POMIARY OPTYCZNE Szkło #2 Pomiary promieni krzywizn elementów układów opt. Damian Siedlecki
|
|
- Laura Chmiel
- 8 lat temu
- Przeglądów:
Transkrypt
1 POMIARY OPTYCZNE 1 { 9. Szkło # elementów układów opt. Damian Siedlecki
2 W czasie wytopu dostają się do szkła wtrącenia ciał stałych oraz powstają pęcherze gazowe. Wtrącenia mogą stanowić również cząstki materiałów tygla i mieszadła oraz cząstki zestawu, które nie rozpuściły się w czasie wytopu. Wszystkie te wtrącenia powodują ogólnie wadę zwaną pęcherzowatością szkła. Warunki techniczne dotyczące jakości szkła optycznego pod względem pęcherzowatości dzielą je na 5 klas i 11 kategorii. Klasę pęcherzowatości określa się poprzez średnią ilość pęcherzy w 1 kg szkła. Kategorię pęcherzowatości określa się średnicą największego dopuszczalnego pęcherza w półfabrykacie. SZKŁO pęcherzowatość
3 SZKŁO pęcherzowatość
4 SZKŁO pęcherzowatość
5 Szkło stosowane w optyce powinno być materiałem izotropowym. W praktyce posiada zawsze pewne własności kierunkowe, spowodowane naprężeniami wewnętrznymi. Szkło posiadające naprężenia wewnętrzne staje się ciałem dwójłomnym. Do sprawdzenia dwójłomności prefabrykatów szklanych stosuje się polaryskopy i polarymetry. SZKŁO dwójłomność
6 TO wynika z konkretnej metody pomiaru TO jest normą dwójłomności SZKŁO dwójłomność
7 Na przepuszczalność gotowego przyrządu optycznego wpływa w dużym stopniu ilości światła pochłoniętego w materiale (szkle). Ilość pochłanianego światła przez dany gatunek szkła charakteryzuje wielkość tzw. współczynnika absorpcji. Współczynnik absorpcji jest stosunkiem strumienia światła białego pochłoniętego w warstwie szkła o grubości 1 cm do strumienia świetlnego, padającego na tę warstwę. r 0 współczynnik odbicia na granicy szkłopowietrze l grubość próbki t współczynnik przepuszczalności szkła SZKŁO absorpcja
8 Pomiarów absorpcji dokonuje się zarówno w świetle skolimowanym (o znanej zbieżności), jak i wiązce równoległej. SZKŁO absorpcja
9 Podział szkła na kategorie ze względu na współczynnik absorpcji: Właściwy obraz absorpcji światła dają pomiary spektrofotometryczne dla różnych długości fali. SZKŁO absorpcja
10 Przy przejściu światła z jednego ośrodka do drugiego następuje na powierzchni rozdzielającej oba ośrodki zjawisko częściowego odbicia. Przypomnienie: wzór Fresnela n n 1 R n n1 Współczynnik odbicia szkła określa procentową ilość światła odbitego przy przejściu promieni z powietrza do szkła. Pomiar współczynnika odbicia w fotometrze fotoelektrycznym polega na porównaniu wskazań galwanometru (amperomierza, woltomierza) przy padaniu na fotokomórkę promieni świetlnych odbitych od badanej powierzchni i wzorcowej. SZKŁO wsp. odbicia
11 Pomiary GOTOWYCH elementów układów optycznych
12 Sferometr pierścieniowy Używany do pomiaru promieni krzywizn średniej wielkości (5-800 mm). Schemat budowy i działania: - Badana powierzchnia oparta na pierścieniu o znanym promieniu; - Trzpień pomiarowy opiera się na badanej krzywiźnie; - Pomiar przesunięcia trzpienia od wzorcowej powierzchni płaskiej za pomocą mikroskopu pomiarowego z okularem mikrometrycznym, dającym dokładność odczytu do 0,000 mm
13 Sferometr pierścieniowy Szukany promień krzywizny można obliczyć ze wzoru: h h r R 1 h r h r R h R h r h r h h r Niepewność średnia kwadratowa pomiaru wynosi zaś: gdzie: jest średnią kwadratową niepewnością pomiaru wysokości czaszy z dwóch kolejnych położeń trzpienia sferometru N N N h 1 N N N 1 r to średni kwadratowy błąd pomiaru promienia pierścienia sferometru
14 Sferometr pierścieniowy Przykład: Pomiar promienia krzywizny powierzchni sferycznej (R=100 mm) przy użyciu pierścienia o promieniu r=0 mm, zmierzonego z dokładnością σ r =±0,001 mm; wysokość czaszy kulistej zmierzono z dokładnością σ h =±0,0014 mm. Obliczono: h mm i σ R ±0,0 mm. Dla pierścienia o promieniu r=80 mm niepewność ta wyniesie: σ R ±0,003 mm. Wnioski praktyczne z wzorów na niepewności: - Do pomiarów należy używać pierścieni o możliwie największej średnicy; - Dokładność pomiaru promienia pierścienia pomiarowego powinna być porównywalna bądź lepsza od pomiaru przesunięcia trzpienia; - Należy uwzględnić możliwe zmiany temperaturowe wymiarów pierścieni pomiarowych.
15 Sferometr czujnikowy Służy do szybkiego pomiaru promienia krzywizny, przeważnie szkieł okularowych. Jest to czujnik zegarowy zaopatrzony w dwie nieruchome nóżki, których zakończenia znajdują się na jednej linii z przesuwnym trzpieniem mierniczym, w odległości mm od niego. Odczyty otrzymuje się na skali, która w specjalistycznych sferometrach jest wycechowana bezpośrednio w dioptriach: D n 1 R
16 Sferometr Moffitta Mierzona soczewka leży na stoliku, który ma możliwość przesuwu w dwóch wzajemnie prostopadłe kierunkach. Przesuw stolika odbywa się za pomocą śruby mikrometrycznej, zaopatrzonej w bęben odczytowy. Przesuwając stolikiem, ustawia się mierzoną powierzchnię tak, aby trzpień mierniczy znajdował się w najwyższym (najniższym) położeniu. Pokręcając bęben odczytowy przesuwamy stolik do położenia, przy którym koniec trzpienia znajdzie się na końcu mierzonej powierzchni. Sferometr ten jest jakby sferometrem pierścieniowym o zmiennym promieniu pierścienia. Dokładność jest jednak sporo mniejsza
17 Metoda pryzmy polega na pomiarze odległości pomiędzy punktami styczności wypukłej powierzchni kulistej o nieznanym promieniu z płaszczyznami, tworzącymi znany kąt dwuścienny a. Z trójkąta AEO: a cos l R R l a cos Dokładność metody zależy od doboru kąta dwuściennego pryzmy (im mniejszy a, tym większa dokładność) Kąt dwuścienny pryzmy mierzy się na precyzyjnym goniometrze (Δα 1 ).
