje transformacji 3. Standard JPEG
Kodowanie transformacyjne Plan 1. Zasada 2. Rodzaje transformacji 3. Standard JPEG Zasada Zasada podstawowa: na danych wykonujemy transformacje która: Likwiduje korelacje Skupia energię w kilku komponentach
Grafika komputerowa. Dla DSI II
Grafika komputerowa Dla DSI II Rodzaje grafiki Tradycyjny podział grafiki oznacza wyróżnienie jej dwóch rodzajów: grafiki rastrowej oraz wektorowej. Różnica pomiędzy nimi polega na innej interpretacji
Zbigniew JERZAK Adam KOTLIŃSKI. Studenci kierunku Informatyka na Politechnice Śląskiej w Gliwicach
Studenci kierunku Informatyka na Politechnice Śląskiej w Gliwicach Program zrealizowany na potrzeby Pracowni Komputerowej Analizy Obrazu i Mikroskopii Konfokalnej w Centrum Onkologii w Gliwicach Gliwice,
W poszukiwaniu sensu w świecie widzialnym
W poszukiwaniu sensu w świecie widzialnym Andrzej Śluzek Nanyang Technological University Singapore Uniwersytet Mikołaja Kopernika Toruń AGH, Kraków, 28 maja 2010 1 Podziękowania Przedstawione wyniki powstały
Przykład 1 W przypadku jednokrotnego rzutu kostką przestrzeń zdarzeń elementarnych
Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Niech Ω będzie przestrzenią zdarzeń elementarnych. Definicja 1 Rodzinę S zdarzeń losowych (zbiór S podzbiorów zbioru
INFORMATYKA WSTĘP DO GRAFIKI RASTROWEJ
INFORMATYKA WSTĘP DO GRAFIKI RASTROWEJ Przygotowała mgr Joanna Guździoł e-mail: jguzdziol@wszop.edu.pl WYŻSZA SZKOŁA ZARZĄDZANIA OCHRONĄ PRACY W KATOWICACH 1. Pojęcie grafiki komputerowej Grafika komputerowa
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl
0. OpenGL ma układ współrzędnych taki, że oś y jest skierowana (względem monitora) a) w dół b) w górę c) w lewo d) w prawo e) w kierunku do
0. OpenGL ma układ współrzędnych taki, że oś y jest skierowana (względem monitora) a) w dół b) w górę c) w lewo d) w prawo e) w kierunku do obserwatora f) w kierunku od obserwatora 1. Obrót dookoła osi
Statystyka opisowa. Wykład I. Elementy statystyki opisowej
Statystyka opisowa. Wykład I. e-mail:e.kozlovski@pollub.pl Spis treści Elementy statystyku opisowej 1 Elementy statystyku opisowej 2 3 Elementy statystyku opisowej Definicja Statystyka jest to nauka o
Zaawansowane metody numeryczne
Wykład 11 Ogólna postać metody iteracyjnej Definicja 11.1. (metoda iteracyjna rozwiązywania układów równań) Metodą iteracyjną rozwiązywania { układów równań liniowych nazywamy ciąg wektorów zdefiniowany
Programowanie celowe #1
Programowanie celowe #1 Problem programowania celowego (PC) jest przykładem problemu programowania matematycznego nieliniowego, który można skutecznie zlinearyzować, tzn. zapisać (i rozwiązać) jako problem
Przetwarzanie obrazu
Przetwarzanie obrazu Przegląd z uwzględnieniem obrazowej bazy danych Tatiana Jaworska Jaworska@ibspan.waw.pl www.ibspan.waw.pl/~jaworska Umiejscowienie przetwarzania obrazu Plan prezentacji Pojęcia podstawowe
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Przetwarzanie Sygnałów Studia Podyplomowe, Automatyka i Robotyka. Wstęp teoretyczny Zmienne losowe Zmienne losowe
