Politechnika Białostocka
|
|
- Przybysław Wójtowicz
- 8 lat temu
- Przeglądów:
Transkrypt
1 Politechnika Białostocka Wydział Mechaniczny Instrukcja do zajęć projektowych Temat projektu: Modelowanie i badanie układów sterowanych zdarzeniami Zajęcia projektowe z przedmiotu: Sterowanie procesami dyskretnymi Kod: Opracował: Dr inż. Arkadiusz Mystkowski /14
2 ZADANIE PROJEKTOWE NR 1 Projektowanie układu sterowania o skończonej liczbie stanów z wykorzystaniem modułu Stateflow środowiska Matlab/Simulink 1. Wprowadzenie 1.1. Układy sterowane zdarzeniami dyskretnymi Układy sterowane zdarzeniami (ang. event-driven systems) zwane są układami reaktywnymi lub układami o skończonej liczbie przełączanych stanów (ang. finite state machines, FSM). Układ sterowany zdarzeniami jest reprezentowany poprzez skończony zbiór stanów. W układach tych przejście z jednego stanu do drugiego odbywa się w odpowiedzi na występujące zdarzenie i po spełnieniu postawionego warunku. Istnieje wiele przykładów fizycznych urządzeń i systemów wykorzystujących sterowanie zdarzeniami, np: sterowanie grzałką, wentylatorem, pompą, skrzynią biegów, układy sterowania PLC oraz automaty Charakterystyka modułu Stateflow Moduł Stateflow zaimplementowany do pakietu Matlab/Simulink stanowi graficzny interaktywny interfejs do modelowania i symulacji układów sterowanych zdarzeniami. Zazwyczaj symulowany układ sterowany zdarzeniami posiada zmienne określające dane wejściowe i wyjściowe, zbiór zdarzeń i przerwań oraz zdefiniowane warunki opisujące przejście pomiędzy stanami. Przybornik Stateflow dzięki wbudowanemu generatorowi kodu C (ang. Stateflow Coder) można wykorzystać do zbudowania aplikacji sterowania w czasie rzeczywistym. Algorytm sterowania w kodzie C może zostać zaimplementowany w sterowniku rzeczywistym połączonym z obiektem fizycznym. Jest to możliwe dlatego, że moduł Stateflow współpracuje z modułem Real-Time Workshop oraz z zwykłymi blokami bibliotek środowiska Simulink. Projektowanie układu sterowania zdarzeniami często opiera się na wykorzystaniu tablicy prawdy (ang. truth table) definiującej zależności logiczne pomiędzy sygnałami we/wy oraz stanami FSM. W przypadku występowania niewielkiej liczby stanów, modelowanie układu sterowanego zdarzeniami można zrealizować poprzez zdefiniowanie stanów i warunków przejść między nimi. Zastosowanie znajduje tutaj teoria grafów, a graficzna reprezentacja systemu opiera się na diagramie przejść między stanami (ang. sequential-transistion diagram). 2. Przykład sterowania podgrzewaczem wody Zadanie układu sterowania podgrzewaczem wody polega na utrzymaniu stałej temperatury wody w zbiorniku na poziomie 70. Temperatura otoczenia wynosi 18 i jest traktowana jako stała wartość zakłócenia. Transmitancja operatorowa modelu zbiornika z s e grzałką jest następująca: G( s) =. Podgrzewacz jest wyposażony w dwie grzałki 100s + 1 załączane okresowo. Jeżeli temperatura wody spadnie poniżej 40 obie grzałki są załączane w innym przypadku działa tylko jedna. Układ sterowania jest reprezentowany przez trzy stany: żadna grzałka nie pracuje, pracuje jedna grzałka, pracuję dwie grzałki. W takich układach nie jest konieczne dokładne utrzymywanie uchybu regulacji na poziomie zero. Wystarczy jedynie podtrzymywanie temperatury w pewnym zakresie. Dlatego też, regulator dyskretny sterujący podgrzewaniem wody jest uruchamiany okresowo sygnałem np. z okresem 300 sekund. 2/14
3 W celu realizacji układu sterowania należy zamodelować obiekt w programie Simulink. Następnie należy powiązać sygnały wejściowe i wyjściowe obiektu z projektowanym modelem regulatora dyskretnego, patrz rys. 1. Rys. 1. Model obiektu sterowania Następnie model obiektu należy zgrupować i podłączyć wartość stałą temperatury otoczenia, patrz rys. 2. Rys. 2. Zgrupowany model obiektu W dalszej części zadania należy zaprojektować sygnały sterujące regulatorem podgrzewacza. Z biblioteki Simulink/Sources należy wybrać blok Signal Builder. Sygnał włączający lub wyłączający grzałki o nazwie SWITCH dodajemy poprzez zakładkę Signal/New/Square. Parametry sygnału SWITCH to: częstotliwość 1/300 Hz, amplituda 1, offset 0, wypełnienie okresu 50%, długość sygnału: 600 sekund. Sygnał SWITCH powinien zaczynać się od wartości zero, można to zmienić poprzez przeciągnięcie myszką. W podobny sposób dodajemy sygnał taktujący przełączanie pomiędzy stanami regulatora o nazwie CLOCK. Parametry sygnału CLOCK to: częstotliwość 1 Hz, amplituda 2, offset 0 i wypełnienie okresu 50%. Ograniczenia sygnału CLOCK (prawy klawisz myszy) y: od 0 do 2, x: od -inf do inf. Po zbudowaniu sygnałów okno bloku Signal Builder przedstawiono na rys. 3. 3/14
4 Rys. 3. Sygnały referencyjne Realizacja opisu zadania dotyczy wersji Stateflow nr 7.1, R2008a. W celu uruchomienia Stateflow należy otworzyć bibliotekę modułu Stateflow z linii komend Matlab poleceniem >>stateflow. Następnie należy metodą drag and drop przekopiować diagram chart do wcześniej utworzonego okna z modelem obiektu. Po wykonaniu opisanych działań, model układu sterowania wygląda tak jak na rys. 4. Rys. 4. Układ sterowania zdarzeniami Okno wywołanego diagramu chart będącego graficznym edytorem Stateflow przedstawiono na rys. 5. 4/14
