Badanie układów RL i RC w obwodzie prądu przemiennego

Wielkość: px
Rozpocząć pokaz od strony:

Download "Badanie układów RL i RC w obwodzie prądu przemiennego"

Transkrypt

1 E0/E0 Pracownia Podstaw Ekseryent Fizycznego odł Elektryczność i Magnetyz aboratori Mikrokoterowe (FiaMi) Wydział Fizyki AM Badanie kładów i C w obwodzie rąd rzeiennego Cel ćwiczenia: Przyrządy: Zagadnienia: Orograowanie: NI abview Wyznaczenie rzesnięcia fazowego w fnkcji częstotliwości rąd w szeregowych kładach z indkcją własną lb ojenością; Wyznaczenie indkcji własnej cewki oraz ojeności kondensatora. Zbadanie asa rzenoszenia asywnych filtrów dolno- i górno-rzestowych. Określenie częstotliwości granicznej filtra. Koter PC z kartą oiarową NI-PCI604, oorniki, kondensatory, cewki, rzewody elektryczne Prawa rzeływ rzeiennego rąd elektrycznego w kładach zawierających kondensatory i cewki iteratra: H. Szydłowski, Pracowania Fizyczna, PWN, Warszawa 989; Sz. Szczeniowski, Fizyka Doświadczalna, PWN, Warszawa 980. Wrowadzenie i etoda oiar Prąde rzeienny nazyway rąd zieniający w czasie naięcie i natężenie w taki sosób, że ich wartość średnia w czasie jest równa zero. Prąde rzeienny jest rąd sieci elektrycznej zwany otocznie rąde zienny. Naięcie elektryczne ożna rzedstawić w ostaci rzeczywistej ( t) = sin( ωt) () a rąd elektryczny wywołany rzez to naięcie odowiednio w ostaci i( t) sin( ωt ϕ) () gdzie: i natężenie chwilowe, naięcie chwilowe, I natężenie szczytowe, naięcie szczytowe, ω = πf =π/t częstością kołową lb lsacją, f częstotliwością, T okrese, ϕ - różnica faz iędzy naięcie a rąde (rzesnięcie fazowe). Obwód rąd rzeiennego oże zawierać zarówno zwykłe oorniki, jak również kondensatory i cewki. Kondensator (o ojeności C=Q/) stanowi rzerwę w obwodzie rąd stałego, natoiast rzewodzi rąd rzeienny. Przewodzenie olega na ładowani kondensatora w ierwszy ółokresie w jedny kiernk, a w drgi ółokresie w kiernk rzeciwny. Naięcie na okładkach kondensatora wynosi q C ( t) = = i( t) dt (3) C C Cewka, która jest zwojnicą z drt iedzianego a znikoo ały oór dla rąd stałego. W cewce włączonej w obwód rąd rzeiennego, zgodnie z rawe indkcji Faraday a indkje się siła rzeciwelektrootoryczna indkcji własnej

2 E0/E0 Pracownia Podstaw Ekseryent Fizycznego odł Elektryczność i Magnetyz aboratori Mikrokoterowe (FiaMi) Wydział Fizyki AM E di( t) = ( t) = (4) dt gdzie jest wsółczynnikie indkcji własnej. Siła rzeciwelektrootoryczna indkcji własnej sowalnia narastanie i zniejszanie natężenia rąd chwilowego. Oór jaki stawia rądowi rzeienne odbiornik zawierający ojeność elektryczną i indkcję własną nazywa się zawadą lb iedancją i wyraża się wzore Z + = X (5) gdzie X nazywane jest reaktancją. Wielkość ta określa oór jaki stawiają eleenty indkcyjne i ojenościowe w czasie rzeływ rąd rzeiennego o określonej częstości kołowej ω. eaktancja indkcyjna cewki wynosi natoiast reaktancja ojenościowa kondensatora równa jest X = ω (6) X C = (7) ω C Obecność w obwodzie eleentów indkcyjnych lb ojenościowych owodje rzesnięcie rąd w fazie względe naięcia. Przesnięcie fazowe wyznaczyć ożna wrowadzając zesoloną rerezentację zawady Z, w której oór oowy jest oore rzeczywisty, natoiast reaktancje indkcyjne i ojenościowe X są oorai rojonyi (ys. ) I X tan( ϕ)= Z X ϕ e ys. Zesolona rerezentacja zawady Z. Tangens rzesnięcia fazowego wyraża się zate wzore X tan(ϕ ) = (8) Prawo Oha, wiążące szczytowe wartości (alitdy) naięcia i rąd, rzybiera w ty rzyadk ostać:

3 E0/E0 Pracownia Podstaw Ekseryent Fizycznego odł Elektryczność i Magnetyz aboratori Mikrokoterowe (FiaMi) Wydział Fizyki AM = ZI lb + ω (9) ωc W doświadczeni interesować nas będą obwody, które orócz oor zawierać będą wyłącznie indkcję własną () lb wyłącznie ojeność elektryczną (C). i ~ kład Naięcie sinsoidalnie zienne rzyłożone do kład złożonego z oornika o rezystancji i cewki indkcyjnej o indkcyjności wywołje w ni rzeływ rąd ziennego i: i sin( ωt) (0) ys. kład gdzie I jest alitdą rąd. W wynik rzeływ rąd, sadek naięcia na oornik wynosi: = i sin( ωt) () a na cewce indkcyjnej: di = ω cos( ωt) () dt Zgodnie z II rawe Kirchoffa naięcie całego kład rzedstawić ożna w ostaci sy sadków naięć na wszystkich eleentach: ω ω π = + sin( ωt) + cos( ωt) sin( ωt) + sin( ωt + ) (3) Po dokonani rzekształceń geoetrycznych rzy czy + ω sin( ωt + ϕ) = sin( ωt + ϕ) (4) ω tan( ϕ ) = (5) Na oniższych wykresach rzedstawione są rzebiegi naięciowe i wykres wektorowy rzesnięć fazowych dla tych naięć (tzw. wskazów). 3

4 E0/E0 Pracownia Podstaw Ekseryent Fizycznego odł Elektryczność i Magnetyz aboratori Mikrokoterowe (FiaMi) Wydział Fizyki AM = + ϕ ϕ π π ωt ω + ω ys. 3a Przebiegi naięcia w kładzie ys. 3b Wykres wskazowy dla kład Prawo Oha dla kład rzedstawionego na rysnk wyraża się nastęjąco: I =, I =, = + Z + ω, (6) gdzie jest wartością rezystancji oornika oiarowego, natoiast jest rezystancją cewki. Sadek naięcia ierzony na oornik oiarowy wynosi: a więc, (7) =. (8) ( + ) + ω Wykonjąc roste rzekształcenie owyższego równania otrzyać ożna zależność + = P ( ) ω + (9) ównania (5) oraz (9) ozwalają na wyznaczenie wartości indkcyjności cewki, jeżeli znane są zależności częstotliwościowe rzesnięcia fazowego tan(ϕ) oraz stosnk naięć /. 4

5 E0/E0 Pracownia Podstaw Ekseryent Fizycznego odł Elektryczność i Magnetyz aboratori Mikrokoterowe (FiaMi) Wydział Fizyki AM i ~ C ys.4 kład C C kład C W rzyadk kład C sadki naięcia na oornik i kondensatorze C wynoszą: C = i sin( ωt) (0) q = = i( t) dt = I cos( ωt) C C () ωc Całkowite naięcie kład równe jest: π = + C sin( ωt) I cos( ωt) sin( ωt) + I sin( ωt ) () ωc ωc Po rzekształceniach otrzyjey gdzie + sin( ωt ϕ) = sin( ωt ϕ) (3) ω C tan( ϕ) = (4) ωc Poniższe rysnki rzedstawiają rzebiegi naięciowe i wykres wektorowy rzesnięć fazowych dla naięć w kładzie C ϕ ϕ = + C π C π ωt C ωc + ω C ys. 5a Przebiegi naięcia w kładzie C ys. 5b Wykres wskazowy dla kład C 5