18 Metoda pryzmy W pobliżu miejsc styku powierzchni sferycznej ze ścianami pryzmy powstają prążki interferencyjne (jak się nazywają?), a za pomocą mikroskopu warsztatowego lub komparatora Abbego wyznacza się odległość między ich środkami.
19 Metoda pryzmy Komparator Abbego (źródło:
20 Metoda stycznych powierzchni kulistych różni się od metody pryzmy tym, że na badaną powierzchnię nakładamy układ składający się z dwóch jednakowych odcinków kuli. Z podobieństwa trójkątów DOE i AOB: l b R R r R l rl b
21 Metoda stycznych powierzchni kulistych Umożliwia pomiar promieni krzywizn zarówno powierzchni wypukłych, jak i wklęsłych
22 Metoda oftalmometru opiera się na pomiarze wielkości zwierciadlanego obrazu przedmiotu o znanej wielkości, znajdującego się w znanej odległości od powierzchni odbijającej. 1 s' 1 s R y ' y s' s R y' s y y' (minus dla powierzchni wypukłej, plus dla wklęsłej)
23 Metoda oftalmometru opiera się na pomiarze wielkości zwierciadlanego obrazu przedmiotu o znanej wielkości, znajdującego się w znanej odległości od powierzchni odbijającej. 1 s' 1 s R y ' y s' s R y' s y y' (minus dla powierzchni wypukłej, plus dla wklęsłej)
24 Metoda oftalmometru Wielkość obrazu A B znanej podziałki AB mierzy się za pomocą mikroskopu, który przesuwany jest śrubą mikrometryczną.
25 Metoda oftalmometru Wielkość obrazu A B znanej podziałki AB mierzy się za pomocą mikroskopu, który przesuwany jest śrubą mikrometryczną.
26 Metoda oftalmometru Dokładność pomiaru jest tym większa, im większa jest odległość testu i jego długość y oraz im dokładniejsze wykonanie śruby mikrometrycznej. Z drugiej strony, wzory użyte przy wyprowadzeniu zależności obliczeniowej są słuszne w obszarze paraksjalnym, a więc kąt, pod którym widać podziałkę AB powinien być także mały. Z tego powodu podziałka powinna znajdować się w dużej odległości od mierzonej powierzchni, a wielkość obrazu podziałki nie powinna przekraczać 0,5 promienia mierzonej powierzchni. W przypadku pomiaru promieni krzywizny powierzchni wypukłych, mikroskop powinien mieć odpowiednio dużą odległość czołową, gdyż obraz y leży za powierzchnią mierzoną.
27 Oftalmometr Helmholtza opiera się na właściwości przesuwania obrazu, znajdującego się w skończonej odległości, przez przechylaną płytkę płasko-równoległą. Przed obiektywem mikroskopu o dużej odległości czołowej znajdują się dwie identyczne płytki płasko-równoległe. Płytki te mogą obracać się w przeciwne strony o jednakowe kąty dookoła osi prostopadłej do płaszczyzny rysunku. Każda z nich zakrywa połowę obiektywu.
28 Oftalmometr Helmholtza PRZYPOMNIENIE: działanie płytki płasko-równoległej. h d sin a a' cosa ' d grubość płytki; α kąt załamania promienia na pierwszej powierzchni płytki (sinα =sinα/n); n współczynnik załamania szkła.
29 Oftalmometr Helmholtza Sposób przeprowadzenia pomiaru: 1) Płytki ustawiamy w takie położenie, że w mikroskopie widzimy jeden obraz A B przedmiotu, który stanowią dwie świecące szczeliny, umieszczone symetrycznie po obu stronach obiektywu; oznacza to, że płytki są do siebie równoległe; ) Zaczynamy obracać płytki; obraz zaczyna się dwoić i rozdwojenie to się zwiększa, aż każdy z obrazów przesunie się o połowę odległości między nimi i koniec jednego obrazu pokryje się z początkiem drugiego; obliczamy dzięki temu wielkość obrazu y : y' d sin a a' cosa ' która pozwoli nam obliczyć promień krzywizny soczewki ze znanego już wzoru oftalmometrycznego: R y' s y y'
30 Metody autokolimacyjne FAKT: Obraz punktu znajdującego się w środku krzywizny zwierciadła tworzy się także w środku krzywizny. Lunety autokolimacyjne wygodne są zwłaszcza w pomiarze dużych promieni krzywizn. 1) Lunetę ustawiamy na nieskończoność za pomocą płaskiego zwierciadła wzorcowego; ) Po wstawieniu zwierciadła kulistego, aby otrzymać ostry obraz krzyża bez paralaksy, musimy przesunąć okular o wielkość x.
31 Metody autokolimacyjne R d f ' f ' x' x' R f x' ' Reguła znaków: x jest dodatnie przy odsuwaniu okularu od obiektywu dla powierzchni wypukłych i ujemne przy przesuwaniu okularu do obiektywu dla powierzchni wklęsłych.
32 Metody autokolimacyjne Mikroskop autokolimacyjny nałożenie na obiektyw dodatniej nasadki, zwiększającej odległość czołową (roboczą) mikroskopu (bo problem z wypukłymi ). Mikroskop ogniskujemy na powierzchnię badanej soczewki obserwując znajdujące się na niej pyłki; następnie przesuwamy badaną powierzchnię do momentu, gdy autokolimacyjny obraz krzyża znajduje się w płaszczyźnie płytki ogniskowej (brak paralaksy między krzyżem siatki i jego obrazem).
33 Metody interferencyjne Pomiar dużych promieni krzywizny za pomocą szklanych sprawdzianów interferencyjnych R r N r N 1 1
34 Metody interferencyjne FAKTY: Tolerancje wykonanych powierzchni płaskich podajemy w ilości prążków interferencyjnych. Dla odróżnienia powierzchni wklęsłych od wypukłych dociskamy sprawdzian do powierzchni badanej przy docisku warstwa powietrza między powierzchniami staje się cieńsza i prążki odsuwają się od miejsca zetknięcia powierzchni badanej i sprawdzianu. Przy docisku obserwujemy ruch prążków w kierunku od miejsca styku.