5 Rys. 5. Okno interfejsu graficznego Stateflow Do zrealizowania włączenia/wyłączenia podgrzewacza potrzebujemy dwóch stanów. Za pomocą przycisku state wybieramy dwukrotnie stany i nadajemy im nazwy: PowerOn i PowerOff, patrz rys. 6. Następnie za pomocą myszki tworzymy dwa połączenia między tymi stanami o nazwie SWITCH. Stan PowerOn definuje pracę dwóch grzałek, dlatego kopiujemy dodatkowe dwa stany o nazwach np. Heater1 i Heater2, które mogą być uruchamiane jednocześnie (równolegle) i będą reprezentować poszczególne grzałki. W tym celu w obszarze diagramu PowerOn klikamy prawym klawiszem myszy i wybieramy opcję Decomposition/Parallel (AND). Ramki oznaczone liną przerywaną mogą być jednocześnie aktywne (Parallel, AND). Ramki ciągłe oznaczają stany wzajemnie wykluczające się (Exclusive OR), patrz rys. 7. Rys. 6. Stany w polu edycji 5/14
6 Rys. 7. Stany AND i OR Dalej kolejno należy stany Heater1 i Heater2 rozbudować o dwa następne stany o nazwach On i Off. Przejścia pomiędzy stanami wykonujemy myszką, definiując przy tym warunki, np: dla Heater1: On Off when [temp>70], Off On when [temp<=70] oraz dla Heater2: On Off when [temp>40], Off On when [temp<=40], patrz rys. 8. Zmienna temp jest definiowana jako sygnał wejściowy. W tym celu wybieramy zakładkę Add/Data/Input from Simulink, patrz rys. 9. Rys. 8. Przejścia między stanami On i Off 6/14
7 Rys. 9. Definicja zmiennej wejściowej W obrębie stanu PowerOn pozostaje dodanie trzeciego stanu o nazwie np. HeatersOn definiującego stan kiedy obie grzałki będą włączone. Zapis definicji stanu HeatersOn jest następujący: during: heaters_on=in(heater1.on)+in(heater2.on);. Zapis definicji stanu PowerOff, kiedy obie grzałki są wyłączone jest następujący: entry: heaters_on=0;. Zmienna heaters_on jest sygnałem wyjściowym, definiowanym zgodnie z rys. 10. Następnie należy zdefiniować zdarzenia SWITCH i CLOCK. W tym celu korzystając z zakładki Add/Event/Input from Simulink definiujemy zdarzenia według rys. 11 i 12. Rys. 10. Definicja zmiennej wyjściowej 7/14
8 Rys. 11. Zdarzenie SWITCH Rys. 12. Zdarzenie CLOCK Po wykonaniu opisanych czynność okno Stateflow przedstawiono na rys. 13. Rys. 13. Okno Stateflow 8/14
9 Uruchomienie zbudowanego diagramu Stateflow z zakładki Simulation/Start, powoduje generowanie błędu o komunikacie: Chart #1104 has no unconditional default path to a state. This may lead to a state inconsistency error during runtime. Co jest związane z brakiem definicji pozostania w stanie wyłączenia. W tym celu wszystkie stany Off zaopatrujemy przejściem domyślnym. Finalne okno Stateflow pokazano na rys. 14. Rys. 14. Ostateczne okno Stateflow Dostęp do zdefiniowanych sygnałów oraz zdarzeń jest możliwy poprzez eksploratora edytora Stateflow, wybór zakładki Tools/Explore, patrz rys. 15. Rys. 15. Okno eksploatora Stateflow Widok finalnego układu sterowania zdarzeniami przedstawiono na rys /14
10 Rys. 16. Układ sterowania zdarzeniami W celu przeprowadzenia symulacji należy ustawić opcje symulacji w oknie układu Simulink: Simulation/Configuration Parameters: Stop time=600, stałokrokowa metoda całkowania: Solver option type: Fixed-step, Solver: ode4 (Runge-Kutta), Fixed-step size: 0.1. Przebieg zmian temperatury w zbiorniku (temperature plot) przedstawiono na rys. 17. Rys. 17. Przebieg wielkości regulowanej Wizualizacja i analiza procesów przełączania stanów w Stateflow jest łatwiejsza z zadanym opóźnieniem. W tym celu w zakładce Tools/Debug ustawiamy opóźnienie na np. 1 sec, patrz rys. 18. Rys. 18. Okno Stateflow debugging 10/14
11 Uruchamiamy diagram Stateflow z zakładki Simulation/Start lub przyciskiem Run, patrz rys. 19. Rys. 19. Przełączanie stanów w uruchomionym oknie Stateflow Polecenia do wykonania - analiza i powtórzenie przykładu z punktu 2, - wykonanie sterowania zdarzeniami wybranym obiektem z opóźnieniem typu np. żelazko, wentylator, klimatyzator, pompa, silnik krokowy, itp. (każda grupa indywidualnie), - sporządzenie sprawozdania z wykonanych zadań z analizą wyników. 11/14
12 ZADANIE PROJEKTOWE NR 2 Projektowanie układu sterowania typu: Bang-Bang w środowisku Stateflow/Simulink Polecenia do wykonania - wykonanie układu sterowania zdarzeniami (regulator Bang-Bang) dla wybranego obiektu, np. zawieszenie magnetyczne, kulka na pochylni, silnik liniowy, silnik krokowy, itd., - sporządzenie sprawozdania z wykonanego zadania z analizą i syntezą otrzymanych wyników. Model obiektu sterowania 1 Metalowa kulka o masie m została zawieszona w polu magnetycznym generowanym przez aktywny elektromagnes (rys. 1). Jest to obiekt strukturalnie niestabilny o bardzo małej stałej czasowej rzędu sec. Sygnałem wejściowym jest napięcie zasilające cewkę elektromagnetyczną u, natomiast sygnałem wyjściowym (obserwowanym) jest przemieszczenie kulki x. W celu uproszczenia modelu obiektu pominięto efekt strat elektrycznych (prądy wirowe), straty cieplne, itd. Rys. 1. Kulka w polu magnetycznym Model siłownika magnetycznego składa się z części mechanicznej i elektrycznej. Równanie ruchu kulki jest następujące: mx ɺɺ = kxx + kii + Fz, (1) gdzie: masa kulki: m=6 [kg], przemieszczenie masy z położenia równowagi: x [m], sztywność przemieszczeniowa: k x = [N/m], sztywność prądowa: k i =50 [N/A], prąd elektryczny cewki: i [A], siła zewnętrzna (zakłócenie): F z [N]. Równanie dynamiki obwodu elektrycznego siłownika elektromagnetycznego jest następujące: di u R k = i i x ɺ, (2) dt L0 L0 L0 gdzie: napięcie elektryczne cewki: u [V], indukcyjność nominalna cewki: L 0 =0.006 [H], rezystancja cewki: R=0.5 [Ω]. 12/14