6 E0/E0 Pracownia Podstaw Ekseryent Fizycznego odł Elektryczność i Magnetyz aboratori Mikrokoterowe (FiaMi) Prawo Oha dla kład C wyraża się nastęjąco: Wydział Fizyki AM I I =, =, Z + ωc (5) W owyższy rzyadk całkowita rezystancja kład określona jest rzez wartość oornika oiarowego, a sadek naięcia ierzony na oornik oiarowy wynosi w ty rzyadk:, = + ωc (6) Proste rzekształcenie owyższego równania rowadzi do wyrażenia na kwadrat stosnk naięcia zasilającego do sadk naięcia na oornik oiarowy: = ( C) ω (7) Podobnie jak we wcześniej rozatrywany kładzie, tak i w rzyadk kład C wykorzystanie równań (4) i (7) ozwala na wyznaczenie wartości ojeności kondensatora C, jeżeli znane są zależności częstotliwościowe rzesnięcia fazowego tan(ϕ) oraz stosnk naięć /. Pasywne filtry C Szeregowy kład C ozwala na realizację najrostszych filtrów asywnych. W zależności od tego czy naięcie odczytywane jest na kondensatorze lb oornik, kład elektroniczny tworzy odowiednio filtr dolno- i górno-rzestowy. ys.6a Filtr dolno-rzestowy ys.6b Filtr górno-rzestowy Jak wynika z równania (7) reaktancja kondensatora jest dża dla niskich częstotliwości i ała dla wysokich. Kondensator dobrze rzewodzi sygnały szybkozienne a źle sygnały 6

7 E0/E0 Pracownia Podstaw Ekseryent Fizycznego odł Elektryczność i Magnetyz aboratori Mikrokoterowe (FiaMi) Wydział Fizyki AM wolnozienne. W kładzie rzestawiony na rys. 6a kondensator C zwiera składowe o dżych częstościach. Na rys.6b kondensator C nie rzenosi składowych o ałych częstościach. Częstotliwościową charakterystykę alitdową oisać ożna stosjąc zais wskazowy rzebiegów rzeiennych (rys.5b). W zaisie wskazowy ojeność C jest równoważna oorności rojonej /jx C, gdzie j jest jedynką rojoną a X C reaktancją kondensatora (równanie 7). Oba filtry ożna traktować jako dzielniki naięć zesolonych. Fnkcja rzenoszenia dla filtr dolnorzestowego zaisana w ostaci zesolonej jest równa C X C jωc = = = (8) + X C + + jωc j ω C Obliczając odł otrzyanej fnkcji rzenoszenia otrzyjey charakterystykę alitdową filtr dolnorzestowego C = = (9) + ( ω C ) f + f g gdzie wyrażenie ωc rzekształcono w iloraz f/fg wrowadzając wielkość f = g π C (30) jest częstotliwością graniczną asa rzenoszenia filtr. Gdy f = fg otrzyjey C / = / (3) co oznacza, że dla częstotliwości granicznej ozio charakterystyki alitdowej oada o 3dB. Paso rzenoszenia filtrów elektronicznych zdefiniowane jest jako zakres częstotliwości, w który charakterystyka alitdowa aleje nie więcej niż razy. Dla filtra górno-rzestowego fnkcja rzenoszenia jest równa = = (3) + X C + jωc Prowadzi to do zależności na charakterystykę alitdową dla filtra górno-rzestowego w ostaci = = (33) fg + + ωc f. Przygotowanie aaratry Za generację i rejestrację sygnałów odowiedzialna jest wielofnkcyjna karta oiarowa NI-PCI604. Karta osiada 6 konfigrowalnych rzetworników cyfrowoanalogowych (D/A) słżących do generacji sygnał analogowego, oraz dwa rzetworniki analogowo-cyfrowe (A/D) słżące do rejestracji takich sygnałów. Paraetry czasowe rzetworników D/A ożliwiają generację sygnał z częstotliwością róbkowania 0000 róbek/sekndę i dokładnością 6 bitów. Są to araetry ozwalające z zadowalającą 7

8 E0/E0 Pracownia Podstaw Ekseryent Fizycznego odł Elektryczność i Magnetyz aboratori Mikrokoterowe (FiaMi) Wydział Fizyki AM dokładnością wykonać oiary charakterystyk częstotliwościowych w zakresie od 5000Hz. AO0 AI0 C cos( ωt) AI Icos( ωt+ ϕ) GND GND ys. 7 Scheat ołączeń do oiarów ojeności kondensatora lb indkcyjności cewki AO0 a) b) AI0 AO0 AI0 C AI AI C C GND GND GND GND ys. 8 Scheat ołączeń do oiarów asywnych filtrów a) dolno- i b) górno-rzstowych Źródłe naięcia rzeiennego dorowadzanego do badanego kład jest kanał D/A karty oiarowej (AO0). Dwa inne kanały karty (AI0 i AI) wykorzystane są do rejestracji naięcia na zaciskach źródła oraz sadk naięcia na oornik oiarowy. Łączyy kład zgodnie ze scheate rzedstawiony na rysnk 7. kład składa się z ołączonych w szereg: oornika oiarowego, oraz w zależności od badanego kład, cewki lb kondensatora C. Oornik oiarowy słży do oiar sadk naięcia, które zgodnie z równanie (7) roorcjonalne jest do łynącego w kładzie rąd. ys. 8 rzedstawia scheat ołączeń szeregowego kłady C stosowanego jako filtr dolno- i górno-rzstowy. 8

9 E0/E0 Pracownia Podstaw Ekseryent Fizycznego odł Elektryczność i Magnetyz aboratori Mikrokoterowe (FiaMi) 3. Zadania do wykonania Wydział Fizyki AM. Zadanie olegać będzie na zbadani odowiedzi kład elektronicznego na zasilenie naięcie rzeienny. Zacznij od zasylowania rzebieg sinsoidalnego żywając ętli WHIE z fnkcją Silate Signal a) Skonfigrować sygnał sylowany Wartości Sales er second ax 0kS/s (takie araetry osiada karta oiarowa NI-604). Sylowany sygnał trafi do fnkcji DAQ Assistant która o odowiedniej konfigracji ożliwi wysłanie sygnał na wyjście analogowe karty oiarowej a) Generacja analogowego sygnał naięciowego 9

10 E0/E0 Pracownia Podstaw Ekseryent Fizycznego odł Elektryczność i Magnetyz aboratori Mikrokoterowe (FiaMi) b) Fizyczny kanał AO0 Wydział Fizyki AM c) Zienić signal ott range na ax/in: -/Volts. Generation ode: Continos Sales 3. Srawdzić na oscyloskoie analogowy generowany sygnał. 4. W tej saej ętli WHIE ieścić kolejny DAQ Assistant. Skonfigrować w cel zbadania odowiedzi kład elektronicznego. Sczytać sygnały analogowe z dwóch kanałów fizycznych 0

11 E0/E0 Pracownia Podstaw Ekseryent Fizycznego odł Elektryczność i Magnetyz aboratori Mikrokoterowe (FiaMi) a) ejestracja analogowego sygnał naięciowego Wydział Fizyki AM b) Wybrać dwa kanały (wskazać trzyając rzycisk CT), n. AI0 i AI c) stalić Signal int range na +/- V; Acqisition ode: N-Sales; ate: 50kS/s; Sales to ead 50k

12 E0/E0 Pracownia Podstaw Ekseryent Fizycznego odł Elektryczność i Magnetyz aboratori Mikrokoterowe (FiaMi) Wydział Fizyki AM 5. Zontować badany kład elektroniczny: szeregowy kład C (lb ) rys.7; Filtr C rys.8. Zasilić go generowany sygnałe sinsoidalny z kanał AO0. 6. Naięcie zasilania,, sczytywać na kanale AI0. Sadek naięcia na oornik, (lb kondensatorze C ), sczytywać na kanale AI 7. Zasilić kład i obejrzeć rejestrowane sygnały czasowe na WaveFor Grah. Srawdzić ziany w rzebiegach odczas zian częstotliwości naięcia zasilającego. 8. Przedstawić rejestrowane rzebiegi naięcia i rąd na łaszczyźnie XY w ostaci figr issajox 9. Naisać fnkcję (SbVI) ierzącą stosnek naięć / oraz tangens rzesnięcia fazowego iędzy rąde a naięcie tan(ϕ). żyj fnkcji Extract single tone inforation.vi na każdy z kanałów aby zierzyć alitdy i fazy oszczególnych sygnałów naięciowych. Fnkcja Extract ierzy fazy w stoniach, π zate: tan( ϕ) = tan ( ϕ ϕ ) Aby wyznaczyć ojeność kondensatora C (lb indkcyjność cewki ) zarejestrj rzebiegi częstotliwościowe / oraz tan(ϕ). Zlinearyzj rzebiegi wykorzystjąc odowiednie zależności teoretyczne (równania 5, 4, 9, 7). Znając wartość oor wyznaczyć interesjące wielkość C lb wykorzystjąc etodę regresji liniowej.. Badając filtry C, dla danej ary oornik/kondensator wykonaj oiary charakterystyk transisji filtra górno- i dolno-rzestowego ( /(f) i C /(f)). Przedstaw zyskaną zależność w skali dwlogaryticznej. Oszacj częstotliwość graniczną (fg). Porównać otrzyaną wartość z charakterystyczną stałą czasową filtra obliczoną z wzor (30). Nanieś na zależności zierzone rzebiegi teoretyczne obliczone z równań (9) i (33).