Przetwarzanie obrazów wykład 4
Przetwarzanie obrazów wykład 4 Adam Wojciechowski Wykład opracowany na podstawie Komputerowa analiza i przetwarzanie obrazów R. Tadeusiewicz, P. Korohoda Filtry nieliniowe Filtry nieliniowe (kombinowane)
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego
Spacery losowe generowanie realizacji procesu losowego
Spacery losowe generowanie realizacji procesu losowego Michał Krzemiński Streszczenie Omówimy metodę generowania trajektorii spacerów losowych (błądzenia losowego), tj. szczególnych procesów Markowa z
Statystyka i eksploracja danych
Wykład XII: Zagadnienia redukcji wymiaru danych 12 maja 2014 Definicja Niech X będzie zmienną losową o skończonym drugim momencie. Standaryzacją zmiennej X nazywamy zmienną losową Z = X EX Var (X ). Definicja
Teledetekcja w inżynierii środowiska
AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE Wydział Geodezji Górniczej i Inżynierii Środowiska Sprawozdanie z przedmiotu: Teledetekcja w inżynierii środowiska Temat: Satelitarny obraz
POB Odpowiedzi na pytania
POB Odpowiedzi na pytania 1.) Na czym polega próbkowanie a na czym kwantyzacja w procesie akwizycji obrazu, jakiemu rodzajowi rozdzielczości odpowiada próbkowanie a jakiemu kwantyzacja Próbkowanie inaczej
Filtrowanie tekstur. Kinga Laurowska
Filtrowanie tekstur Kinga Laurowska Wprowadzenie Filtrowanie tekstur (inaczej wygładzanie) technika polegająca na 'rozmywaniu' sąsiadujących ze sobą tekseli (pikseli tekstury). Istnieje wiele metod filtrowania,
Wykład 1. Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy
Wykład Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy Zbiorowość statystyczna - zbiór elementów lub wyników jakiegoś procesu powiązanych ze sobą logicznie (tzn. posiadających wspólne cechy
Analiza głównych składowych- redukcja wymiaru, wykł. 12
Analiza głównych składowych- redukcja wymiaru, wykł. 12 Joanna Jędrzejowicz Instytut Informatyki Konieczność redukcji wymiaru w eksploracji danych bazy danych spotykane w zadaniach eksploracji danych mają
S O M SELF-ORGANIZING MAPS. Przemysław Szczepańczyk Łukasz Myszor
S O M SELF-ORGANIZING MAPS Przemysław Szczepańczyk Łukasz Myszor Podstawy teoretyczne Map Samoorganizujących się stworzył prof. Teuvo Kohonen (1982 r.). SOM wywodzi się ze sztucznych sieci neuronowych.
Złożoność obliczeniowa zadania, zestaw 2
Złożoność obliczeniowa zadania, zestaw 2 Określanie złożoności obliczeniowej algorytmów, obliczanie pesymistycznej i oczekiwanej złożoności obliczeniowej 1. Dana jest tablica jednowymiarowa A o rozmiarze
WYKŁAD 11. Kolor. fiolet, indygo, niebieski, zielony, żółty, pomarańczowy, czerwony
WYKŁAD 11 Modelowanie koloru Kolor Światło widzialne fiolet, indygo, niebieski, zielony, żółty, pomarańczowy, czerwony ~400nm ~700nm Rozróżnialność barw (przeciętna): 150 czystych barw Wrażenie koloru-trzy
Rozkłady dwóch zmiennych losowych
Rozkłady dwóch zmiennych losowych Uogólnienie pojęć na rozkład dwóch zmiennych Dystrybuanta i gęstość prawdopodobieństwa Rozkład brzegowy Prawdopodobieństwo warunkowe Wartości średnie i odchylenia standardowe