13 Model obiektu sterowania 2 Metalowa kulka została zamieszczona na pochylni, której kąt jest sterowany poprzez ramię korbowe serwo-silnika (patrz rys. 2). Zmiana kąta serwa θ (sygnał wejściowy) powoduje zmianę kąta pochylenia bieżni α. Jeżeli pochylenie bieżni zmieni się od pozycji poziomej, siła grawitacyjna spowoduje przemieszczanie się kulki po bieżni ruchem obrotowym. Zmiana przemieszczenia liniowego kulki r jest sygnałem wyjściowym obiektu (obserwowanym). W celu uproszczenia modelu obiektu pominięto poślizg oraz tarcie pomiędzy kulką a bieżnią. Rys. 2. Kulka na pochylni Wychodząc z równań Lagrange a, równanie równowagi kulki na bieżni możemy zapisać następująco: J 2 + m r + mg sin α mr( α) = 0 2 ɺɺ ɺ, (3) R gdzie: moment inercji kulki: J=9.99e-6 [kgm 2 ], promień kulki: R=0.015 [m], masa kulki: m=0.11 [kg], przyspieszenie grawitacyjne: g=9.8 [m/s 2 ], kąt pochylenia wahadła: α, przemieszczenie kulki: r [m]. Równanie (3) zostało zlinearyzowane w otoczeniu punktu pracy dla α=0 następująco: J + m r + mgα = 0 2 ɺɺ. (4) R Równanie wiążące kąt pochylenia wahadła z kątem obrotu serwa jest opisane liniową i przybliżoną zależnością: d α = θ, (5) L gdzie: promień przekładni serwa d=0.03 [m], długość wahadła L=1 [m], kąt obrotu serwa θ. 13/14
14 ZADANIE PROJEKTOWE NR 3 Modelowanie układu sekwencyjnego w postaci automatu skończonego typu Mealy ego i Moore a z wykorzystaniem modułu Stateflow Polecenia do wykonania - wykonanie modelu i symulacji układu zdarzeń sekwencyjnych w oparciu o automaty Mealy ego i Moore a w Stateflow, każda grupa pracuje nad indywidualnym zadaniem, - sporządzenie sprawozdania z wykonanego zadania z analizą i opisem działania automatu. Przykład 1. Należy zbudować synchroniczny układ sekwencyjny modelujący wybrane tabele stanów: a) dla automatu Mealy ego: tablica wejść i wyjść x X 1 X 2 x X 1 X 2 S S S 1 S 1 S 1 Y 1 Y 2 S 3 Y 3 Y 1 S 3 S 1 S 3 Y 2 Y 3 b) dla automatu Moore a X 2 x X 1 X 2 Y S S 1/Y 2 X 1 X 2 S 1 S 1 Y 2 S 3 Y 1 /Y 1 S 3 S 1 Y 3 X 2 X 1 X 1 S 3/Y 3 Przykład 2. Należy zbudować układ wykrywający podaną sekwencję np. 011 w dowolnym miejscu grafu. Układ zatrzymywany jest sekwencją 100. Graf detekcji sekwencji 00110: 14/14
Wydział Mechaniczny Politechniki Białostockiej Katedra: Automatyki i Robotyki
Wydział Mechaniczny Politechniki Białostockiej Katedra: Automatyki i Robotyki Instrukcja do zajęć projektowych z przedmiotu: Automatyzacja procesów (P-30) Ćwiczenia/zadania projektowe nr 1 6 Ogólny temat
WYDZIAŁ PPT / KATEDRA INŻYNIERII BIOMEDYCZNEJ D-1 LABORATORIUM Z MIERNICTWA I AUTOMATYKI Ćwiczenie nr 7. Badanie jakości regulacji dwupołożeniowej.
Cel ćwiczenia: Zapoznanie się z zasadą działania regulatora dwupołożeniowego oraz ocena jakości regulacji dwupołożeniowej na przykładzie obiektu rzeczywistego (mikrotermostat) i badań symulacyjnych. Pytania
Symulacja pracy silnika prądu stałego
KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN POLITECHNIKA OPOLSKA MECHATRONIKA Instrukcja do ćwiczeń laboratoryjnych Symulacja pracy silnika prądu stałego Opracował: Dr inż. Roland Pawliczek Opole 016
Wprowadzenie do Real-Time Windows Target Toolbox Matlab/Simulink
Materiały pomocnicze do przedmiotu Systemy Czasu Rzeczywistego Wprowadzenie do Real-Time Windows Target Toolbox Matlab/Simulink Zawartość Czym jest Real-Time Windows Target (RTWT)?... 2 Bloki wejśd i wyjśd
Cyfrowe Przetwarzanie Obrazów i Sygnałów
Cyfrowe Przetwarzanie Obrazów i Sygnałów Laboratorium EX0 Wprowadzenie Joanna Ratajczak, Wrocław, 2018 1 Cel i zakres ćwiczenia Celem ćwiczenia jest zapoznanie się ze środowiskiem Matlab/Simulink wraz
Regulator PID w sterownikach programowalnych GE Fanuc
Regulator PID w sterownikach programowalnych GE Fanuc Wykład w ramach przedmiotu: Sterowniki programowalne Opracował na podstawie dokumentacji GE Fanuc dr inż. Jarosław Tarnawski Cel wykładu Przypomnienie
WYDZIAŁ PPT / KATEDRA INŻYNIERII BIOMEDYCZNEJ D-1 LABORATORIUM Z AUTOMATYKI I ROBOTYKI Ćwiczenie nr 4. Badanie jakości regulacji dwupołożeniowej.
Cel ćwiczenia: Zapoznanie się z zasadą działania regulatora dwupołożeniowego oraz ocena jakości regulacji dwupołożeniowej na przykładzie obiektu rzeczywistego (mikrotermostat) i badań symulacyjnych. Pytania
Roboty Przemysłowe. Rys. 1. Główne okno Automation Studio.