13 E0/E0 Pracownia Podstaw Ekseryent Fizycznego odł Elektryczność i Magnetyz aboratori Mikrokoterowe (FiaMi) Wydział Fizyki AM Zasady rzygotowania raort. Oisz krótko badane zjawisko, roble, odając niezbędne równania.. Podaj cele ćwiczenia. 3. W nktach okaż realizację oszczególnych eleentów ćwiczenia. W rzyadk rogra okaż jego anel frontowy i diagra blokowy (lb chociaż najważniejszą jego część) oraz oów krótko najistotniejsze nkty rogra wraz z ewentalnyi trdnościai naotkanyi w ich realizacji. 4. Wyniki oiarów rzedstawiaj w sosób ożliwiający ich łatwą ocenę: a. ojedyncze wyniki w ostaci wyróżnionych liczb (ogrbienie, większy roziar czcionki it), b. serie kilk(nast) wyników rzedstawiaj w ostaci tabel lb list. Ta gdzie to wskazane, okaż je też na wykresie. c. Dłgie serie oiarowe obejjące więcej nktów zawsze rezentj na wykresach. Osie wykresów oisane, z jednostkai. W rzyadk zaieszczania kilk rzebiegów na jedny wykresie konieczna jest legenda lb ois od wykrese. 5. Jeśli to konieczne, rzedysktj oszczególne wyniki. 6. Naisz krótkie Podsowanie/Wnioski zawierające streszczenie swoich dokonań (najleiej w nktach) i ewentalne wagi na teat ćwiczenia. 7. Strktra raort a. aort si zawierać ner i tytł ćwiczenia, datę wykonania, datę sorządzenia raort, nazwisko stdenta (ary stdentów), nazwisko rowadzącego. Najleiej w nagłówk. Tabelka nie jest obowiązkowa, choć łatwia życie. W rzyadk rograów, eleente raort są kody rograów i liki z wynikai. W raorcie owinna znaleźć się inforacja o nazwie folder zawierającego te dane. b. oszczególne części raort owinny być wyraźnie wydzielone. Tytły części iszey ise ogrbiony, części ogą (nie szą) być onerowane. c. Wszystkie wzory owinny być onerowane (z rawej strony). d. Wszystkie tabelki owinny ieć swój ner i odis. Dla tabel odis zawsze NAD TABEĄ. e. Wszystkie rysnki owinny ieć swój ner i odis. Dla rysnków ner i odis zawsze POD YSNKIEM. Przez rysnki roziey wszystkie obiekty graficzne (zrzty ekranów, zdjęcia, wykresy, scheaty, it). f. do równań, tabel, rysnków odwołjey się orzez odanie ner (nikay takich sforłowań jak owyższy, oniższy, na orzedniej stronie, ierwszy, ostatni it.). 3

14 E0/E0 Pracownia Podstaw Ekseryent Fizycznego odł Elektryczność i Magnetyz aboratori Mikrokoterowe (FiaMi) Wydział Fizyki AM. 3. 4

E201. Badanie układów RL i RC w obwodzie prądu przemiennego

E201. Badanie układów RL i RC w obwodzie prądu przemiennego Pracownia Podstaw Fizyczne Laboratori Mikrokopterowe Wydział Fizyki Eksperyent Fizycznego Filai AM E0. Badanie kładów L i C w obwodzie prąd przeiennego Cel ćwiczenia: Wyznaczenie przesnięcia fazowego w

Bardziej szczegółowo

Badanie układów RL i RC w obwodzie prądu przemiennego

Badanie układów RL i RC w obwodzie prądu przemiennego Badanie kładów i C w obwodzie rąd rzeiennego Cel ćwiczenia: Przyrządy: Zagadnienia: Wyznaczenie rzesnięcia fazowego w fnkcji częstotliwości rąd w szeregowych kładach z indkcją własną lb ojenością; Wyznaczenie

Bardziej szczegółowo

Badanie rezonansu w obwodach prądu przemiennego

Badanie rezonansu w obwodach prądu przemiennego E/E Wydział Fizyki AM Badanie rezonansu w obwodach prądu przemiennego el ćwiczenia: Przyrządy: Zagadnienia: Poznanie podstawowych własności szeregowego obwodu rezonansowego. Zbadanie wpływu zmian wartości

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZENIA

INSTRUKCJA DO ĆWICZENIA INSTKJA DO ĆWIENIA Teat: Badanie obwod L i w fnkcji częstotliwości Wiadoości ogólne echą charakterystyczną zjawisk w obwodach elektrycznych jest narzcenie zienności czasowej rądów i naięć. W rzyadk generatorów

Bardziej szczegółowo

Ćwiczenie 3 BADANIE OBWODÓW PRĄDU SINUSOIDALNEGO Z ELEMENTAMI RLC

Ćwiczenie 3 BADANIE OBWODÓW PRĄDU SINUSOIDALNEGO Z ELEMENTAMI RLC Ćwiczenie 3 3.1. Cel ćwiczenia BADANE OBWODÓW PRĄD SNSODANEGO Z EEMENTAM RC Zapoznanie się z własnościami prostych obwodów prądu sinusoidalnego utworzonych z elementów RC. Poznanie zasad rysowania wykresów

Bardziej szczegółowo

Pracownia Technik Informatycznych w Inżynierii Elektrycznej

Pracownia Technik Informatycznych w Inżynierii Elektrycznej NWERSYTET RZESZOWSK Pracownia Technik nforatycznych w nżynierii Elektrycznej Ćw. 4 Badanie obwodów szeregowych R Rzeszów 016/017 ię i nazwisko Grupa Rok studiów Data wykonania Podpis Ocena Badanie obwodów

Bardziej szczegółowo

2. Obwody prądu zmiennego

2. Obwody prądu zmiennego . Obwody prądu ziennego.. Definicje i wielkości charakteryzujące Spośród wielu oŝliwych przebiegów ziennych w czasie zajiey się jedynie przebiegai haronicznyi (sinusoidalnyi lub cosinusoidalnyi). Prądy

Bardziej szczegółowo

Ć wiczenie 3 OBWODY JEDNOFAZOWE PRĄDU PRZEMIENNEGO

Ć wiczenie 3 OBWODY JEDNOFAZOWE PRĄDU PRZEMIENNEGO 49 1. Wiadoości ogólne Ć wiczenie 3 OBWODY JEDNOFAZOWE PĄD PZEMENNEGO 1.1. Wielkości opisujące prąd przeienny Wielkości sinusoidalne są jednoznacznie określone przez trzy wielkości: aplitudę, pulsację

Bardziej szczegółowo

Wartość średnia półokresowa prądu sinusoidalnego I śr : Analogicznie określa się wartość skuteczną i średnią napięcia sinusoidalnego:

Wartość średnia półokresowa prądu sinusoidalnego I śr : Analogicznie określa się wartość skuteczną i średnią napięcia sinusoidalnego: Ćwiczenie 27 Temat: Prąd przemienny jednofazowy Cel ćwiczenia: Rozróżnić parametry charakteryzujące przebieg prądu przemiennego, oszacować oraz obliczyć wartości wielkości elektrycznych w obwodach prądu

Bardziej szczegółowo

Laboratorium Podstaw Elektrotechniki i Elektroniki

Laboratorium Podstaw Elektrotechniki i Elektroniki Politechnika Gdańska Wydział Elektrotechniki i utomatyki 1. Wstęp st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 3 OBWODY LINIOWE PĄDU SINUSOIDLNEGO

Bardziej szczegółowo

Ćwiczenie: "Obwody prądu sinusoidalnego jednofazowego"

Ćwiczenie: Obwody prądu sinusoidalnego jednofazowego Ćwiczenie: "Obwody prądu sinusoidalnego jednofazowego" Opracowane w ramach projektu: "Informatyka mój sposób na poznanie i opisanie świata realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres

Bardziej szczegółowo

Obwody prądu zmiennego. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Obwody prądu zmiennego. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Obwody prądu ziennego rojekt współfinansowany przez nię Europeją w raach Europejiego Funduszu Społecznego rąd elektryczny: oc lość ciepła wydzielanego na eleencie oporowy określa prawo Joule a: Q t Moc

Bardziej szczegółowo

BADANIE ODBIORNIKÓW R, L, C W OBWODZIE PRDU SINUSOIDALNEGO

BADANIE ODBIORNIKÓW R, L, C W OBWODZIE PRDU SINUSOIDALNEGO Cel wiczenia BADANIE ODBIORNIKÓW R, L, C W OBWODZIE PRDU SINUSOIDALNEGO Cele wiczenia jest poznanie etod technicznych wyznaczania podstawowych paraetrów pojedynczych odbiorników o charakterze R, L, C i