35 Metody interferencyjne FAKTY: Prążki interferencyjne w świetle jednorodnym (monochromatycznym) są widoczne przy odległości między powierzchniami rzędu kilku milimetrów. W świetle białym odległości te nie przekraczają dziesiątków mikrometrów powierzchnie badane trzeba dokładnie oczyścić. Oprócz odległości między prążkami ważny jest ich kształt na rysunkach części optycznych podaje się (oprócz dopuszczalnej ilości prążków N także wartość ΔN, stanowiąca maksymalną różnicę ilości prążków w dwóch prostopadłych do siebie kierunkach (charakteryzuje to cylindryczność powierzchni).
36 Metody interferencyjne R 4R N D R N 1 cos R Ncosa a 1 cosa a arcsin D R
37 Metody interferencyjne Nakładanie szklanych sprawdzianów na badaną powierzchnię może spowodować jej porysowanie, stosuje się więc również interferometry bezkontaktowe. L lampa rtęciowa; A przysłona P płytka półprzepuszczalna Ob obiektyw odwzorowujący S sprawdzian B badana powierzchnia Ok okular obserwacyjny
38 Metody interferencyjne szklane sprawdziany - Używa się ich do badania powierzchni o średnicach mm; - Służą do sprawdzania metodą interferencyjną powierzchni płaskich i kulistych; - Dzielimy je na: a) sprawdziany podstawowe przechowywane w laboratorium, służą do kontroli: b) sprawdzianów kontrolnych które służą z kolei do kontroli: c) sprawdzianów roboczych. Dopuszczalne odchyłki promienia podstawowych sprawdzianów szklanych nie przekraczają 0,1% nominalnej wartości. Sprawdziany kuliste wykonuje się parami (wklęsły + wypukły) (po co?). Szklane sprawdziany płaskie wykonuje się z dokładnością 0,03 do 0,1 prążka. Wykonuje się je trójkami (czemu?).
39 Metody interferencyjne szklane sprawdziany I. Sprawdziany dla małych promieni II. Sprawdziany dla dużych promieni
40 Metody interferencyjne szklane sprawdziany Metody pomiaru promieni krzywizny sprawdzianów interferencyjnych
41 Metoda cieniowa Foucault Pomiar dużych promieni krzywizny Budowa specjalnie dużych sferometrów traci sens, gdyż stają się one ciężkie i deformują się pod wpływem własnego ciężaru! Z tych względów nie stosuje się pierścieni o średnicy większej niż 00 mm.
42 Metoda cieniowa Foucault
43 Metoda kolimatora i lunety Pomiar bardzo dużych promieni krzywizny (optyka astronomiczna) Wykorzystanie zjawiska astygmatyzmu, wprowadzonego do pęku promieni przez powierzchnie odbijającą. Długoogniskowy kolimator K ma w płaszczyźnie ogniskowej świecący punkt. Z kolimatora wychodzi równoległy pęk promieni i pada na powierzchnię mierzoną pod kątem, odbija się od niej i wchodzi do obiektywu lunety L.
44 Metoda kolimatora i lunety Z kolimatora wychodzi praktycznie bezaberracyjny pęk promieni osiowych, który po odbiciu pod kątem od badanej powierzchni stanie się pękiem astygmatycznym, przy czym odległość obrazu południkowego t s i równoleżnikowego t s od powierzchni mierzonej wyraża się wzorami Abbego: t' m R cos i, t' s R cos i R f ' sin i tan i SM
OPTYKA INSTRUMENTALNA
OPTYKA INSTRUMENTALNA Wykład 12: POMIARY PARAMETRÓW ELEMENTÓW OPTYCZNYCH: pomiar promieni krzywizny (sferometry: pierścieniowy, czujnikowy, Moffita; metody pryzmy i stycznych powierzchni kulistych; metoda
POMIARY OPTYCZNE 1. Wykład 7. Metody pomiarów elementów układów optycznych. http://www.if.pwr.wroc.pl/~wozniak/ Dr hab. inż. Władysław Artur Woźniak
POMIARY OPTYCZNE 1 Wykład 7 Metody pomiarów elementów układów optycznych Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej Pokój 18/11 bud. A-1 http://www.if.pwr.wroc.pl/~wozniak/
Materiałoznawstwo optyczne SZKŁO. (pomiar własnow. NORMY BRANŻOWE Henc T., Pomiary optyczne, WNT Warszawa, 1964
Materiałoznawstwo optyczne SZKŁO (pomiar własnow asności i jakości szkła) NORMY BRANŻOWE Henc T., Pomiary optyczne, WNT Warszawa, 1964 Badania Opis badań: sprawdzenie wymiarów sprawdzenie współczynnika
POMIARY OPTYCZNE Pomiary ogniskowych. Damian Siedlecki
POMIARY OPTYCZNE 1 { 11. Damian Siedlecki POMIARY OPTYCZNE 1 { 3. Proste przyrządy optyczne Damian Siedlecki POMIARY OPTYCZNE 1 { 4. Oko Damian Siedlecki POMIARY OPTYCZNE 1 { 5. Lunety. Mikroskopy. Inne
POMIARY OPTYCZNE Pomiary kątów (klinów, pryzmatów) Damian Siedlecki
POMIARY OPTYCZNE 1 { 10. (klinów, pryzmatów) Damian Siedlecki 1) Metoda autokolimacyjna i 2φn a = 2φnf ob φ = a 2nf ob Pomiary płytek płasko-równoległych 2) Metody interferencyjne (prążki równej grubości)
WYZNACZANIE PROMIENIA KRZYWIZNY SOCZEWKI I DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ PIERŚCIENI NEWTONA
Ćwiczenie 81 A. ubica WYZNACZANIE PROMIENIA RZYWIZNY SOCZEWI I DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ PIERŚCIENI NEWTONA Cel ćwiczenia: poznanie prążków interferencyjnych równej grubości, wykorzystanie tego
POMIAR ODLEGŁOŚCI OGNISKOWYCH SOCZEWEK. Instrukcja wykonawcza
ĆWICZENIE 77 POMIAR ODLEGŁOŚCI OGNISKOWYCH SOCZEWEK Instrukcja wykonawcza 1. Wykaz przyrządów Ława optyczna z podziałką, oświetlacz z zasilaczem i płytka z wyciętym wzorkiem, ekran Komplet soczewek z oprawkami
POMIAR ODLEGŁOŚCI OGNISKOWYCH SOCZEWEK
ĆWICZENIE 77 POMIAR ODLEGŁOŚCI OGNISKOWYCH SOCZEWEK Cel ćwiczenia: 1. Poznanie zasad optyki geometrycznej, zasad powstawania i konstrukcji obrazów w soczewkach cienkich. 2. Wyznaczanie odległości ogniskowych
Wyznaczanie współczynnika załamania światła
Ćwiczenie O2 Wyznaczanie współczynnika załamania światła O2.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie współczynnika załamania światła dla przeźroczystych, płaskorównoległych płytek wykonanych z
WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU
WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU Cel ćwiczenia: 1. Zapoznanie z budową i zasadą działania mikroskopu optycznego. 2. Wyznaczenie współczynnika załamania
Sposób wykonania ćwiczenia. Płytka płasko-równoległa. Rys. 1. Wyznaczanie współczynnika załamania materiału płytki : A,B,C,D punkty wbicia szpilek ; s
WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU Cel ćwiczenia: 1. Zapoznanie z budową i zasadą działania mikroskopu optycznego.. Wyznaczenie współczynnika załamania światła
Badanie przy użyciu stolika optycznego lub ławy optycznej praw odbicia i załamania światła. Wyznaczanie ogniskowej soczewki metodą Bessela.