Roboty Przemysłowe 2. Pozycjonowane zderzakowo manipulatory pneumatyczne - symulacja pracy manipulatora w środowisku Automation Studio Celem ćwiczenia jest przygotowanie i przeprowadzenie symulacji ruchu
WPROWADZENIE DO ŚRODOWISKA SCICOS
Politechnika Gdańska Wydział Elektrotechniki i Automatyki WPROWADZENIE DO ŚRODOWISKA SCICOS Materiały pomocnicze do ćwiczeń laboratoryjnych Oryginał: Modeling and Simulation in Scilab/Scicos Stephen L.
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Technologie informatyczne Wprowadzenie do Simulinka w środowisku MATLAB Pytania i zadania do ćwiczeń laboratoryjnych
Projekt prostego układu sekwencyjnego Ćwiczenia Audytoryjne Podstawy Automatyki i Automatyzacji
WOJSKOWA AKADEMIA TECHNICZNA im. Jarosława Dąbrowskiego Projekt prostego układu sekwencyjnego Ćwiczenia Audytoryjne Podstawy Automatyki i Automatyzacji mgr inż. Paulina Mazurek Warszawa 2013 1 Wstęp Układ
Ćwiczenie nr 1 Odpowiedzi czasowe układów dynamicznych
Ćwiczenie nr 1 Odpowiedzi czasowe układów dynamicznych 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie studentów z metodą wyznaczania odpowiedzi skokowych oraz impulsowych podstawowych obiektów regulacji.
Rys 1 Schemat modelu masa- sprężyna- tłumik
Rys 1 Schemat modelu masa- sprężyna- tłumik gdzie: m-masa bloczka [kg], ẏ prędkośćbloczka [ m s ]. 3. W kolejnym energię potencjalną: gdzie: y- przemieszczenie bloczka [m], k- stała sprężystości, [N/m].
Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa TECHNIKI REGULACJI AUTOMATYCZNEJ
Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa TECHNIKI REGULACJI AUTOMATYCZNEJ Laboratorium nr 2 Podstawy środowiska Matlab/Simulink część 2 1. Cel ćwiczenia: Celem ćwiczenia jest zapoznanie
PROGRAMOWALNE STEROWNIKI LOGICZNE
PROGRAMOWALNE STEROWNIKI LOGICZNE I. Wprowadzenie Klasyczna synteza kombinacyjnych i sekwencyjnych układów sterowania stosowana do automatyzacji dyskretnych procesów produkcyjnych polega na zaprojektowaniu
Laboratorium elementów automatyki i pomiarów w technologii chemicznej
POLITECHNIKA WROCŁAWSKA Wydziałowy Zakład Inżynierii Biomedycznej i Pomiarowej Laboratorium elementów automatyki i pomiarów w technologii chemicznej Instrukcja do ćwiczenia Regulacja dwupołożeniowa Wrocław
Sposoby modelowania układów dynamicznych. Pytania
Sposoby modelowania układów dynamicznych Co to jest model dynamiczny? PAScz4 Modelowanie, analiza i synteza układów automatyki samochodowej równania różniczkowe, różnicowe, równania równowagi sił, momentów,
Maszyna stanu State Machine
Pozwala na sekwencyjne wykonywanie zadań. Wykorzystuje się struktury Case umieszczone w pętli While. Wywołanie konkretnej struktury Case jest zdeterminowane wyjściem z poprzednio wykonanej struktury Case.
Ćwiczenie 0 : Wprowadzenie do cyfrowego przetwarzania sygnałów. wyświetla listę tematów pomocy. wyświetla okno pomocy (Help / Product Help)
Wybr ane za gadnienia elektr oniki współczesnej Ćwiczenie 0 : Wprowadzenie do cyfrowego przetwarzania sygnałów. 1 Cel ćwiczenia Pierwsze zajęcia laboratoryjne z zakresu przetwarzania sygnałów mają na celu
Projektowania Układów Elektronicznych CAD Laboratorium
Projektowania Układów Elektronicznych CAD Laboratorium ĆWICZENIE NR 3 Temat: Symulacja układów cyfrowych. Ćwiczenie demonstruje podstawowe zasady analizy układów cyfrowych przy wykorzystaniu programu PSpice.
Asynchroniczne statyczne układy sekwencyjne
Asynchroniczne statyczne układy sekwencyjne Układem sekwencyjnym nazywany jest układ przełączający, posiadający przynajmniej jeden taki stan wejścia, któremu odpowiadają, zależnie od sygnałów wejściowych
ELEMENTY AUTOMATYKI PRACA W PROGRAMIE SIMULINK 2013
SIMULINK część pakietu numerycznego MATLAB (firmy MathWorks) służąca do przeprowadzania symulacji komputerowych. Atutem programu jest interfejs graficzny (budowanie układów na bazie logicznie połączonych
POLITECHNIKA ŚLĄSKA WYDZIAŁ GÓRNICTWA I GEOLOGII. Roman Kaula
POLITECHNIKA ŚLĄSKA WYDZIAŁ GÓRNICTWA I GEOLOGII Roman Kaula ZASTOSOWANIE NOWOCZESNYCH NARZĘDZI INŻYNIERSKICH LabVIEW oraz MATLAB/Simulink DO MODELOWANIA UKŁADÓW DYNAMICZNYCH PLAN WYKŁADU Wprowadzenie
Ćwiczenie 1. Symulacja układu napędowego z silnikiem DC i przekształtnikiem obniżającym.
Ćwiczenie 1 Symulacja układu napędowego z silnikiem DC i przekształtnikiem obniżającym. Środowisko symulacyjne Symulacja układu napędowego z silnikiem DC wykonana zostanie w oparciu o środowisko symulacyjne
Symulacja działania sterownika dla robota dwuosiowego typu SCARA w środowisku Matlab/Simulink.
Symulacja działania sterownika dla robota dwuosiowego typu SCARA w środowisku Matlab/Simulink. Celem ćwiczenia jest symulacja działania (w środowisku Matlab/Simulink) sterownika dla dwuosiowego robota
Lista zadań nr 5. Ścieżka projektowa Realizacja każdego z zadań odbywać się będzie zgodnie z poniższą ścieżką projektową (rys.