i ruchów użytkownika komputera za i pozycjonujący oczy cyberagenta internetowego na oczach i akcjach użytkownika Promotor: dr Adrian Horzyk
System śledzenia oczu, twarzy i ruchów użytkownika komputera za pośrednictwem kamery internetowej i pozycjonujący oczy cyberagenta internetowego na oczach i akcjach użytkownika Mirosław ł Słysz Promotor:
KOMPRESJA OBRAZÓW STATYCZNYCH - ALGORYTM JPEG
KOMPRESJA OBRAZÓW STATYCZNYCH - ALGORYTM JPEG Joint Photographic Expert Group - 1986 ISO - International Standard Organisation CCITT - Comité Consultatif International de Téléphonie et Télégraphie Standard
Korzystanie z podstawowych rozkładów prawdopodobieństwa (tablice i arkusze kalkulacyjne)
Korzystanie z podstawowych rozkładów prawdopodobieństwa (tablice i arkusze kalkulacyjne) Przygotował: Dr inż. Wojciech Artichowicz Katedra Hydrotechniki PG Zima 2014/15 1 TABLICE ROZKŁADÓW... 3 ROZKŁAD
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego
macierze jednostkowe (identyczności) macierze diagonalne, które na przekątnej mają same
1 Macierz definicja i zapis Macierzą wymiaru m na n nazywamy tabelę a 11 a 1n A = a m1 a mn złożoną z liczb (rzeczywistych lub zespolonych) o m wierszach i n kolumnach (zamiennie będziemy też czasem mówili,
Komputerowa Analiza Danych Doświadczalnych
Komputerowa Analiza Danych Doświadczalnych dr inż. Adam Kisiel kisiel@if.pw.edu.pl pokój 117b (12b) 1 Materiały do wykładu Transparencje do wykładów: http://www.if.pw.edu.pl/~kisiel/kadd/kadd.html Literatura
Waldemar Izdebski - Wykłady z przedmiotu SIT / Mapa zasadnicza 30
Waldemar Izdebski - Wykłady z przedmiotu SIT / Mapa zasadnicza 30 2.3. Model rastrowy Rastrowy model danych wykorzystywany jest dla gromadzenia i przetwarzania danych pochodzących ze skanowania istniejących
SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa
SIMR 06/07, Analiza, wykład, 07-0- Przestrzeń wektorowa Przestrzeń wektorowa (liniowa) - przestrzeń (zbiór) w której określone są działania (funkcje) dodawania elementów i mnożenia elementów przez liczbę
Analiza obrazów. Segmentacja i indeksacja obiektów
Analiza obrazów. Segmentacja i indeksacja obiektów Wykorzystane materiały: R. Tadeusiewicz, P. Korohoda, Komputerowa analiza i przetwarzanie obrazów, Wyd. FPT, Kraków, 1997 Analiza obrazu Analiza obrazu
Ćwiczenia 3 ROZKŁAD ZMIENNEJ LOSOWEJ JEDNOWYMIAROWEJ
Ćwiczenia 3 ROZKŁAD ZMIENNEJ LOSOWEJ JEDNOWYMIAROWEJ Zadanie 1. Zmienna losowa przyjmuje wartości -1, 0, 1 z prawdopodobieństwami równymi odpowiednio: ¼, ½, ¼. Należy: a. Wyznaczyć rozkład prawdopodobieństwa
Akwizycja i przetwarzanie sygnałów cyfrowych
Akwizycja i przetwarzanie sygnałów cyfrowych Instytut Teleinformatyki ITI PK Kraków 21 luty 2011 Reprezentacje sygnału Jak reprezentujemy sygnał: wybieramy sygnały wzorcowe (bazę) rozwijamy sygnał w wybranej
Sieci Kohonena Grupowanie
Sieci Kohonena Grupowanie http://zajecia.jakubw.pl/nai UCZENIE SIĘ BEZ NADZORU Załóżmy, że mamy za zadanie pogrupować następujące słowa: cup, roulette, unbelievable, cut, put, launderette, loveable Nie
Statystyka opisowa- cd.