Bardziej szczegółowo

Układy Trójfazowe. Wykład 7

Układy Trójfazowe. Wykład 7 Wykład 7 kłady Trójazowe. Generatory trójazowe. kłady ołączeń źródeł. Wielkości azowe i rzewodowe 4. ołączenia odbiorników w Y(gwiazda) i w D (trójkąt) 5. Analiza układów trójazowych 6. Moc w układach

Bardziej szczegółowo

Laboratorium Podstaw Elektrotechniki i Elektroniki

Laboratorium Podstaw Elektrotechniki i Elektroniki Politechnika Gdańska Wydział Elektrotechniki i utomatyki 1) Wstęp st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDLNEGO

Bardziej szczegółowo

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO ĆWICZENIE 53 PRAWO OHMA DLA PRĄDU PRZEMIENNEGO Cel ćwiczenia: wyznaczenie wartości indukcyjności cewek i pojemności kondensatorów przy wykorzystaniu prawa Ohma dla prądu przemiennego; sprawdzenie prawa

Bardziej szczegółowo

Generator. R a. 2. Wyznaczenie reaktancji pojemnościowej kondensatora C. 2.1 Schemat układu pomiarowego. Rys Schemat ideowy układu pomiarowego

Generator. R a. 2. Wyznaczenie reaktancji pojemnościowej kondensatora C. 2.1 Schemat układu pomiarowego. Rys Schemat ideowy układu pomiarowego PROTOKÓŁ POMAROWY LABORATORUM OBWODÓW SYGNAŁÓW ELEKTRYCZNYCH Grupa Podgrupa Numer ćwiczenia 3 Nazwisko i imię Data wykonania ćwiczenia Prowadzący ćwiczenie Podpis Data oddania sprawozdania Temat BADANA

Bardziej szczegółowo

A-3. Wzmacniacze operacyjne w układach liniowych

A-3. Wzmacniacze operacyjne w układach liniowych A-3. Wzmacniacze operacyjne w kładach liniowych I. Zakres ćwiczenia wyznaczenia charakterystyk amplitdowych i częstotliwościowych oraz parametrów czasowych:. wtórnika napięcia. wzmacniacza nieodwracającego

Bardziej szczegółowo

2.Rezonans w obwodach elektrycznych

2.Rezonans w obwodach elektrycznych 2.Rezonans w obwodach elektrycznych Celem ćwiczenia jest doświadczalne sprawdzenie podstawowych właściwości szeregowych i równoległych rezonansowych obwodów elektrycznych. 2.1. Wiadomości ogólne 2.1.1

Bardziej szczegółowo

Laboratorium Wirtualne Obwodów w Stanach Ustalonych i Nieustalonych

Laboratorium Wirtualne Obwodów w Stanach Ustalonych i Nieustalonych ĆWICZENIE 1 Badanie obwodów jednofazowych rozgałęzionych przy wymuszeniu sinusoidalnym Cel ćwiczenia Celem ćwiczenia jest Poznanie podstawowych elementów pasywnych R, L, C, wyznaczenie ich wartości na

Bardziej szczegółowo

Ćwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDALNEGO

Ćwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDALNEGO Politechnika Gdańska Wydział Elektrotechniki i Automatyki 1. Wstęp st. stacjonarne I st. inżynierskie, Mechatronika (WM) Laboratorium Elektrotechniki Ćwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDALNEGO

Bardziej szczegółowo

Pracownia pomiarów i sterowania Ćwiczenie 4 Badanie ładowania i rozładowywania kondensatora

Pracownia pomiarów i sterowania Ćwiczenie 4 Badanie ładowania i rozładowywania kondensatora Małgorzata Marynowska Uniwersytet Wrocławski, I rok Fizyka doświadczalna II stopnia Prowadzący: dr M. Grodzicki Data wykonania ćwiczenia: 17.03.2015 Pracownia pomiarów i sterowania Ćwiczenie 4 Badanie

Bardziej szczegółowo

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO ĆWICZENIE 53 PRAWO OHMA DLA PRĄDU PRZEMIENNEGO Cel ćwiczenia: wyznaczenie wartości indukcyjności cewek i pojemności kondensatorów przy wykorzystaniu prawa Ohma dla prądu przemiennego; sprawdzenie prawa

Bardziej szczegółowo

I. Cel ćwiczenia: Poznanie własności obwodu szeregowego, zawierającego elementy R, L, C.

I. Cel ćwiczenia: Poznanie własności obwodu szeregowego, zawierającego elementy R, L, C. espół Szkół Technicznych w Skarżysku-Kamiennej Sprawozdanie PAOWNA EEKTYNA EEKTONNA imię i nazwisko z ćwiczenia nr Temat ćwiczenia: BADANE SEEGOWEGO OBWOD rok szkolny klasa grupa data wykonania. el ćwiczenia:

Bardziej szczegółowo

Obwody liniowe. Sprawdzanie praw Kirchhoffa

Obwody liniowe. Sprawdzanie praw Kirchhoffa POLTECHNK ŚLĄSK WYDZŁ NŻYNER ŚRODOWSK ENERGETYK NSTYTT MSZYN RZĄDZEŃ ENERGETYCZNYCH LBORTORM ELEKTRYCZNE Obwody liniowe. Sprawdzanie praw Kirchhoffa (E 2) Opracował: Dr inż. Włodzimierz OGLEWCZ 3 1. Cel

Bardziej szczegółowo

Ćwiczenie 4 WYZNACZANIE INDUKCYJNOŚCI WŁASNEJ I WZAJEMNEJ

Ćwiczenie 4 WYZNACZANIE INDUKCYJNOŚCI WŁASNEJ I WZAJEMNEJ Ćwiczenie 4 WYZNCZNE NDUKCYJNOŚC WŁSNEJ WZJEMNEJ Celem ćwiczenia jest poznanie pośrednich metod wyznaczania indukcyjności własnej i wzajemnej na podstawie pomiarów parametrów elektrycznych obwodu. 4..

Bardziej szczegółowo

13 K A T E D R A F I ZYKI S T O S O W AN E J

13 K A T E D R A F I ZYKI S T O S O W AN E J 3 K A T E D R A F I ZYKI S T O S O W AN E J P R A C O W N I A P O D S T A W E L E K T R O T E C H N I K I I E L E K T R O N I K I Ćw. 3. Wyznaczenie elementów L C metoda rezonansu Wprowadzenie Obwód złożony

Bardziej szczegółowo

Wykład Drgania elektromagnetyczne Wstęp Przypomnienie: masa M na sprężynie, bez oporów. Równanie ruchu

Wykład Drgania elektromagnetyczne Wstęp Przypomnienie: masa M na sprężynie, bez oporów. Równanie ruchu Wykład 7 7. Drgania elektromagnetyczne Wstęp Przypomnienie: masa M na sprężynie, bez oporów. Równanie ruchu M d x kx Rozwiązania x = Acost v = dx/ =-Asint a = d x/ = A cost przy warunku = (k/m) 1/. Obwód

Bardziej szczegółowo

07 K AT E D R A FIZYKI STOSOWA N E J

07 K AT E D R A FIZYKI STOSOWA N E J 07 K AT E D R A FIZYKI STOSOWA N E J P R A C O W N I A P O D S T A W E L E K T R O T E C H N I K I I E L E K T R O N I K I Ćw. 7a. Pomiary w układzie szeregowym RLC Wprowadzenie Prąd zmienny płynący w

Bardziej szczegółowo

Ćwiczenie nr 1. Badanie obwodów jednofazowych RLC przy wymuszeniu sinusoidalnym

Ćwiczenie nr 1. Badanie obwodów jednofazowych RLC przy wymuszeniu sinusoidalnym Ćwiczenie nr Badanie obwodów jednofazowych RC przy wymuszeniu sinusoidalnym. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z rozkładem napięć prądów i mocy w obwodach złożonych z rezystorów cewek i

Bardziej szczegółowo

ĆWICZENIE 5 Badanie stanów nieustalonych w obwodach szeregowych RLC przy wymuszeniu sinusoidalnie zmiennym

ĆWICZENIE 5 Badanie stanów nieustalonych w obwodach szeregowych RLC przy wymuszeniu sinusoidalnie zmiennym ĆWIZENIE 5 Badanie stanów nieustalonych w obwodach szeregowych R przy wyuszeniu sinusoidaie zienny. el ćwiczenia Zapoznanie się z rozpływe prądów, rozkłade w stanach nieustalonych w obwodach szeregowych

Bardziej szczegółowo

I. Cel ćwiczenia: Poznanie własności obwodu szeregowego zawierającego elementy R, L, C.

I. Cel ćwiczenia: Poznanie własności obwodu szeregowego zawierającego elementy R, L, C. espół Szkół Technicznych w Skarżysku-Kamiennej Sprawozdanie PAOWNA EEKTYNA EEKTONNA imię i nazwisko z ćwiczenia nr Temat ćwiczenia: BADANE SEEGOWEGO OBWOD rok szkolny klasa grupa data wykonania. el ćwiczenia:

Bardziej szczegółowo

Obwody prądu przemiennego bez liczb zespolonych

Obwody prądu przemiennego bez liczb zespolonych FOTON 94, Jesień 6 45 Obwody prądu przeiennego bez liczb zespolonych Jerzy Ginter Wydział Fizyki Uniwersytetu Warszawskiego Kiedy prowadziłe zajęcia z elektroagnetyzu na Studiu Podyploowy, usiałe oówić

Bardziej szczegółowo

Pracownia fizyczna i elektroniczna. Wykład lutego Krzysztof Korona

Pracownia fizyczna i elektroniczna. Wykład lutego Krzysztof Korona Pracownia fizyczna i elektroniczna Wykład. Obwody prądu stałego i zmiennego 4 lutego 4 Krzysztof Korona Plan wykładu Wstęp. Prąd stały. Podstawowe pojęcia. Prawa Kirchhoffa. Prawo Ohma ().4 Przykłady prostych

Bardziej szczegółowo

Ćw. 27. Wyznaczenie elementów L C metoda rezonansu

Ćw. 27. Wyznaczenie elementów L C metoda rezonansu 7 K A T E D R A F I ZYKI S T O S O W AN E J P R A C O W N I A F I Z Y K I Ćw. 7. Wyznaczenie elementów L C metoda rezonansu Wprowadzenie Obwód złożony z połączonych: kondensatora C cewki L i opornika R

Bardziej szczegółowo

BADANIE ELEKTRYCZNEGO OBWODU REZONANSOWEGO RLC

BADANIE ELEKTRYCZNEGO OBWODU REZONANSOWEGO RLC Ćwiczenie 45 BADANE EEKTYZNEGO OBWOD EZONANSOWEGO 45.. Wiadomości ogólne Szeregowy obwód rezonansowy składa się z oporu, indukcyjności i pojemności połączonych szeregowo i dołączonych do źródła napięcia

Bardziej szczegółowo

Obwody sprzężone magnetycznie.

Obwody sprzężone magnetycznie. POLITECHNIKA ŚLĄSKA WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI INSTYTT MASZYN I RZĄDZEŃ ENERGETYCZNYCH LABORATORIM ELEKTRYCZNE Obwody sprzężone magnetycznie. (E 5) Opracował: Dr inż. Włodzimierz OGLEWICZ

Bardziej szczegółowo

BADANIE DOLNOPRZEPUSTOWEGO FILTRU RC

BADANIE DOLNOPRZEPUSTOWEGO FILTRU RC Laboratorium Podstaw Elektroniki Wiaczesław Szamow Ćwiczenie E BADANIE DOLNOPRZEPSTOWEGO FILTR RC opr. tech. Mirosław Maś Krystyna Ługowska niwersytet Przyrodniczo - Humanistyczny Siedlce 0 . Wstęp Celem

Bardziej szczegółowo

) I = dq. Obwody RC. I II prawo Kirchhoffa: t = RC (stała czasowa) IR V C. ! E d! l = 0 IR +V C. R dq dt + Q C V 0 = 0. C 1 e dt = V 0.

) I = dq. Obwody RC. I II prawo Kirchhoffa: t = RC (stała czasowa) IR V C. ! E d! l = 0 IR +V C. R dq dt + Q C V 0 = 0. C 1 e dt = V 0. Obwody RC t = 0, V C = 0 V 0 IR 0 V C C I II prawo Kirchhoffa: " po całym obwodzie zamkniętym E d l = 0 IR +V C V 0 = 0 R dq dt + Q C V 0 = 0 V 0 R t = RC (stała czasowa) Czas, po którym prąd spadnie do

Bardziej szczegółowo

29 PRĄD PRZEMIENNY. CZĘŚĆ 2

29 PRĄD PRZEMIENNY. CZĘŚĆ 2 Włodzimierz Wolczyński 29 PRĄD PRZEMIENNY. CZĘŚĆ 2 Opory bierne Indukcyjny L - indukcyjność = Szeregowy obwód RLC Pojemnościowy C pojemność = = ( + ) = = = = Z X L Impedancja (zawada) = + ( ) φ R X C =

Bardziej szczegółowo

Ć wiczenie 4 BADANIE PROSTOWNIKÓW NIESTEROWANYCH

Ć wiczenie 4 BADANIE PROSTOWNIKÓW NIESTEROWANYCH Ć wiczenie 4 9. Wiadoości ogólne BADANIE PROSOWNIKÓW NIESEROWANYCH Prostowniki są to urządzenia przetwarzające prąd przeienny na jednokierunkowy. Prostowniki stosowane są.in. do ładowania akuulatorów,

Bardziej szczegółowo

Pracownia Fizyczna i Elektroniczna 2014

Pracownia Fizyczna i Elektroniczna 2014 Pracownia Fizyczna i Elektroniczna 04 http://pe.fw.ed.pl/ Wojciech DOMNK ozbłysk gamma GB 08039B 9.03.008 teleskop Pi of the Sky sfilmował najpotężniejszą eksplozję obserwowaną przez człowieka pierwszy

Bardziej szczegółowo

Ćwiczenie nr 4. Badanie filtrów składowych symetrycznych prądu i napięcia

Ćwiczenie nr 4. Badanie filtrów składowych symetrycznych prądu i napięcia Ćwiczenie nr 4 Badanie filtrów składowych symetrycznych prądu i napięcia 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą składowych symetrycznych, pomiarem składowych w układach praktycznych

Bardziej szczegółowo

Podstawy fizyki sezon 2 7. Układy elektryczne RLC

Podstawy fizyki sezon 2 7. Układy elektryczne RLC Podstawy fizyki sezon 2 7. Układy elektryczne RLC Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Układ RC

Bardziej szczegółowo

4.8. Badania laboratoryjne

4.8. Badania laboratoryjne BOTOIUM EEKTOTECHNIKI I EEKTONIKI Grupa Podgrupa Numer ćwiczenia 4 p. Nazwisko i imię Ocena Data wykonania ćwiczenia Podpis prowadzącego zajęcia 4. 5. Temat Wyznaczanie indukcyjności własnej i wzajemnej

Bardziej szczegółowo

Siła elektromotoryczna

Siła elektromotoryczna Wykład 5 Siła elektromotoryczna Urządzenie, które wykonuje pracę nad nośnikami ładunku ale różnica potencjałów między jego końcami pozostaje stała, nazywa się źródłem siły elektromotorycznej. Energia zamieniana

Bardziej szczegółowo

Ćwiczenie 25. Temat: Obwód prądu przemiennego RC i RL. Cel ćwiczenia

Ćwiczenie 25. Temat: Obwód prądu przemiennego RC i RL. Cel ćwiczenia Temat: Obwód prądu przemiennego RC i RL. Cel ćwiczenia Ćwiczenie 25 Poznanie własności obwodu szeregowego RC w układzie. Zrozumienie znaczenia reaktancji pojemnościowej, impedancji kąta fazowego. Poznanie

Bardziej szczegółowo

Bogdan Olech Mirosław Łazoryszczak Dorota Majorkowska-Mech. Elektronika. Laboratorium nr 3. Temat: Diody półprzewodnikowe i elementy reaktancyjne

Bogdan Olech Mirosław Łazoryszczak Dorota Majorkowska-Mech. Elektronika. Laboratorium nr 3. Temat: Diody półprzewodnikowe i elementy reaktancyjne Bogdan Olech Mirosław Łazoryszczak Dorota Majorkowska-Mech Elektronika Laboratorium nr 3 Temat: Diody półprzewodnikowe i elementy reaktancyjne SPIS TREŚCI Spis treści... 2 1. Cel ćwiczenia... 3 2. Wymagania...