Sterowanie procesami dyskretnymi laboratorium dr inż. Grzegorz Bazydło G.Bazydlo@iee.uz.zgora.pl, staff.uz.zgora.pl/gbazydlo Lista zadań nr 5 Zagadnienia stosowanie skończonych automatów stanów (ang. Finite
Materiały dodatkowe. Simulink PLC Coder
Katedra Inżynierii Systemów Sterowania Materiały dodatkowe Simulink PLC Coder Opracowali: mgr inż. Tomasz Karla Data: Listopad, 2016 r. Dodatkowe informacje Materiały dodatkowe mają charakter ogólny i
Automatyka i sterowania
Automatyka i sterowania Układy regulacji Regulacja i sterowanie Przykłady regulacji i sterowania Funkcje realizowane przez automatykę: regulacja sterowanie zabezpieczenie optymalizacja Automatyka i sterowanie
Politechnika Poznańska Wydział Budowy Maszyn i Zarządzania. Automatyzacja i Nadzorowanie Maszyn Zajęcia laboratoryjne. Ćwiczenie 11 Silnik
Politechnika Poznańska Wydział Budowy Maszyn i Zarządzania Automatyzacja i Nadzorowanie Maszyn Zajęcia laboratoryjne Ćwiczenie 11 Silnik Poznań 2017 OGÓLNE ZASADY BEZPIECZEŃSTWA PODCZAS WYKONYWANIA ĆWICZEŃ
Adaptacja sterownika PLC do obiektu sterowania. Synteza algorytmu procesu i sterowania metodą GRAFCET i SFC
Adaptacja sterownika PLC do obiektu sterowania. Synteza algorytmu procesu i sterowania metodą GRAFCET i SFC Proces technologiczny (etap procesu produkcyjnego/przemysłowego) podstawa współczesnych systemów
1. Zbiornik mleka. woda. mleko
Założenia ogólne 1. Każdy projekt realizuje zespół złożóny z max. 2 osób. 2. Projekt składa się z 3 części: - aplikacji SCADA PRO-2000; - programu sterującego - realizującego obsługę urządzeń w sterowniku;
Sterowniki Programowalne (SP)
Sterowniki Programowalne (SP) Wybrane aspekty procesu tworzenia oprogramowania dla sterownika PLC Podstawy języka funkcjonalnych schematów blokowych (FBD) Politechnika Gdańska Wydział Elektrotechniki i
UKŁAD AUTOMATYCZNEJ REGULACJI SILNIKA SZEREGOWEGO PRĄDU STAŁEGO KONFIGUROWANY GRAFICZNIE
UKŁAD AUOMAYCZNEJ REGULACJI SILNIKA SZEREGOWEGO PRĄDU SAŁEGO KONFIGUROWANY GRAFICZNIE Konrad Jopek (IV rok) Opiekun naukowy referatu: dr inż. omasz Drabek Streszczenie: W pracy przedstawiono układ regulacji
Sterowanie Napędów Maszyn i Robotów
Wykład 4 - Model silnika elektrycznego prądu stałego z magnesem trwałym Instytut Automatyki i Robotyki Warszawa, 2017 Wstęp Silniki elektryczne prądu stałego są bardzo często stosowanymi elementami wykonawczymi
Sterowanie Napędów Maszyn i Robotów
Wykład 4 - Model silnika elektrycznego prądu stałego z magnesem trwałym Instytut Automatyki i Robotyki Warszawa, 2017 Wstęp Silniki elektryczne prądu stałego są bardzo często stosowanymi elementami wykonawczymi
(Wszystkie wyniki zapisywać na dysku Dane E:)
Cel ćwiczenia: Zapoznanie się z zasadą działania regulatora dwustanowego oraz ocena, jakości regulacji dwupołożeniowej na przykładzie obiektu rzeczywistego (mikrotermostat) i badań symulacyjnych. UWAGA
AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT. Instrukcja do zajęc laboratoryjnych nr 3 AUTOMATYZACJA I ROBOTYZACJA PROCESÓW PRODUKCYJNYCH
AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT Instrukcja do zajęc laboratoryjnych nr 3 AUTOMATYZACJA I ROBOTYZACJA PROCESÓW PRODUKCYJNYCH II rok Kierunek Logistyka Temat: Minimalizacja funkcji logicznych.
Automatyka i Regulacja Automatyczna Laboratorium Zagadnienia Seria II
Automatyka i Regulacja Automatyczna Laboratorium Zagadnienia Seria II Zagadnienia na ocenę 3.0 1. Podaj transmitancję oraz naszkicuj teoretyczną odpowiedź skokową układu całkującego z inercją 1-go rzędu.
MentorGraphics ModelSim
MentorGraphics ModelSim 1. Konfiguracja programu Wszelkie zmiany parametrów systemu symulacji dokonywane są w menu Tools -> Edit Preferences... Wyniki ustawień należy zapisać w skrypcie startowym systemu
Szybkie prototypowanie w projektowaniu mechatronicznym
Szybkie prototypowanie w projektowaniu mechatronicznym Systemy wbudowane (Embedded Systems) Systemy wbudowane (ang. Embedded Systems) są to dedykowane architektury komputerowe, które są integralną częścią
Regulacja dwupołożeniowa.
Politechnika Krakowska Wydział Inżynierii Elektrycznej i Komputerowej Zakład eorii Sterowania Regulacja dwupołożeniowa. Kraków Zakład eorii Sterowania (E ) Regulacja dwupołożeniowa opis ćwiczenia.. Opis
Podstawy Elektroniki dla Elektrotechniki. Liczniki synchroniczne na przerzutnikach typu D
AGH Katedra Elektroniki Podstawy Elektroniki dla Elektrotechniki Liczniki synchroniczne na przerzutnikach typu D Ćwiczenie 7 Instrukcja do ćwiczeń symulacyjnych 2016 r. 1 1. Wstęp Celem ćwiczenia jest
LABORATORIUM 5: Sterowanie rzeczywistym serwomechanizmem z modułem przemieszczenia liniowego
LABORATORIUM 5: Sterowanie rzeczywistym serwomechanizmem z modułem przemieszczenia liniowego Uwagi (pominąć, jeśli nie ma problemów z wykonywaniem ćwiczenia) 1. Jeśli pojawiają się błędy przy próbie symulacji:
ActionFX oprogramowanie do sterowania efektami platform i kin 7D V1.0.1
Instrukcja obsługi ActionFX oprogramowanie do sterowania efektami platform i kin 7D V1.0.1 1 ActionFX to zaawansowane oprogramowanie umożliwiające sterowanie platformami efektowymi i efektami w kinach
Ćwiczenie 1b. Silnik prądu stałego jako element wykonawczy Modelowanie i symulacja napędu CZUJNIKI POMIAROWE I ELEMENTY WYKONAWCZE
Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych 90-924 Łódź, ul. Wólczańska 221/223, bud. B18 tel. 42 631 26 28 faks 42 636 03 27 e-mail secretary@dmcs.p.lodz.pl http://www.dmcs.p.lodz.pl
Konfiguracja i programowanie sterownika GE Fanuc VersaMax z modelem procesu przepływów i mieszania cieczy
Ćwiczenie V LABORATORIUM MECHATRONIKI IEPiM Konfiguracja i programowanie sterownika GE Fanuc VersaMax z modelem procesu przepływów i mieszania cieczy Zał.1 - Działanie i charakterystyka sterownika PLC