12.03.2017 Wydział Inżynierii Produkcji I Logistyki Statystyka opisowa- cd. Wykład 4 Dr inż. Adam Deptuła HISTOGRAM UNORMOWANY Pole słupka = wysokość słupka x długość przedziału Pole słupka = n i n h h,
Wykład 2. Statystyka opisowa - Miary rozkładu: Miary położenia
Wykład 2 Statystyka opisowa - Miary rozkładu: Miary położenia Podział miar Miary położenia (measures of location): 1. Miary tendencji centralnej (measures of central tendency, averages): Średnia arytmetyczna
Wyższa Szkoła Informatyki Stosowanej i Zarządzania
Wyższa Szkoła Informatyki Stosowanej i Zarządzania WIT Grupa IZ06TC01, Zespół 3 PRZETWARZANIE OBRAZÓW Sprawozdanie z ćwiczeń laboratoryjnych Ćwiczenie nr 5 Temat: Modelowanie koloru, kompresja obrazów,
Cyfrowe przetwarzanie obrazów i sygnałów Wykład 7 AiR III
1 Niniejszy dokument zawiera materiały do wykładu z przedmiotu Cyfrowe Przetwarzanie Obrazów i Sygnałów. Jest on udostępniony pod warunkiem wykorzystania wyłącznie do własnych, prywatnych potrzeb i może
Laboratorium Grafiki Komputerowej Przekształcenia na modelach barw
Laboratorium rafiki Komputerowej Przekształcenia na modelach barw mgr inż. Piotr Stera Politechnika Śląska liwice 2004 Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi modelami barw stosowanymi
Metody systemowe i decyzyjne w informatyce
Metody systemowe i decyzyjne w informatyce Laboratorium JAVA Zadanie nr 2 Rozpoznawanie liter autorzy: A. Gonczarek, J.M. Tomczak Cel zadania Celem zadania jest zapoznanie się z problemem klasyfikacji
W kolejnym kroku należy ustalić liczbę przedziałów k. W tym celu należy wykorzystać jeden ze wzorów:
Na dzisiejszym wykładzie omówimy najważniejsze charakterystyki liczbowe występujące w statystyce opisowej. Poszczególne wzory będziemy podawać w miarę potrzeby w trzech postaciach: dla szeregu szczegółowego,
Budowanie macierzy danych geograficznych Procedura normalizacji Budowanie wskaźnika syntetycznego
Metody Analiz Przestrzennych Budowanie macierzy danych geograficznych Procedura normalizacji Budowanie wskaźnika syntetycznego mgr Marcin Semczuk Zakład Przedsiębiorczości i Gospodarki Przestrzennej Instytut
Politechnika Świętokrzyska. Laboratorium. Cyfrowe przetwarzanie sygnałów. Ćwiczenie 8. Filtracja uśredniająca i statystyczna.
Politechnika Świętokrzyska Laboratorium Cyfrowe przetwarzanie sygnałów Ćwiczenie 8 Filtracja uśredniająca i statystyczna. Cel ćwiczenia Celem ćwiczenia jest zdobycie umiejętności tworzenia i wykorzystywania
METODY CHEMOMETRYCZNE W IDENTYFIKACJI ŹRÓDEŁ POCHODZENIA
METODY CHEMOMETRYCZNE W IDENTYFIKACJI ŹRÓDEŁ POCHODZENIA AMFETAMINY Waldemar S. Krawczyk Centralne Laboratorium Kryminalistyczne Komendy Głównej Policji, Warszawa (praca obroniona na Wydziale Chemii Uniwersytetu
Generowanie ciągów pseudolosowych o zadanych rozkładach przykładowy raport
Generowanie ciągów pseudolosowych o zadanych rozkładach przykładowy raport Michał Krzemiński Streszczenie Projekt dotyczy metod generowania oraz badania własności statystycznych ciągów liczb pseudolosowych.
Gimp Grafika rastrowa (konwersatorium)
GIMP Grafika rastrowa Zjazd 1 Prowadzący: mgr Agnieszka Paradzińska 17 listopad 2013 Gimp Grafika rastrowa (konwersatorium) Przed przystąpieniem do omawiania cyfrowego przetwarzania obrazów niezbędne jest