Badanie przy użyciu stolika optycznego lub ławy optycznej praw odbicia i załamania światła. Wyznaczanie ogniskowej soczewki metodą Bessela. I LO im. Stefana Żeromskiego w Lęborku 20 luty 2012 Stolik optyczny
POMIARY OPTYCZNE 1. Wykład 1. Dr hab. inż. Władysław Artur Woźniak
POMIARY OPTYCZNE Wykład Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej Pokój 8/ bud. A- http://www.if.pwr.wroc.pl/~wozniak/ OPTYKA GEOMETRYCZNA Codzienne obserwacje: światło
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 51: Współczynnik załamania światła dla ciał stałych
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 5: Współczynnik załamania światła dla ciał stałych Cel ćwiczenia: Wyznaczenie współczynnika załamania światła dla szkła i pleksiglasu metodą pomiaru grubości
POMIARY OPTYCZNE 1. Wykład 8. Pomiar ogniskowej układu optycznego. Dr hab. inż. Władysław Artur Woźniak
POMIARY OPTYCZNE 1 Wykład 8 Pomiar ogniskowej układu optycznego Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej Pokój 18/11 bud. A-1 http://www.if.pwr.wroc.pl/~wozniak/ PRZYPOMNIENIE:
POMIARY OPTYCZNE Współczynnik załamania #1. Damian Siedlecki
POMIARY OPTYCZNE 1 { 6. Współczynnik załamania #1 Damian Siedlecki Przypomnienie: Współczynnik załamania ośrodka opisuje zmianę prędkości fali w ośrodku: n c v = εμ c prędkość światła w próżni; v prędkość
WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA SZKŁA ZA POMOCĄ SPEKTROMETRU.
0.X.00 ĆWICZENIE NR 76 A (zestaw ) WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA SZKŁA ZA POMOCĄ SPEKTROMETRU. I. Zestaw przyrządów:. Spektrometr (goniometr), Lampy spektralne 3. Pryzmaty II. Cel ćwiczenia: Zapoznanie
Wyznaczenie długości fali świetlnej metodą pierścieni Newtona
Politechnika Łódzka FTIMS Kierunek: Informatyka rok akademicki: 2008/2009 sem. 2. Termin: 23 III 2009 Nr. ćwiczenia: 412 Temat ćwiczenia: Wyznaczenie długości fali świetlnej metodą pierścieni Newtona Nr.
I PRACOWNIA FIZYCZNA, UMK TORUŃ
I PRACOWNIA FIZYCZNA, UMK TORUŃ Instrukcja do ćwiczenia nr 59 WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA W SZKLE METODĄ KĄTA NAJMNIEJSZEGO ODCHYLENIA Instrukcje wykonali: G. Maciejewski, I. Gorczyńska
( Wersja A ) WYZNACZANIE PROMIENI KRZYWIZNY SOCZEWKI I DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ PIERŚCIENI NEWTONA.
0.X.203 ĆWICZENIE NR 8 ( Wersja A ) WYZNACZANIE PROMIENI KRZYWIZNY SOCZEWKI I DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ PIERŚCIENI NEWTONA. I. Zestaw przyrządów:. Mikroskop. 2. Płytki szklane płaskorównoległe.
ĆWICZENIE 41 POMIARY PRZY UŻYCIU GONIOMETRU KOŁOWEGO. Wprowadzenie teoretyczne
ĆWICZENIE 4 POMIARY PRZY UŻYCIU GONIOMETRU KOŁOWEGO Wprowadzenie teoretyczne Rys. Promień przechodzący przez pryzmat ulega dwukrotnemu załamaniu na jego powierzchniach bocznych i odchyleniu o kąt δ. Jeżeli
Pomiar dyspersji materiałów za pomocą spektrometru
Ćwiczenie nr 9 Pomiar dyspersji materiałów za pomocą spektrometru I. Zestaw przyrządów 1. Spektrometr 2. Lampy spektralne: helowa i rtęciowa 3. Pryzmaty szklane, których własności mierzymy II. Cel ćwiczenia
POMIAR ODLEGŁOŚCI OGNISKOWYCH SOCZEWEK CIENKICH
Ćwiczenie 77 E. Idczak POMIAR ODLEGŁOŚCI OGNISKOWYCH SOCZEWEK CIENKICH Cel ćwiczenia: zapoznanie się z procesem wytwarzania obrazów przez soczewki cienkie oraz z metodami wyznaczania odległości ogniskowych
LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE. Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej.
LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej.. Wprowadzenie Soczewką nazywamy ciało przezroczyste ograniczone
WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA SZKŁA ZA POMOCĄ SPEKTROMETRU CZĘŚĆ (A-zestaw 1) Instrukcja wykonawcza
ĆWICZENIE 76A WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA SZKŁA ZA POMOCĄ SPEKTROMETRU CZĘŚĆ (A-zestaw ) Instrukcja wykonawcza. Wykaz przyrządów Spektrometr (goniometr) Lampy spektralne Pryzmaty. Cel ćwiczenia
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 53: Soczewki
Nazwisko i imię: Zespół: Data: Ćwiczenie nr : Soczewki Cel ćwiczenia: Wyznaczenie ogniskowych soczewki skupiającej i układu soczewek (skupiającej i rozpraszającej) oraz ogniskowej soczewki rozpraszającej
BADANIE MIKROSKOPU. POMIARY MAŁYCH DŁUGOŚCI
ĆWICZENIE 43 BADANIE MIKROSKOPU. POMIARY MAŁYCH DŁUGOŚCI Układ optyczny mikroskopu składa się z obiektywu i okularu rozmieszczonych na końcach rury zwanej tubusem. Przedmiot ustawia się w odległości większej
Ć W I C Z E N I E N R O-1
INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA OPTYKI Ć W I C Z E N I E N R O- WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA ZA POMOCĄ SPEKTROMETRU
Pomiar dyspersji materiałów za pomocą spektrometru
Ćwiczenie nr 9 Pomiar dyspersji materiałów za pomocą spektrometru I. Zestaw przyrządów 1. Spektrometr 2. Lampy spektralne: helowa i rtęciowa 3. Pryzmaty szklane, których własności mierzymy II. Cel ćwiczenia
Optyka. Wykład X Krzysztof Golec-Biernat. Zwierciadła i soczewki. Uniwersytet Rzeszowski, 20 grudnia 2017
Optyka Wykład X Krzysztof Golec-Biernat Zwierciadła i soczewki Uniwersytet Rzeszowski, 20 grudnia 2017 Wykład X Krzysztof Golec-Biernat Optyka 1 / 20 Plan Tworzenie obrazów przez zwierciadła Równanie zwierciadła
pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania z fizyki, wzory fizyczne, fizyka matura
12. Fale elektromagnetyczne zadania z arkusza I 12.5 12.1 12.6 12.2 12.7 12.8 12.9 12.3 12.10 12.4 12.11 12. Fale elektromagnetyczne - 1 - 12.12 12.20 12.13 12.14 12.21 12.22 12.15 12.23 12.16 12.24 12.17
POLITECHNIKA ŁÓDZKA INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN. Ćwiczenie B-2 POMIAR PROSTOLINIOWOŚCI PROWADNIC ŁOŻA OBRABIARKI
POLITECHNIKA ŁÓDZKA INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN Ćwiczenie B-2 Temat: POMIAR PROSTOLINIOWOŚCI PROWADNIC ŁOŻA OBRABIARKI Opracowanie: dr inż G Siwiński Aktualizacja i opracowanie elektroniczne:
POLITECHNIKA OPOLSKA WYDZIAŁ MECHANICZNY Katedra Technologii Maszyn i Automatyzacji Produkcji POMIARY KĄTÓW I STOŻKÓW
POLITECHNIKA OPOLSKA WYDZIAŁ MECHANICZNY Katedra Technologii Maszyn i Automatyzacji Produkcji TEMAT: Ćwiczenie nr 4 POMIARY KĄTÓW I STOŻKÓW ZADANIA DO WYKONANIA:. zmierzyć 3 wskazane kąty zadanego przedmiotu
BADANIE INTERFEROMETRU YOUNGA
Celem ćwiczenia jest: BADANIE INTERFEROMETRU YOUNGA 1. poznanie podstawowych właściwości interferometru z podziałem czoła fali w oświetleniu monochromatycznym i świetle białym, 2. demonstracja możliwości
POMIARY KĄTÓW I STOŻKÓW
WYDZIAŁ MECHANICZNY Katedra Technologii Maszyn i Automatyzacji Produkcji Ćwiczenie nr 4 TEMAT: POMIARY KĄTÓW I STOŻKÓW ZADANIA DO WYKONANIA:. zmierzyć trzy wskazane kąty zadanego przedmiotu kątomierzem
Technologia elementów optycznych
Technologia elementów optycznych dr inż. Michał Józwik pokój 507a jozwik@mchtr.pw.edu.pl Część 5 rysunek elementu optycznego Polskie Normy PN-ISO 10110-1:1999 Optyka i przyrządy optyczne -- Przygotowywanie
OPTYKA GEOMETRYCZNA I INSTRUMENTALNA
1100-1BO15, rok akademicki 2018/19 OPTYKA GEOMETRYCZNA I INSTRUMENTALNA dr hab. Rafał Kasztelanic Wykład 6 Optyka promieni 2 www.zemax.com Diafragmy Pęk promieni świetlnych, przechodzący przez układ optyczny
Klasyfikacja przyrządów pomiarowych i wzorców miar
Klasyfikacja przyrządów pomiarowych i wzorców miar Przyrządy suwmiarkowe Przyrządy mikrometryczne wg. Jan Malinowski Pomiary długości i kąta w budowie maszyn Przyrządy pomiarowe Czujniki Maszyny pomiarowe
LABORATORIUM OPTYKI GEOMETRYCZNEJ
LABORATORIUM OPTYKI GEOMETRYCZNEJ POMIAR KRZYWIZNY SOCZEWEK 1. Cel dwiczenia Zapoznanie z niektórymi metodami badania krzywizny soczewek. 2. Zakres wymaganych zagadnieo: Zjawisko dyfrakcji i interferencji
Wyznaczanie współczynnika załamania światła za pomocą mikroskopu i pryzmatu
POLITECHNIKA BIAŁOSTOCKA KATEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja do zajęć laboratoryjnych z przedmiotu: FIZYKA Kod przedmiotu: KS037; KN037; LS037; LN037 Ćwiczenie Nr Wyznaczanie współczynnika załamania
OPTYKA GEOMETRYCZNA I INSTRUMENTALNA
1100-1BO15, rok akademicki 2018/19 OPTYKA GEOMETRYCZNA I INSTRUMENTALNA dr hab. Rafał Kasztelanic Wykład 3 Pryzmat Pryzmaty w aparatach fotograficznych en.wikipedia.org/wiki/pentaprism luminous-landscape.com/understanding-viewfinders
STOLIK OPTYCZNY 1 V Przyrząd jest przeznaczony do wykonywania ćwiczeń uczniowskich z optyki geometrycznej.
STOLIK OPTYCZNY 1 V 7-19 Przyrząd jest przeznaczony do wykonywania ćwiczeń uczniowskich z optyki geometrycznej. 6 4 5 9 7 8 3 2 Rys. 1. Wymiary w mm: 400 x 165 x 140, masa 1,90 kg. Na drewnianej podstawie
Interferencyjny pomiar krzywizny soczewki przy pomocy pierścieni Newtona
Interferencyjny pomiar krzywizny soczewki przy pomocy pierścieni Newtona Jakub Orłowski 6 listopada 2012 Streszczenie W doświadczeniu dokonano pomiaru krzywizny soczewki płasko-wypukłej z wykorzystaniem
Ćwiczenie: "Zagadnienia optyki"
Ćwiczenie: "Zagadnienia optyki" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: 1.