1. Opis teoretyczny regulatora i obiektu z opóźnieniem.
Laboratorium Podstaw Inżynierii Sterowania Ćwiczenie:. Opis teoretyczny regulatora i obiektu z opóźnieniem. W regulacji dwupołożeniowej sygnał sterujący przyjmuje dwie wartości: pełne załączenie i wyłączenie...
Programowanie sterowników przemysłowych / Jerzy Kasprzyk. wyd. 2 1 dodr. (PWN). Warszawa, Spis treści
Programowanie sterowników przemysłowych / Jerzy Kasprzyk. wyd. 2 1 dodr. (PWN). Warszawa, 2017 Spis treści Przedmowa 11 ROZDZIAŁ 1 Wstęp 13 1.1. Rys historyczny 14 1.2. Norma IEC 61131 19 1.2.1. Cele i
Pierwsze kroki z easy Soft CoDeSys. 2009 Eaton Corporation. All rights reserved.
Pierwsze kroki z easy Soft CoDeSys Tworzenie prostego programu Rozpoczęcie pracy 2 Tworzenie prostego programu Wybór aparatu 3 Tworzenie prostego programu Wybór języka programowania Do wyboru jest sześć
Ćwiczenie 1 Program Electronics Workbench
Systemy teleinformatyczne Ćwiczenie Program Electronics Workbench Symulacja układów logicznych Program Electronics Workbench służy do symulacji działania prostych i bardziej złożonych układów elektrycznych
(Wszystkie wyniki zapisywać na dysku Dane E:)
Cel ćwiczenia: Zapoznanie się z zasadą działania regulatora dwustanowego oraz ocena, jakości regulacji dwupołożeniowej na przykładzie obiektu rzeczywistego (mikrotermostat) i badań symulacyjnych. UWAGA
Modelowanie Systemów Dynamicznych Studia zaoczne, Automatyka i Robotyka, rok II. Podstawy SIMULINKA
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Modelowanie Systemów Dynamicznych Studia zaoczne, Automatyka i Robotyka, rok II Podstawy SIMULINKA Simulink jest
UWAGA. Wszystkie wyniki zapisywać na dysku Dane E: Program i przebieg ćwiczenia:
Cel ćwiczenia: Zapoznanie się z. metodami badania i analitycznego wyznaczania parametrów dynamicznych obiektów rzeczywistych na przykładzie mikrotermostatu oraz z metodami symulacyjnymi umożliwiającymi
Ćw. 8 Bramki logiczne
Ćw. 8 Bramki logiczne 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi bramkami logicznymi, poznanie ich rodzajów oraz najwaŝniejszych parametrów opisujących ich własności elektryczne.
Projektowanie Scalonych Systemów Wbudowanych VERILOG
Projektowanie Scalonych Systemów Wbudowanych VERILOG OPIS BEHAWIORALNY proces Proces wątek sterowania lub przetwarzania danych, niezależny w sensie czasu wykonania, ale komunikujący się z innymi procesami.
Zwory na płycie z łączem szeregowym ustawienie zworek dla programowania.
I. OPIS STANOWISKA DO BADANIA SILNIKÓW KROKOWYCH LINIOWYCH Pracą silnika można sterować za pomocą sterownika lub przez łącze szeregowe RS485/232 z komputera. Rysunek przedstawiający sposób podłączenia
Siemens S7-1200 Konfiguracja regulatora PID
Siemens S7-1200 Konfiguracja regulatora PID 1 Wprowadzenie Środowisko STEP 7 umożliwia wykorzystanie instrukcji sterownika S7-1200 które pozwalają na prostą konfiguracje i zastosowanie regulatora PID.
SWB - Projektowanie synchronicznych układów sekwencyjnych - wykład 5 asz 1. Układy kombinacyjne i sekwencyjne - przypomnienie
SWB - Projektowanie synchronicznych układów sekwencyjnych - wykład 5 asz 1 Układy kombinacyjne i sekwencyjne - przypomnienie SWB - Projektowanie synchronicznych układów sekwencyjnych - wykład 5 asz 2 Stan
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Podstawy Automatyki Regulacja temperatury z wykorzystaniem sterownika PLC Zadania do ćwiczeń laboratoryjnych
Katedra Metrologii i Systemów Diagnostycznych Laboratorium Metrologii II. 2013/14. Grupa: Nr. Ćwicz.
Politechnika Rzeszowska Katedra Metrologii i Systemów Diagnostycznych Laboratorium Metrologii II WYZNACZANIE WŁAŚCIWOŚCI STATYCZNYCH I DYNAMICZNYCH PRZETWORNIKÓW Grupa: Nr. Ćwicz. 9 1... kierownik 2...