Bardziej szczegółowo

Charakterystyki częstotliwościowe elementów pasywnych

Charakterystyki częstotliwościowe elementów pasywnych Charakterystyki częstotliwościowe elementów pasywnych Parametry elementów pasywnych; reaktancji indukcyjnej (XLωL) oraz pojemnościowej (XC1/ωC) zależą od częstotliwości. Ma to istotne znaczenie w wielu

Bardziej szczegółowo

BADANIE OBWODÓW TRÓJFAZOWYCH

BADANIE OBWODÓW TRÓJFAZOWYCH Katedra Energetyki Laboratorium Podstaw Elektrotechniki i Elektroniki Instrukcja do ćwiczenia: BADAIE OBWODÓW TÓJFAZOWYCH . Odbiornik rezystancyjny ołączony w gwiazdę. Podłączyć woltomierze ameromierze

Bardziej szczegółowo

Induktor i kondensator. Warunki początkowe. oraz ciągłość warunków początkowych

Induktor i kondensator. Warunki początkowe. oraz ciągłość warunków początkowych Termin AREK73C Induktor i kondensator. Warunki początkowe Przyjmujemy t, u C oraz ciągłość warunków początkowych ( ) u ( ) i ( ) i ( ) C L L Prąd stały i(t) R u(t) u( t) Ri( t) I R RI i(t) L u(t) u() t

Bardziej szczegółowo

Pracownia elektryczna i elektroniczna

Pracownia elektryczna i elektroniczna Pracownia elektryczna i elektroniczna Srawdzanie skuteczności ochrony rzeciworażeniowej 1.... 2.... 3.... Klasa: Grua: Data: Ocena: 1. Cel ćwiczenia: Celem ćwiczenia jest zaoznanie ze sosobami srawdzania

Bardziej szczegółowo

z ćwiczenia nr Temat ćwiczenia: BADANIE RÓWNOLEGŁEGO OBWODU RLC (SYMULACJA)

z ćwiczenia nr Temat ćwiczenia: BADANIE RÓWNOLEGŁEGO OBWODU RLC (SYMULACJA) Zespół Szkół Technicznych w Skarżysku-Kamiennej Sprawozdanie PAOWNA EEKTYZNA EEKTONZNA imię i nazwisko z ćwiczenia nr Temat ćwiczenia: BADANE ÓWNOEGŁEGO OBWOD (SYMAJA) rok szkolny klasa grupa data wykonania.

Bardziej szczegółowo

PROTOKÓŁ POMIAROWY - SPRAWOZDANIE

PROTOKÓŁ POMIAROWY - SPRAWOZDANIE PROTOKÓŁ POMIAROWY - SPRAWOZDANIE LABORATORIM PODSTAW ELEKTROTECHNIKI I ELEKTRONIKI Grupa Podgrupa Numer ćwiczenia 5 Nazwisko i imię Data wykonania. ćwiczenia. Prowadzący ćwiczenie Podpis Ocena sprawozdania

Bardziej szczegółowo

30R4 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - IV POZIOM ROZSZERZONY

30R4 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - IV POZIOM ROZSZERZONY 30R4 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - IV POZIOM ROZSZERZONY Magnetyzm Indukcja elektromagnetyczna Prąd przemienny Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod

Bardziej szczegółowo

ĆWICZENIE 1 JEDNOFAZOWE OBWODY RLC. Informatyka w elektrotechnice ZADANIA DO WYKONANIA

ĆWICZENIE 1 JEDNOFAZOWE OBWODY RLC. Informatyka w elektrotechnice ZADANIA DO WYKONANIA ĆWICZENIE 1 JEDNOFAZOWE OBWODY RLC Celem ćwiczenia jest poznanie zasad symulacji prostych obwodów jednofazowych składających się z elementów RLC. I. Zamodelować jednofazowy szeregowy układ RLC (rys.1a)

Bardziej szczegółowo

REZONANS SZEREGOWY I RÓWNOLEGŁY. I. Rezonans napięć

REZONANS SZEREGOWY I RÓWNOLEGŁY. I. Rezonans napięć REZONANS SZEREGOWY I RÓWNOLEGŁY I. Rezonans napięć Zjawisko rezonansu napięć występuje w gałęzi szeregowej RLC i polega na tym, Ŝe przy określonej częstotliwości sygnałów w obwodzie, zwanej częstotliwością

Bardziej szczegółowo

Ćwiczenie 3 Badanie własności podstawowych liniowych członów automatyki opartych na biernych elementach elektrycznych

Ćwiczenie 3 Badanie własności podstawowych liniowych członów automatyki opartych na biernych elementach elektrycznych Ćwiczenie 3 Badanie własności podstawowych liniowych członów automatyki opartych na biernych elementach elektrycznych Cel ćwiczenia Celem ćwiczenia jest poznanie podstawowych własności członów liniowych

Bardziej szczegółowo

W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0,

W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0, Bierne obwody RC. Filtr dolnoprzepustowy. Filtr dolnoprzepustowy jest układem przenoszącym sygnały o małej częstotliwości bez zmian, a powodującym tłumienie i opóźnienie fazy sygnałów o większych częstotliwościach.

Bardziej szczegółowo

Metodę poprawnie mierzonego prądu powinno się stosować do pomiaru dużych rezystancji, tzn. wielokrotnie większych od rezystancji amperomierza: (4)

Metodę poprawnie mierzonego prądu powinno się stosować do pomiaru dużych rezystancji, tzn. wielokrotnie większych od rezystancji amperomierza: (4) OBWODY JEDNOFAZOWE POMIAR PRĄDÓW, NAPIĘĆ. Obwody prądu stałego.. Pomiary w obwodach nierozgałęzionych wyznaczanie rezystancji metodą techniczną. Metoda techniczna pomiaru rezystancji polega na określeniu

Bardziej szczegółowo

Pracownia fizyczna i elektroniczna. Wykład 1. 9 marca Krzysztof Korona

Pracownia fizyczna i elektroniczna. Wykład 1. 9 marca Krzysztof Korona Pracownia fizyczna i elektroniczna Wykład. Obwody prądu stałego i zmiennego 9 marca 5 Krzysztof Korona Plan wykładu Wstęp. Prąd stały. Podstawowe pojęcia. Prawa Kirchhoffa. Prawo Ohma ().4 Przykłady prostych

Bardziej szczegółowo

LABORATORIUM OBWODÓW I SYGNAŁÓW

LABORATORIUM OBWODÓW I SYGNAŁÓW POLITECHNIKA WARSZAWSKA Instytut Radioelektroniki Zakład Radiokomunikacji WIECZOROWE STUDIA ZAWODOWE LABORATORIUM OBWODÓW I SYGNAŁÓW Ćwiczenie Temat: OBWODY PRĄDU SINUSOIDALNIE ZMIENNEGO Opracował: mgr

Bardziej szczegółowo

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude Podstawy Elektrotechniki i Elektroniki Opracował: Mgr inż. Marek Staude Część 2 Analiza obwodów w stanie ustalonym przy wymuszeniu sinusoidalnym Przypomnienie ostatniego wykładu Prąd i napięcie Podstawowe

Bardziej szczegółowo

PROTOKÓŁ POMIARY W OBWODACH PRĄDU PRZEMIENNEGO

PROTOKÓŁ POMIARY W OBWODACH PRĄDU PRZEMIENNEGO PROTOKÓŁ POMIAROWY LABORATORIUM OBWODÓW I SYGNAŁÓW ELEKTRYCZNYCH Grupa Podgrupa Numer ćwiczenia 4 Lp. Nazwisko i imię Data wykonania ćwiczenia Prowadzący ćwiczenie Podpis Data oddania sprawozdania Temat

Bardziej szczegółowo

WYKŁAD 14 PROSTOPADŁA FALA UDERZENIOWA

WYKŁAD 14 PROSTOPADŁA FALA UDERZENIOWA WYKŁAD 4 PROSTOPADŁA FALA UDERZENIOWA PROSTOPADŁA FALA UDERZENIOWA. ADIABATA HUGONIOTA. S 0 normal shock wave S Gazodynamika doszcza istnienie silnych nieciągłości w rzeływach gaz. Najrostszym rzyadkiem

Bardziej szczegółowo

Sprzęt i architektura komputerów

Sprzęt i architektura komputerów Krzysztof Makles Sprzęt i architektura komputerów Laboratorium Temat: Elementy i układy półprzewodnikowe Katedra Architektury Komputerów i Telekomunikacji Zakład Systemów i Sieci Komputerowych SPIS TREŚCI

Bardziej szczegółowo

BADANIE FILTRÓW. Instytut Fizyki Akademia Pomorska w Słupsku

BADANIE FILTRÓW. Instytut Fizyki Akademia Pomorska w Słupsku BADANIE FILTRÓW Cel ćwiczenia. Celem ćwiczenia jest zapoznanie się z właściwościami filtrów. Zagadnienia teoretyczne. Filtry częstotliwościowe Filtrem nazywamy układ o strukturze czwórnika, który przepuszcza

Bardziej szczegółowo

Katedra Silników Spalinowych i Pojazdów ATH ZAKŁAD TERMODYNAMIKI. Wyznaczanie stosunku c p /c v metodą Clementa-Desormesa.