OPTYKA INSTRUMENTALNA
OPTYKA INSTRUMENTALNA Wykład 10: POMIAR WSPÓŁCZYNNIKA ZAŁAMANIA I: współczynnik załamania i dyspersja szkła: definicje, sens fizyczny; spektrometryczne metody pomiaru współczynnika załamania szkieł i cieczy,
OPTYKA W INSTRUMENTACH GEODEZYJNYCH
OPTYKA W INSTRUMENTACH GEODEZYJNYCH Prawa Euklidesa: 1. Promień padający i odbity znajdują się w jednej płaszczyźnie przechodzącej przez prostopadłą wystawioną do powierzchni zwierciadła w punkcie odbicia.
Wyznaczanie współczynnika załamania światła za pomocą mikroskopu i pryzmatu
POLITECHNIKA BIAŁOSTOCKA KATEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja do zajęć laboratoryjnych z przedmiotu: MATEMATYKA Z ELEMENTAMI FIZYKI Kod przedmiotu: ISO73; INO73 Ćwiczenie Nr Wyznaczanie współczynnika
KATEDRA TECHNOLOGII MASZYN I AUTOMATYZACJI PRODUKCJI ĆWICZENIE NR 2 POMIAR KRZYWEK W UKŁADZIE WSPÓŁRZĘDNYCH BIEGUNOWYCH
KATEDRA TECHNOLOGII MASZYN I AUTOMATYZACJI PRODUKCJI TEMAT ĆWICZENIA: ĆWICZENIE NR 2 POMIAR KRZYWEK W UKŁADZIE WSPÓŁRZĘDNYCH BIEGUNOWYCH ZADANIA DO WYKONANIA: 1. Pomiar rzeczywistego zarysu krzywki. 2.
Ćwiczenie 42 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ. Wprowadzenie teoretyczne.
Ćwiczenie 4 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ Wprowadzenie teoretyczne. Soczewka jest obiektem izycznym wykonanym z materiału przezroczystego o zadanym kształcie i symetrii obrotowej. Interesować
Ć W I C Z E N I E N R O-3
INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA OPTYKI Ć W I C Z E N I E N R O-3 WYZNACZANIE OGNISKOWYCH SOCZEWEK ZA POMOCĄ METODY BESSELA I.
Optyka. Matura Matura Zadanie 24. Soczewka (10 pkt) 24.1 (3 pkt) 24.2 (4 pkt) 24.3 (3 pkt)
Matura 2006 Zadanie 24. Soczewka (10 pkt) Optyka W pracowni szkolnej za pomocą cienkiej szklanej soczewki dwuwypukłej o jednakowych promieniach krzywizny, zamontowanej na ławie optycznej, uzyskiwano obrazy
Metrologia: charakterystyki podstawowych przyrządów pomiarowych. dr inż. Paweł Zalewski Akademia Morska w Szczecinie
Metrologia: charakterystyki podstawowych przyrządów pomiarowych dr inż. Paweł Zalewski Akademia Morska w Szczecinie Przyrządy z noniuszami: Noniusz jest pomocniczą podziałką, służącą do powiększenia dokładności
OPTYKA INSTRUMENTALNA
OPTYKA INSTRUMENTALNA Dr hab. inż. Władysław Artur Woźniak Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska http://www.if.pwr.wroc.pl/~wozniak/ Pokój 18/11 bud.
17. Który z rysunków błędnie przedstawia bieg jednobarwnego promienia światła przez pryzmat? A. rysunek A, B. rysunek B, C. rysunek C, D. rysunek D.
OPTYKA - ĆWICZENIA 1. Promień światła padł na zwierciadło tak, że odbił się od niego tworząc z powierzchnią zwierciadła kąt 30 o. Jaki był kąt padania promienia na zwierciadło? A. 15 o B. 30 o C. 60 o
Ćwiczenie 53. Soczewki
Ćwiczenie 53. Soczewki Małgorzata Nowina-Konopka, Andrzej Zięba Cel ćwiczenia Pomiar ogniskowych soczewki skupiającej i układu soczewek (skupiająca i rozpraszająca), obliczenie ogniskowej soczewki rozpraszającej.
Egzamin / zaliczenie na ocenę*
WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI Zał. nr 4 do ZW /2012 KARTA PRZEDMIOTU Nazwa w języku polskim POMIARY OPTYCZNE 1 Nazwa w języku angielskim OPTICAL MEASUREMENTS 1 Kierunek studiów (jeśli dotyczy):
Wykład FIZYKA II. 7. Optyka geometryczna. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA II 7. Optyka geometryczna Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ WSPÓŁCZYNNIK ZAŁAMANIA Współczynnik załamania ośrodka opisuje zmianę prędkości fali
WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ
ĆWICZENIE 84 WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ Cel ćwiczenia: Wyznaczenie długości fali emisji lasera lub innego źródła światła monochromatycznego, wyznaczenie stałej siatki
OPTYKA GEOMETRYCZNA I INSTRUMENTALNA
1100-1BO15, rok akademicki 2018/19 OPTYKA GEOMETRYCZNA I INSTRUMENTALNA dr hab. Raał Kasztelanic Wykład 4 Obliczenia dla zwierciadeł Równanie zwierciadła 1 1 2 1 s s r s s 2 Obliczenia dla zwierciadeł
autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 33 OPTYKA GEOMETRYCZNA. CZĘŚĆ 1. ZWIERCIADŁA
autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 33 OPTYKA GEOMETRYCZNA. CZĘŚĆ 1. ZWIERCIADŁA Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania TEST JEDNOKROTNEGO WYBORU
Ćwiczenie nr 8 Interferencyjny pomiar kształtu powierzchni
Ćwiczenie nr 8 Interferencyjny pomiar kształtu powierzchni I. Zestaw przyrządów 1. Interferometr Fizeau z kopiarką 2. Oświetlacz z transformatorem 3. Lampa spektralna z zasilaczem 4. Próbki II. Cel ćwiczenia:
Optyka geometryczna MICHAŁ MARZANTOWICZ
Optyka geometryczna Optyka geometryczna światło jako promień, opis uproszczony Optyka falowa światło jako fala, opis pełny Fizyka współczesna: światło jako cząstka (foton), opis pełny Optyka geometryczna
WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI
WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI Zał. nr 4 do ZW 33/01 KARTA PRZEDMIOTU Nazwa w języku polskim..pomiary Optyczne 1 Nazwa w języku angielskim.optical Measurements 1 Kierunek studiów (jeśli dotyczy):
Optyka. Wykład XI Krzysztof Golec-Biernat. Równania zwierciadeł i soczewek. Uniwersytet Rzeszowski, 3 stycznia 2018
Optyka Wykład XI Krzysztof Golec-Biernat Równania zwierciadeł i soczewek Uniwersytet Rzeszowski, 3 stycznia 2018 Wykład XI Krzysztof Golec-Biernat Optyka 1 / 16 Plan Równanie zwierciadła sferycznego i
Opis matematyczny odbicia światła od zwierciadła kulistego i przejścia światła przez soczewki.