Teoria układów logicznych
Automat Moore a Automatem Moore a nazywamy uporządkowaną piątkę ( Q, X,,, ) gdzie Q jest skończonym zbiorem niepustym, nazwanym zbiorem stanów automatu, X jest skończonym zbiorem niepustym, nazwanym alfabetem
Obsługa programu Soldis
Obsługa programu Soldis Uruchomienie programu Po uruchomieniu, program zapyta o licencję. Można wybrać licencję studencką (trzeba założyć konto na serwerach soldisa) lub pracować bez licencji. Pliki utworzone
AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT. Instrukcja do zajęc laboratoryjnych nr 3 AUTOMATYKA
AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT Instrukcja do zajęc laboratoryjnych nr 3 AUTOMATYKA II rok Kierunek Transport Temat: Minimalizacja funkcji logicznych. Projektowanie układów logicznych. Opracował
Instrukcja do ćwiczenia 6 REGULACJA TRÓJPOŁOŻENIOWA
Instrukcja do ćwiczenia 6 REGULACJA TRÓJPOŁOŻENIOWA Cel ćwiczenia: dobór nastaw regulatora, analiza układu regulacji trójpołożeniowej, określenie jakości regulacji trójpołożeniowej w układzie bez zakłóceń
Kultywator rolniczy - dobór parametrów sprężyny do zadanych warunków pracy
Metody modelowania i symulacji kinematyki i dynamiki z wykorzystaniem CAD/CAE Laboratorium 6 Kultywator rolniczy - dobór parametrów sprężyny do zadanych warunków pracy Opis obiektu symulacji Przedmiotem
Materiały dodatkowe. Simulink Real-Time
Katedra Inżynierii Systemów Sterowania Materiały dodatkowe Simulink Real-Time Opracowali: mgr inż. Tomasz Karla Data: Listopad, 2016 r. Wstęp Simulink Real-Time jest środowiskiem pozwalającym na tworzenie
Katedra Automatyzacji Laboratorium Podstaw Automatyzacji Produkcji Laboratorium Podstaw Automatyzacji
Katedra Automatyzacji Laboratorium Podstaw Automatyzacji Produkcji Laboratorium Podstaw Automatyzacji Opracowanie: mgr inż. Krystian Łygas, inż. Wojciech Danilczuk Na podstawie materiałów Prof. dr hab.
UWAGA. Program i przebieg ćwiczenia:
Cel ćwiczenia: Zapoznanie się z. metodami badania i analitycznego wyznaczania parametrów dynamicznych obiektów rzeczywistych na przykładzie mikrotermostatu oraz z metodami symulacyjnymi umożliwiającymi
SYNTEZA UKŁADU AUTOMATYCZNEJ REGULACJI TEMPERATURY
Ćwiczenie SYNTEZA UKŁADU AUTOMATYCZNEJ REGULACJI TEMPERATURY 1. CEL ĆWICZENIA Celem ćwiczenia jest zapoznanie studentów z pracą układu automatycznej regulacji temperatury 2. WPROWADZENIE Układy automatycznej
SYSTEMY CZASU RZECZYWISTEGO (SCR)
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania SYSTEMY CZASU RZECZYWISTEGO (SCR) Temat: Implementacja i weryfikacja algorytmu sterowania z regulatorem
PRZED PRZYSTĄPIENIEM DO ZAJĘĆ PROSZĘ O BARDZO DOKŁADNE
ĆWICZENIE 5) BADANIE REGULATORA PI W UKŁADZIE STEROWANIA PRĘDKOŚCIĄ OBROTOWĄ SILNIKA PRĄDU STAŁEGO PRZED PRZYSTĄPIENIEM DO ZAJĘĆ PROSZĘ O BARDZO DOKŁADNE ZAPOZNANIE SIĘ Z TREŚCIĄ INSTRUKCJI CEL ĆWICZENIA:
LABORATORIUM PRZETWORNIKÓW ELEKTROMECHANICZNYCH
-CEL- LABORATORIUM PRZETWORNIKÓW ELEKTROMECHANICZNYCH PODSTAWOWE CHARAKTERYSTYKI I PARAMETRY SILNIKA RELUKTANCYJNEGO Z KLATKĄ ROZRUCHOWĄ (REL) Zapoznanie się z konstrukcją silników reluktancyjnych. Wyznaczenie
EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2012/2013 Zadania dla grupy elektronicznej na zawody III stopnia
EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2012/2013 Zadania dla grupy elektronicznej na zawody III stopnia Zadanie 1. Jednym z najnowszych rozwiązań czujników
Prototypowanie sterownika dla robota 2DOF
Prototypowanie sterownika dla robota 2DOF Opis techniczny robota. Robot 2DOF jest zespołem dwóch ramion o następujących danych: Liczba osi dwie. Rodzaj napędu silniki elektryczne prądu stałego typu PZTK
Sławomir Kulesza. Projektowanie automatów asynchronicznych
Sławomir Kulesza Technika cyfrowa Projektowanie automatów asynchronicznych Wykład dla studentów III roku Informatyki Wersja 3.0, 03/01/2013 Automaty skończone Automat skończony (Finite State Machine FSM)
Projektowanie układów regulacji w dziedzinie częstotliwości. dr hab. inż. Krzysztof Patan, prof. PWSZ
Projektowanie układów regulacji w dziedzinie częstotliwości dr hab. inż. Krzysztof Patan, prof. PWSZ Wprowadzenie Metody projektowania w dziedzinie częstotliwości mają wiele zalet: stabilność i wymagania
SYNTEZA UKŁADU DWUPOŁOŻENIOWEJ REGULACJI POZIOMU CIECZY W ZBIORNIKU
Ćwiczenie SYNTEZA UKŁADU DWUPOŁOŻENIOWEJ REGULACJI POZIOMU CIECZY W ZBIORNIKU 1. CEL ĆWICZENIA Celem ćwiczenia jest zapoznanie studentów z pracą układu dwupołożeniowej regulacji poziomu cieczy w zbiorniku.
INSTRUKCJA DO ĆWICZENIA NR 4
KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 4 PRZEDMIOT TEMAT OPRACOWAŁ MECHANIKA UKŁADÓW MECHANCZNYCH Modelowanie fizyczne układu o dwóch stopniach
PROGRAMY STEROWANIA I WIZUALIZACJI II
PWSZ SW W8 PROGRAMY STEROWANIA I WIZUALIZACJI II Układ sekwencyjny Start Stop. Podnośnik góra dół. Układ czasowy naprzemienne załączanie/wyłączanie. Sterowanie symulowanym zbiornikiem. 1. Zadanie UKŁAD
Technika regulacji automatycznej
Technika regulacji automatycznej Wykład 3 Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 32 Plan wykładu Wprowadzenie Układ pierwszego rzędu Układ drugiego
ANALOGOWE I MIESZANE STEROWNIKI PRZETWORNIC. Ćwiczenie 3. Przetwornica podwyższająca napięcie Symulacje analogowego układu sterowania
Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych 90-924 Łódź, ul. Wólczańska 221/223, bud. B18 tel. 42 631 26 28 faks 42 636 03 27 e-mail secretary@dmcs.p.lodz.pl http://www.dmcs.p.lodz.pl
dr inż. Tomasz Krzeszowski
Microsoft Robotics Developer Studio dr inż. Tomasz Krzeszowski 2017-05-20 Spis treści 1 Przygotowanie do laboratorium... 3 2 Cel laboratorium... 3 3 Microsoft Robotics Developer Studio... 3 3.1 Wprowadzenie...
AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ
AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ ELEMETY ELEKTRONIKI LABORATORIUM Kierunek NAWIGACJA Specjalność Transport morski Semestr II Ćw. 1 Poznawanie i posługiwanie się programem Multisim 2001 Wersja
Podstawy Automatyki. Człowiek- najlepsza inwestycja. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Podstawy Automatyki Człowiek- najlepsza inwestycja Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Politechnika Warszawska Instytut Automatyki i Robotyki Dr inż.
Opracować model ATP-EMTP silnika indukcyjnego i przeprowadzić analizę jego rozruchu.
PRZYKŁAD C5 Opracować model ATP-EMTP silnika indukcyjnego i przeprowadzić analizę jego rozruchu. W charakterze przykładu rozpatrzmy model silnika klatkowego, którego parametry są następujące: Moc znamionowa
MODELOWANIE I SYMULACJA UKŁADÓW PNEUMATYCZNYCH, HYDRAULICZNYCH I ELEKTRYCZNYCH za pomocą programu komputerowego AUTOMATION STUDIO
INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN POLITECHNIKI ŁÓDZKIEJ ĆWICZENIE NR P-14 MODELOWANIE I SYMULACJA UKŁADÓW PNEUMATYCZNYCH, HYDRAULICZNYCH I ELEKTRYCZNYCH za pomocą programu komputerowego AUTOMATION
Ćw. 0: Wprowadzenie do programu MultiSIM
Ćw. 0: Wprowadzenie do programu MultiSIM Wstęp Celem ćwiczenia jest zapoznanie się z programem MultiSIM przeznaczonym do analiz i symulacji działania układów elektronicznych. Zaznajamianie się z tym programem
R L. Badanie układu RLC COACH 07. Program: Coach 6 Projekt: CMA Coach Projects\ PTSN Coach 6\ Elektronika\RLC.cma Przykłady: RLC.cmr, RLC1.
OAH 07 Badanie układu L Program: oach 6 Projekt: MA oach Projects\ PTSN oach 6\ Elektronika\L.cma Przykłady: L.cmr, L1.cmr, V L Model L, Model L, Model L3 A el ćwiczenia: I. Obserwacja zmian napięcia na
W_4 Adaptacja sterownika PLC do obiektu sterowania. Synteza algorytmu procesu i sterowania metodą GRAFCET i SFC
Proces technologiczny (etap procesu produkcyjnego/przemysłowego) podstawa współczesnych systemów wytwarzania; jest określony przez schemat funkcjonalny oraz opis słowny jego przebiegu. Do napisania programu
Ćwiczenia z S7-1200. S7-1200 jako Profinet-IO Controller. FAQ Marzec 2012
Ćwiczenia z S7-1200 S7-1200 jako Profinet-IO Controller FAQ Marzec 2012 Spis treści 1 Opis zagadnienie poruszanego w ćwiczeniu. 3 1.1 Wykaz urządzeń..... 3 2 KONFIGURACJA S7-1200 PLC.. 4 2.1 Nowy projekt.
Konfiguracja podstawowych parametrów falownikóww LG ig5a na przykładzie wentylatora RF/6-630T
Konfiguracja podstawowych parametrów falownikóww LG ig5a na przykładzie wentylatora RF/6-630T Falownik służy do regulacji pracy silników. Aby sterować pracą wentylatora należy do falownika wprowadzić dane
Mechatronika i inteligentne systemy produkcyjne. Aktory
Mechatronika i inteligentne systemy produkcyjne Aktory 1 Definicja aktora Aktor (ang. actuator) -elektronicznie sterowany człon wykonawczy. Aktor jest łącznikiem między urządzeniem przetwarzającym informację
Regulator PID w sterownikach programowalnych GE Fanuc
Regulator PID w sterownikach programowalnych GE Fanuc Wykład w ramach przedmiotu: Sterowniki programowalne Opracował na podstawie dokumentacji GE Fanuc dr inż. Jarosław Tarnawski Cel wykładu Przypomnienie
Zespól B-D Elektrotechniki
Zespól B-D Elektrotechniki Laboratorium Elektroniki i Elektrotechniki Samochodowej Temat ćwiczenia: Badanie sondy lambda i przepływomierza powietrza w systemie Motronic Opracowanie: dr hab inż S DUER 39
Konfiguracja regulatora PID
Konfiguracja regulatora PID Simatic Step 7 Basic v10.5 S7-1200 PLC FAQ Lipiec 2010 Spis treści 1 Opis obiektu regulacji PID 3 2 Wstęp do nowego projektu. 4 2.1 Nowy projekt... 4 2.2 Dodanie nowego urządzenia...
Automat Moore a. Teoria układów logicznych
Automat Moore a Automatem Moore a nazywamy uporządkowaną piątkę (Q,X,Y,δ, λ )gdzie Qjestskończonym zbiorem niepustym, nazwanym zbiorem stanów automatu, Xjestskończonym zbiorem niepustym, nazwanym alfabetem
Zaliczenie - zagadnienia (aktualizacja )
Tomasz Żabiński Ocena 3.0 Zaliczenie - zagadnienia (aktualizacja 23.01.2017) 1. Podaj na jakie dwie główne grupy dzieli się układy przełączające. 2. Scharakteryzuj układy kombinacyjne. 3. Scharakteryzuj
1.Wprowadzenie do projektowania układów sekwencyjnych synchronicznych
.Wprowadzenie do projektowania układów sekwencyjnych synchronicznych.. Przerzutniki synchroniczne Istota działania przerzutników synchronicznych polega na tym, że zmiana stanu wewnętrznego powinna nastąpić
Inwerter logiczny. Ilustracja 1: Układ do symulacji inwertera (Inverter.sch)
DSCH2 to program do edycji i symulacji układów logicznych. DSCH2 jest wykorzystywany do sprawdzenia architektury układu logicznego przed rozpoczęciem projektowania fizycznego. DSCH2 zapewnia ergonomiczne
Ćwiczenie Stany nieustalone w obwodach liniowych pierwszego rzędu symulacja komputerowa
INSTYTUT SYSTEMÓW INŻYNIERII ELEKTRYCZNEJ TEORIA OBWODÓW ELEKTRYCZNYCH LABORATORIUM Ćwiczenie Stany nieustalone w obwodach liniowych pierwszego rzędu symulacja komputerowa Grupa nr:. Zespół nr:. Skład