Katedra Silników Spalinowych i Pojazdów ATH ZAKŁAD TERMODYNAMIKI. Wyznaczanie stosunku c p /c v metodą Clementa-Desormesa. Katedra Siników Sainowyc i Pojazdów ATH ZAKŁAD TERMODYNAMIKI Wyznaczanie stosunku c /c v etodą Ceenta-Desoresa. Wrowadzenie teoretyczne Stosunek cieła właściwego rzy stały ciśnieniu do cieła właściwego

Bardziej szczegółowo

LABORATORIUM ELEKTROTECHNIKI POMIAR PRZESUNIĘCIA FAZOWEGO

LABORATORIUM ELEKTROTECHNIKI POMIAR PRZESUNIĘCIA FAZOWEGO POLITECHNIKA ŚLĄSKA WYDZIAŁ TRANSPORTU KATEDRA LOGISTYKI I TRANSPORTU PRZEMYSŁOWEGO NR 1 POMIAR PRZESUNIĘCIA FAZOWEGO Katowice, październik 5r. CEL ĆWICZENIA Poznanie zjawiska przesunięcia fazowego. ZESTAW

Bardziej szczegółowo

Ćwiczenie: "Właściwości wybranych elementów układów elektronicznych"

Ćwiczenie: Właściwości wybranych elementów układów elektronicznych Ćwiczenie: "Właściwości wybranych elementów układów elektronicznych" Opracowane w ramach projektu: "Informatyka mój sposób na poznanie i opisanie świata realizowanego przez Warszawską Wyższą Szkołę Informatyki.

Bardziej szczegółowo

Prąd d zmienny. prąd zmienny -(ang.:alternating current, AC) prąd elektryczny, którego natężenie zmienia się w czasie.

Prąd d zmienny. prąd zmienny -(ang.:alternating current, AC) prąd elektryczny, którego natężenie zmienia się w czasie. Prąd d zmienny prąd zmienny -(ang.:alternating current, AC) prąd elektryczny, którego natężenie zmienia się w czasie. 1 Oś wartości natężenia prądu Oś czasu 2 Definicja natężenia prądu zmiennego i dq =

Bardziej szczegółowo

E1. OBWODY PRĄDU STAŁEGO WYZNACZANIE OPORU PRZEWODNIKÓW I SIŁY ELEKTROMOTORYCZNEJ ŹRÓDŁA

E1. OBWODY PRĄDU STAŁEGO WYZNACZANIE OPORU PRZEWODNIKÓW I SIŁY ELEKTROMOTORYCZNEJ ŹRÓDŁA E1. OBWODY PRĄDU STŁEGO WYZNCZNIE OPORU PRZEWODNIKÓW I SIŁY ELEKTROMOTORYCZNEJ ŹRÓDŁ tekst opracowała: Bożena Janowska-Dmoch Prądem elektrycznym nazywamy uporządkowany ruch ładunków elektrycznych wywołany

Bardziej szczegółowo

ĆWICZENIE NR 2 POMIARY W OBWODACH RLC PRĄDU PRZEMIENNEGO

ĆWICZENIE NR 2 POMIARY W OBWODACH RLC PRĄDU PRZEMIENNEGO ĆWENE N POMAY W OBWODAH PĄD PEMENNEGO el ćwczena: dośwadczalne sprawdzene prawa Oha, praw Krchhoffa zależnośc fazowych ędzy snsodalne zenny przebega prądów napęć w obwodach zawerających eleenty,,, oraz

Bardziej szczegółowo

POLITECHNIKA WROCŁAWSKA, WYDZIAŁ PPT I-21 LABORATORIUM Z PODSTAW ELEKTROTECHNIKI I ELEKTRONIKI 2 Ćwiczenie nr 10. Dwójniki RLC, rezonans elektryczny

POLITECHNIKA WROCŁAWSKA, WYDZIAŁ PPT I-21 LABORATORIUM Z PODSTAW ELEKTROTECHNIKI I ELEKTRONIKI 2 Ćwiczenie nr 10. Dwójniki RLC, rezonans elektryczny POTEHNKA WOŁAWSKA, WYDZAŁ PPT - ABOATOM Z PODSTAW EEKTOTEHNK EEKTONK Ćwiczenie nr. Dwójniki, rezonans elektryczny el ćwiczenia: Podstawowym celem ćwiczenia jest zapoznanie studentów właściwościami elementów

Bardziej szczegółowo

Interpolacja. Interpolacja wykorzystująca wielomian Newtona

Interpolacja. Interpolacja wykorzystująca wielomian Newtona Interpolacja Funkcja y = f(x) jest dana w postaci dyskretnej: (1) y 1 = f(x 1 ), y 2 = f(x 2 ), y 3 = f(x 3 ), y n = f(x n ), y n +1 = f(x n +1 ), to znaczy, że w pewny przedziale x 1 ; x 2 Ú ziennej niezależnej

Bardziej szczegółowo

WYDZIAŁ FIZYKI, MATEMATYKI I INFORMATYKI POLITECHNIKI KRAKOWSKIEJ, Instytut Fizyki LABORATORIUM PODSTAW ELEKTROTECHNIKI, ELEKTRONIKI I MIERNICTWA

WYDZIAŁ FIZYKI, MATEMATYKI I INFORMATYKI POLITECHNIKI KRAKOWSKIEJ, Instytut Fizyki LABORATORIUM PODSTAW ELEKTROTECHNIKI, ELEKTRONIKI I MIERNICTWA WYDZIAŁ FIZYKI, MATEMATYKI I INFORMATYKI POLITECHNIKI KRAKOWSKIEJ, Instytut Fizyki LABORATORIUM PODSTAW ELEKTROTECHNIKI, ELEKTRONIKI I MIERNICTWA ĆWICZENIE 10 OBWODY RC: 10.1. Impedancja i kąt fazowy w

Bardziej szczegółowo

Wykorzystanie karty dźwiękowej do badania układów elektrycznych RL i RC w obwodach prądu przemiennego

Wykorzystanie karty dźwiękowej do badania układów elektrycznych RL i RC w obwodach prądu przemiennego Wykorzystanie karty dźwiękowej do badania układów elektrycznych L i C w obwodach prądu przemiennego Cel ćwiczenia Celem ćwiczenia jest stworzenie aplikacji, której zadaniem będzie wykorzystanie komputera

Bardziej szczegółowo

st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 4 OBWODY TRÓJFAZOWE

st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 4 OBWODY TRÓJFAZOWE Politechnika Gdańska Wydział Elektrotechniki i Automatyki 1. Wstęp st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 4 OBWODY TRÓJFAZOWE Układem

Bardziej szczegółowo

ELEMENTY RLC W OBWODACH PRĄDU SINUSOIDALNIE ZMIENNEGO

ELEMENTY RLC W OBWODACH PRĄDU SINUSOIDALNIE ZMIENNEGO Politechnika Białostocka Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii nstrukcja do zajęć laboratoryjnych ELEMENTY RLC W OBWODACH PRĄD SNSODALNE ZMENNEGO Numer ćwiczenia E0 Opracowanie:

Bardziej szczegółowo

BADANIE ELEMENTÓW RLC

BADANIE ELEMENTÓW RLC KATEDRA ELEKTRONIKI AGH L A B O R A T O R I U M ELEMENTY ELEKTRONICZNE BADANIE ELEMENTÓW RLC REV. 1.0 1. CEL ĆWICZENIA - zapoznanie się z systemem laboratoryjnym NI ELVIS II, - zapoznanie się z podstawowymi

Bardziej szczegółowo

Pomiar podstawowych wielkości elektrycznych

Pomiar podstawowych wielkości elektrycznych Instytut Fizyki ul. Wielkopolska 15 70-451 Szczecin 1 Pracownia Elektroniki. Pomiar podstawowych wielkości elektrycznych........ (Oprac. dr Radosław Gąsowski) Zakres materiału obowiązujący do ćwiczenia:

Bardziej szczegółowo

Laboratorium Półprzewodniki Dielektryki Magnetyki Ćwiczenie nr 8

Laboratorium Półprzewodniki Dielektryki Magnetyki Ćwiczenie nr 8 Laboratorium Półprzewodniki Dielektryki Magnetyki Ćwiczenie nr 8 Analiza właściwości zmiennoprądowych materiałów i elementów elektronicznych I. Zagadnienia do przygotowania:. Wykonanie i przedstawienie

Bardziej szczegółowo

Badanie zjawiska rezonansu elektrycznego w obwodzie RLC

Badanie zjawiska rezonansu elektrycznego w obwodzie RLC Politechnika Łódzka FTIMS Kierunek: Informatyka rok akademicki: 2008/2009 sem. 2. Termin: 6 IV 2009 Nr. ćwiczenia: 321 Temat ćwiczenia: Badanie zjawiska rezonansu elektrycznego w obwodzie RLC Nr. studenta:...