Opis matematyczny odbicia światła od zwierciadła kulistego i przejścia światła przez soczewki. 1. Równanie soczewki i zwierciadła kulistego. Z podobieństwa trójkątów ABF i LFD (patrz rysunek powyżej) wynika,
Przyrząd słuŝy do wykonywania zasadniczych ćwiczeń uczniowskich z optyki geometrycznej.
STOLIK OPTYCZNY V 7-19 Przyrząd słuŝy do wykonywania zasadniczych ćwiczeń uczniowskich z optyki geometrycznej. Na drewnianej podstawie (1) jest umieszczona mała Ŝaróweczka (2) 3,5 V, 0,2 A, którą moŝna
Pomiary otworów. Ismena Bobel
Pomiary otworów Ismena Bobel 1.Pomiar średnicy otworu suwmiarką. Pomiar został wykonany metodą pomiarową bezpośrednią. Metoda pomiarowa bezpośrednia, w której wynik pomiaru otrzymuje się przez odczytanie
- 1 - OPTYKA - ĆWICZENIA
- 1 - OPTYKA - ĆWICZENIA 1. Promień światła padł na zwierciadło tak, że odbił się od niego tworząc z powierzchnią zwierciadła kąt 30 o. Jaki był kąt padania promienia na zwierciadło? A. 15 o B. 30 o C.
Wyznaczanie długości fali świetlnej metodą pierścieni Newtona
Politechnika Łódzka FTIMS Kierunek: Informatyka rok akademicki: 2008/2009 sem. 2. grupa II Termin: 26 V 2009 Nr. ćwiczenia: 412 Temat ćwiczenia: Wyznaczanie długości fali świetlnej metodą pierścieni Newtona
ANALIZA SPEKTRALNA I POMIARY SPEKTROFOTOMETRYCZNE. Instrukcja wykonawcza
ĆWICZENIE 72A ANALIZA SPEKTRALNA I POMIARY SPEKTROFOTOMETRYCZNE 1. Wykaz przyrządów Spektroskop Lampy spektralne Spektrofotometr SPEKOL Filtry optyczne Suwmiarka Instrukcja wykonawcza 2. Cel ćwiczenia
INSTRUKCJA. Analiza gazów analizatorami Fizycznymi. Interferometr. Opracował: dr inż. Franciszek Wolańczyk
INSTRUKCJA Analiza gazów analizatorami Fizycznymi. Interferometr. Opracował: dr inż. Franciszek Wolańczyk Analiza gazów analizatorami fizycznymi. Interferometr. Strona 2 1. WSTĘP Sposób badania gazów i
LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE
LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr 7 Temat: Pomiar kąta załamania i kąta odbicia światła. Sposoby korekcji wad wzroku. 1. Wprowadzenie Zestaw ćwiczeniowy został
Ćwiczenie z fizyki Doświadczalne wyznaczanie ogniskowej soczewki oraz współczynnika załamania światła
Ćwiczenie z fizyki Doświadczalne wyznaczanie ogniskowej soczewki oraz współczynnika załamania światła Michał Łasica klasa IIId nr 13 22 grudnia 2006 1 1 Doświadczalne wyznaczanie ogniskowej soczewki 1.1
Pomiar współczynnika załamania światła OG 1
I. Cel ćwiczenia: Pomiar współczynnika załamania światła OG 1 1. Zapoznanie się z budową i zasadą działania goniometru. 2. Poznanie metody pomiaru kątów pryzmatu 3. Poznanie metody pomiaru współczynników
Wyznaczanie zależności współczynnika załamania światła od długości fali światła
Ćwiczenie O3 Wyznaczanie zależności współczynnika załamania światła od długości fali światła O3.1. Cel ćwiczenia Celem ćwiczenia jest zbadanie zależności współczynnika załamania światła od długości fali
Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne
POLITECHNIKA POZNAŃSKA INSTYTUT INŻYNIERII ŚRODOWISKA PROWADZĄCY: mgr inż. Łukasz Amanowicz Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne 3 TEMAT ĆWICZENIA: Badanie składu pyłu za pomocą mikroskopu
Ć W I C Z E N I E N R O-4
INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA OPTYKI Ć W I C Z E N I E N R O-4 BADANIE WAD SOCZEWEK I Zagadnienia do opracowania Równanie soewki,
Prawa optyki geometrycznej
Optyka Podstawowe pojęcia Światłem nazywamy fale elektromagnetyczne, o długościach, na które reaguje oko ludzkie, tzn. 380-780 nm. O falowych własnościach światła świadczą takie zjawiska, jak ugięcie (dyfrakcja)
Zagadnienia: równanie soczewki, ogniskowa soczewki, powiększenie, geometryczna konstrukcja obrazu, działanie prostych przyrządów optycznych.
msg O 7 - - Temat: Badanie soczewek, wyznaczanie odległości ogniskowej. Zagadnienia: równanie soczewki, ogniskowa soczewki, powiększenie, geometryczna konstrukcja obrazu, działanie prostych przyrządów
POMIARY OPTYCZNE Lunety. Mikroskopy. Inne. Damian Siedlecki
POMIARY OPTYCZNE 1 { 5. Lunety. Mikroskopy. Inne Damian Siedlecki Podstawowa konfiguracja lunet używanych w pomiarach: Keplera. Czasami zaopatruje się ją w układ odwracający ale w praktyce rzadko. Lunety
Doświadczalne wyznaczanie ogniskowej cienkiej soczewki skupiającej
Doświadczalne wyznaczanie ogniskowej cienkiej skupiającej Wprowadzenie Soczewka ciało przezroczyste dla światła ograniczone zazwyczaj dwiema powierzchniami kulistymi lub jedną kulistą i jedną płaską 1.
Instrukcja obsługi linijki koincydencyjnej do pomiaru odległości między prążkami dyfrakcyjnymi
POLITECHNIKA LUBELSKA WYDZIAŁ MECHANICZNY KATEDRA INŻYNIERII MATERIAŁOWEJ Laboratorium Inżynierii Materiałowej Instrukcja obsługi linijki koincydencyjnej do pomiaru odległości między prążkami dyfrakcyjnymi
+OPTYKA 3.stacjapogody.waw.pl K.M.
Zwierciadło płaskie, prawo odbicia. +OPTYKA.stacjapogody.waw.pl K.M. Promień padający, odbity i normalna leżą w jednej płaszczyźnie, prostopadłej do płaszczyzny zwierciadła Obszar widzialności punktu w
Optyka 2012/13 powtórzenie
strona 1 Imię i nazwisko ucznia Data...... Klasa... Zadanie 1. Słońce w ciągu dnia przemieszcza się na niebie ze wschodu na zachód. W którym kierunku obraca się Ziemia? Zadanie 2. Na rysunku przedstawiono
GWIEZDNE INTERFEROMETRY MICHELSONA I ANDERSONA
GWIEZNE INTERFEROMETRY MICHELSONA I ANERSONA Cel ćwiczenia Celem ćwiczenia jest zestawienie i demonstracja modelu gwiezdnego interferometru Andersona oraz laboratoryjny pomiar wymiaru sztucznej gwiazdy.
Załamanie na granicy ośrodków
Załamanie na granicy ośrodków Gdy światło napotyka na granice dwóch ośrodków przezroczystych ulega załamaniu tak jak jest to przedstawione na rysunku obok. Dla każdego ośrodka przezroczystego istnieje
Ćw. 16. Skalowanie mikroskopu i pomiar małych przedmiotów
16 KATEDRA FIZYKI STOSOWANEJ PRACOWNIA FIZYKI Ćw. 16. Skalowanie mikroskopu i pomiar małych przedmiotów Wprowadzenie Mikroskop jest przyrządem optycznym dającym znaczne powiększenia małych przedmiotów
Politechnika Warszawska Instytut Mikroelektroniki i Optoelektroniki Zakład Optoelektroniki
Politechnika Warszawska Instytut Mikroelektroniki i Optoelektroniki Zakład Optoelektroniki LASEROWY POMIAR ODLEGŁOŚCI INTERFEROMETREM MICHELSONA Instrukcja wykonawcza do ćwiczenia laboratoryjnego ćwiczenie
Ćwiczenie 363. Polaryzacja światła sprawdzanie prawa Malusa. Początkowa wartość kąta 0..
Nazwisko... Data... Nr na liście... Imię... Wydział... Dzień tyg.... Godzina... Polaryzacja światła sprawdzanie prawa Malusa Początkowa wartość kąta 0.. 1 25 49 2 26 50 3 27 51 4 28 52 5 29 53 6 30 54
35 OPTYKA GEOMETRYCZNA. CZĘŚĆ 2
Włodzimierz Wolczyński Załamanie światła 35 OPTYKA GEOMETRYCZNA. CZĘŚĆ 2 ZAŁAMANIE ŚWIATŁA. SOCZEWKI sin sin Gdy v 1 > v 2, więc gdy n 2 >n 1, czyli gdy światło wchodzi do ośrodka gęstszego optycznie,
Materiały pomocnicze 14 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej
Materiały pomocnicze 4 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej. Zwierciadło płaskie. Zwierciadło płaskie jest najprostszym przyrządem optycznym. Jest to wypolerowana płaska powierzchnia
BADANIE I ACHROMATYZACJA PRĄŻKÓW INTERFERENCYJNYCH TWORZONYCH ZA POMOCĄ ZWIERCIADŁA LLOYDA
BADANIE I ACHROMATYZACJA PRĄŻKÓW INTERFERENCYJNYCH TWORZONYCH ZA POMOCĄ ZWIERCIADŁA LLOYDA Celem ćwiczenia jest: 1. demonstracja dużej liczby prążków w interferometrze Lloyda z oświetleniem monochromatycznym,
f = -50 cm ma zdolność skupiającą
19. KIAKOPIA 1. Wstęp W oku miarowym wymiary struktur oka, ich wzajemne odległości, promienie krzywizn powierzchni załamujących światło oraz wartości współczynników załamania ośrodków, przez które światło
LABORATORIUM OPTYKI GEOMETRYCZNEJ
LABORATORIUM OPTYKI GEOMETRYCZNEJ MIKROSKOP 1. Cel dwiczenia Zapoznanie się z budową i podstawową obsługo mikroskopu biologicznego. 2. Zakres wymaganych zagadnieo: Budowa mikroskopu. Powstawanie obrazu
Promienie
Teoria promienia Promienie Zasada Fermata Od punktu źródłowego Z do punktu obserwacji A, światło rozchodzi się po takiej drodze na której, lokalnie rzecz biorąc, czas przejścia światła jest ekstremalny.
34 OPTYKA GEOMETRYCZNA. CZĘŚĆ 1
Włodzimierz Wolczyński 34 OPTYKA GEOMETRYCZNA. CZĘŚĆ 1 ODBICIE ŚWIATŁA. ZWIERCIADŁA Do analizy obrazów w zwierciadle sferycznym polecam aplet fizyczny http://www.phy.ntnu.edu.tw/ntnujava/index.php?topic=48
ĆWICZENIE NR 79 POMIARY MIKROSKOPOWE. I. Cel ćwiczenia: Zapoznanie się z budową mikroskopu i jego podstawowymi możliwościami pomiarowymi.
ĆWICZENIE NR 79 POMIARY MIKROSKOPOWE I. Zestaw przyrządów: 1. Mikroskop z wymiennymi obiektywami i okularami.. Oświetlacz mikroskopowy z zasilaczem. 3. Skala mikrometryczna. 4. Skala milimetrowa na statywie.
20. Na poniŝszym rysunku zaznaczono bieg promienia świetlnego 1. Podaj konstrukcję wyznaczającą kierunek padania promienia 2 na soczewkę.
Optyka stosowana Załamanie światła. Soczewki 1. Współczynnik załamania światła dla wody wynosi n 1 = 1,33, a dla szkła n 2 = 1,5. Ile wynosi graniczny kąt padania dla promienia świetlnego przechodzącego
POMIARY METODAMI POŚREDNIMI NA MIKROSKOPIE WAR- SZTATOWYM. OBLICZANIE NIEPEWNOŚCI TYCH POMIARÓW
Józef Zawada Instrukcja do ćwiczenia nr P12 Temat ćwiczenia: POMIARY METODAMI POŚREDNIMI NA MIKROSKOPIE WAR- SZTATOWYM. OBLICZANIE NIEPEWNOŚCI TYCH POMIARÓW Cel ćwiczenia Celem niniejszego ćwiczenia jest
9. Własności ośrodków dyspersyjnych. Pomiar dyspersji materiałów za pomocą spektrometru
II Pracownia Fizyczna 9. Własności ośrodków dyspersyjnych. Pomiar dyspersji materiałów za pomocą spektrometru I. Zestaw przyrządów 1. Spektrometr 2. Lampa spektralna rtęciowa z zasilaczem 3. Pryzmaty szklane,