Bardziej szczegółowo

LABORATORIUM PODZESPOŁÓW ELEKTRONICZNYCH. Ćwiczenie nr 2. Pomiar pojemności i indukcyjności. Szeregowy i równoległy obwód rezonansowy

LABORATORIUM PODZESPOŁÓW ELEKTRONICZNYCH. Ćwiczenie nr 2. Pomiar pojemności i indukcyjności. Szeregowy i równoległy obwód rezonansowy LABORATORIUM PODZESPOŁÓW ELEKTRONICZNYCH Ćwiczenie nr 2 Pomiar pojemności i indukcyjności. Szeregowy i równoległy obwód rezonansowy Wykonując pomiary PRZESTRZEGAJ przepisów BHP związanych z obsługą urządzeń

Bardziej szczegółowo

WYKŁAD 2 Pojęcia podstawowe obwodów prądu zmiennego

WYKŁAD 2 Pojęcia podstawowe obwodów prądu zmiennego Pracownia Wstępna - - WYKŁAD 2 Pojęcia podstawowe obwodów prądu zmiennego Układy złożone z elementów biernych Bierne elementy elektroniczne to : opór R: u ( = Ri( indukcyjność L: di( u( = L i pojemność

Bardziej szczegółowo

Badanie generatora RC

Badanie generatora RC UKŁADY ELEKTRONICZNE Instrkcja do ćwiczeń laboratoryjnych Badanie generatora RC Laboratorim Układów Elektronicznych Poznań 2008 1. Cel i zakres ćwiczenia Celem ćwiczenia jest zapoznanie stdentów z bdową

Bardziej szczegółowo

DANE: wartość skuteczna międzyprzewodowego napięcia zasilającego E S = 230 V; rezystancja odbiornika R d = 2,7 Ω; indukcyjność odbiornika.

DANE: wartość skuteczna międzyprzewodowego napięcia zasilającego E S = 230 V; rezystancja odbiornika R d = 2,7 Ω; indukcyjność odbiornika. Zadanie 4. Prostownik mostkowy 6-pulsowy z tyrystorami idealnymi o komutacji natychmiastowej zasilany z sieci 3 400 V, 50 Hz pracuje z kątem opóźnienia załączenia tyrystorów α = 60º. Obciążenie prostownika

Bardziej szczegółowo

Wymagania edukacyjne: Elektrotechnika i elektronika. Klasa: 1Tc TECHNIK MECHATRONIK. Ilość godzin: 4. Wykonała: Beata Sedivy

Wymagania edukacyjne: Elektrotechnika i elektronika. Klasa: 1Tc TECHNIK MECHATRONIK. Ilość godzin: 4. Wykonała: Beata Sedivy Wymagania edukacyjne: Elektrotechnika i elektronika Klasa: 1Tc TECHNIK MECHATRONIK Ilość godzin: 4 Wykonała: Beata Sedivy Ocena Ocenę niedostateczną uczeń który Ocenę dopuszczającą Wymagania edukacyjne

Bardziej szczegółowo

Autor: Franciszek Starzyk. POJĘCIA I MODELE potrzebne do zrozumienia i prawidłowego wykonania

Autor: Franciszek Starzyk. POJĘCIA I MODELE potrzebne do zrozumienia i prawidłowego wykonania WYDZIAŁ FIZYKI, MATEMATYKI I INFORMATYKI POLITECHNIKI KRAKOWSKIEJ, Instytut Fizyki LABORATORIUM PODSTAW ELEKTROTECHNIKI, ELEKTRONIKI I MIERNICTWA ĆWICZENIE 9 OBWODY RC: 9.1. Reaktancja pojemnościowa 9.2.

Bardziej szczegółowo

Ć W I C Z E N I E N R E-5

Ć W I C Z E N I E N R E-5 NSTYTUT FZYK WYDZAŁ NŻYNER PRODUKCJ TECHNOLOG MATERAŁÓW POLTECHNKA CZĘSTOCHOWSKA PRACOWNA ELEKTRYCZNOŚC MAGNETYZMU Ć W C Z E N E N R E-5 POMAR POJEMNOŚC KONDENSATORA METODĄ ROZŁADOWANA . Zagadnienia do

Bardziej szczegółowo

BADANIE PROCESÓW ŁADOWANIA I ROZŁADOWANIA KONDENSATORA

BADANIE PROCESÓW ŁADOWANIA I ROZŁADOWANIA KONDENSATORA ĆWIENIE 65 BADANIE PESÓW ŁADWANIA I ŁADWANIA KNDENSATA el ćwiczenia: Wyznaczenie przebiegów ładowania i rozładowania kondensatora oraz wyznaczenie stałej czasowej układów agadnienia: prawa hma i Kirchhoffa,

Bardziej szczegółowo

ĆWICZENIE 6 BADANIE OBWODÓW MAGNETYCZNYCH

ĆWICZENIE 6 BADANIE OBWODÓW MAGNETYCZNYCH ĆWCZENE 6 BADANE OBWODÓW MAGNETYCZNYCH Cel ćwiczenia: poznanie procesów fizycznych zachodzących, w cewce nieliniowej i jej własności, przez wyznaczenie rezystancji oraz indukcyjności cewki w różnych warunkach

Bardziej szczegółowo

rezonansu rezonansem napięć rezonansem szeregowym rezonansem prądów rezonansem równoległym

rezonansu rezonansem napięć rezonansem szeregowym rezonansem prądów rezonansem równoległym Lekcja szósta poświęcona będzie analizie zjawisk rezonansowych w obwodzie RLC. Zjawiskiem rezonansu nazywamy taki stan obwodu RLC przy którym prąd i napięcie są ze sobą w fazie. W stanie rezonansu przesunięcie

Bardziej szczegółowo

Ćwiczenie 2. BADANIE DWÓJNIKÓW NIELINIOWYCH STANOWISKO I. Badanie dwójników nieliniowych prądu stałego

Ćwiczenie 2. BADANIE DWÓJNIKÓW NIELINIOWYCH STANOWISKO I. Badanie dwójników nieliniowych prądu stałego Laboratorium elektrotechniki 19 Ćwiczenie BDNE DWÓJNKÓW NELNOWYCH STNOWSKO Badanie dwójników nieliniowych prądu stałego W skład zestawu ćwiczeniowego wchodzą dwa zasilacze stałoprądowe (o regulowanym napięciu

Bardziej szczegółowo

Ćwiczenie: "Pomiary mocy w układach trójfazowych dla różnych charakterów obciążenia"

Ćwiczenie: Pomiary mocy w układach trójfazowych dla różnych charakterów obciążenia Ćwiczenie: "Pomiary mocy w układach trójfazowych dla różnych charakterów obciążenia" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską

Bardziej szczegółowo

I= = E <0 /R <0 = (E/R)

I= = E <0 /R <0 = (E/R) Ćwiczenie 28 Temat: Szeregowy obwód rezonansowy. Cel ćwiczenia Zmierzenie parametrów charakterystycznych szeregowego obwodu rezonansowego. Wykreślenie krzywej rezonansowej szeregowego obwodu rezonansowego.

Bardziej szczegółowo

REZONANS W UKŁADZIE SZEREGOWYM RLC WYZNACZANIE WARTOŚCI REZYSTANCJI, INDUKCJI I POJEMNOŚCI.

REZONANS W UKŁADZIE SZEREGOWYM RLC WYZNACZANIE WARTOŚCI REZYSTANCJI, INDUKCJI I POJEMNOŚCI. EZONANS W KŁADZIE SZEEGOWYM WYZNAZANIE WATOŚI EZYSTANJI, INDKJI I POJEMNOŚI. ele ćwiczenia:. Wyznaczenie krzywych rezonansowych dla szeregowego obwodu elektrycznego,. Określenie paraetrów krzywej rezonansowej,

Bardziej szczegółowo

INDUKCJA ELEKTROMAGNETYCZNA

INDUKCJA ELEKTROMAGNETYCZNA Wstęp INDKCJA ELEKTROMAGNETYCZNA Zajęcia wyrównawcze, Częstochowa, 009/00 Ewa Jakubczyk Michalel Faraday (79-867) odkrył w 83roku zjawisko indukcji elektromagnetycznej. Oto pierwsza prądnica -generator

Bardziej szczegółowo

Wzmacniacz operacyjny

Wzmacniacz operacyjny ELEKTRONIKA CYFROWA SPRAWOZDANIE NR 3 Wzmacniacz operacyjny Grupa 6 Aleksandra Gierut CEL ĆWICZENIA Celem ćwiczenia jest zapoznanie się z podstawowymi zastosowaniami wzmacniaczy operacyjnych do przetwarzania

Bardziej szczegółowo

Impedancje i moce odbiorników prądu zmiennego

Impedancje i moce odbiorników prądu zmiennego POLITECHNIKA ŚLĄSKA WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH LABORATORIUM ELEKTRYCZNE Impedancje i moce odbiorników prądu zmiennego (E 6) Opracował: Dr inż.

Bardziej szczegółowo