WYDZIAŁ PPT LABORATORIUM Z ELEKTROTECHNIKI I ELEKTRONIKI D-1 Ćwiczenie nr 6. Okresowe sygnały elektryczne, parametry amplitudowe

Wielkość: px
Rozpocząć pokaz od strony:

Download "WYDZIAŁ PPT LABORATORIUM Z ELEKTROTECHNIKI I ELEKTRONIKI D-1 Ćwiczenie nr 6. Okresowe sygnały elektryczne, parametry amplitudowe"

Transkrypt

1 WYDZIŁ PP LBORORIUM Z ELEKROECHNIKI I ELEKRONIKI D- Ćwiczenie nr 6. Okresowe sygnały elekryczne, paramery ampliudowe Cel ćwiczenia: Celem ćwiczenia jes zapoznanie ćwiczących z analogowymi sygnałami zmiennymi, ich podsawowymi paramerami czasowymi i ampliudowymi oraz sposobem obliczeniowym jak i pomiarowym wyznaczania warości ych paramerów. Dodakowo realizacja ćwiczenia pozwala na ugrunowanie umiejęności posługiwania się oscyloskopem analogowym jako narzędziem pomiarowym. Program ćwiczenia W celu realizacji ćwiczenia należy:. Zmonować układ pomiarowy jak na schemacie.. W celu uruchomienia makiey podłączyć wyjście ransformaora zasilającego (wyk współosiowy na kablu ransformaora) do gniazda na płycie ylniej makiey MD- (rysunek ). Przełącznik dwupozycyjny, umożliwiający wybór zasilania, przełączyć w pozycję Deekory (dźwignia przełącznika dwupozycyjnego usawiona w prawo pozycja ). Włączyć ransformaor do sieci zasilającej V/5Hz. Konrolka na płycie czołowej makiey MD- świeci świałem o zielonej barwie. kabel koncenryczny wyk BNC - wyk BNC (szuk ) kabel wyk "radiowy"- wyk "radiowy" (szuk ) Sieć V / 5Hz P łya ylnia makiey Moż e o być generaor auonomiczny lub generaor wbudowany do oscyloskopu ransformaor zasilają cy Generaor funkcyjny 5V-V/.5 /5Hz rójnik BNC Wejście sygnału badanego Zasilanie Makiea dydakyczna MD- wyjś cie oscyloskop P łya czołowa makiey wyjś cie MEEX Oscyloskop Y Y Przyrzą d analogowy "MEEX" Schema. Sposób połączenia urządzeń na sanowisku pomiarowym Gniazdo współosiowe do podłączenia ransformaora zasilającego ZSILNIE MKIEY V/5Hz Sabilizaor Wejście sygnału z generaora Deekory Przełącznik dwupozycyjny Zasilanie. zasilanie układu "deekory". zasilanie układu "abilizaor" Przełącznik dwupozycyjny Wybór rodzaju wejścia. Wejście zmiennoprądowe. Wejście sałoprądowe ( = ) ( ~ ) Gniazdo BNC do podłączenia sygnału z generaora funkcyjnego (sygnał mierzony) Rys. Przełączniki i gniazda na płycie ylniej makiey MD-. Wprowadzić nasawy na generaorze sygnałowym akie, aby dosarczany przez niego sygnał miał nasępujące paramery; kszał sinusoidalny, częsoliwość f =(±,5)kHz, ampliudę d = u =(±,5)V, podpolaryzowanie sygnałem sałym U dc = V, przy usawianiu wymaganych paramerów posługiwać się obrazem sygnału na ekranie lampy oscyloskopowej. Sygnał z generaora doprowadzić (rysunek ) do gniazda BNC umieszczonego na płycie ylniej makiey MD-. Przełącznikiem dwupozycyjnym na polu Wejście sygnału z generaora usawić rodzaj wejścia -zmiennoprądowe, jeżeli przedmioem pomiaru są paramery ampliudowe sygnału bez składowej sałej, -sałoprądowe, jeżeli przedmioem pomiaru są paramery sygnału zmiennoprądowego nałożonego na sygnał sałoprądowy. Po usawieniu sygnał z generaora dołączyć również do wejścia Y oscyloskopu. 4. Na płycie czołowej urządzenia MKIE MD- (rysunek ) przełącznik dwupozycyjny na polu SYGNŁ BDNY usawić w pozycji w lewo, a przełącznik obroowy (czeropozycyjny) w pozycji Srona z 5

2 WYDZIŁ PP LBORORIUM Z ELEKROECHNIKI I ELEKRONIKI D- Ćwiczenie nr 6. Okresowe sygnały elekryczne, paramery ampliudowe. Przy akich usawieniach przełączników na polu SYGNŁ BDNY przełączać przełącznik WROŚĆ MIERZON kolejno od pozycji do pozycji 4 odczyując za każdym usawieniem ego przełącznika warość napięcia sałego wskazywaną przez mulimer cyfrowy MEEX. Jednocześnie należy rejesrować (odrysować) kszał sygnału obserwowanego w kanale oscyloskopu. Odrysowując kszał sygnału należy na szkicu zaznaczyć wszyskie isone warości wymiarów obrazu, jak również nasawy usawione pokręłami oscyloskopu. Należy pamięać, o usawieniu pokręeł regulaorów płynnej regulacji czułości odchylania pionowego, jak również płynnej regulacji szybkości podsawy czasu, w pozycji kalibrowane! W przeciwnym razie wyznaczone na podsawie wymiarów obrazu warości ampliud bądź czasów analizowanego sygnału, będą błędne. Odczyywane z mulimeru cyfrowego warości napięcia są równe, co do warości odpowiednim paramerom ampliudowym sygnału mierzonego (kszał ego sygnału, kórego dany paramer jes mierzony, jes jednocześnie za każdym razem pokazywany na ekranie lampy oscyloskopowej jako obraz sygnału w kanale oscyloskopu) w ym eapie ćwiczenia mierzone są paramery ampliudowe sygnału nie poddanego deekcji lub inaczej sygnału nie poddanego procesowi prosowania. Przełącznik dwupozycyjny Selekcja - sygnał bez prosowania (dźwignia w lewo) sygnał po prosowaniu ( dźwignia w prawo) Przełącznik czeropozycyjny Selekcja rodzaju prosowania - sygnał bez prosowania (ważne ylko przy dźwidni przeł. dwupoz. w lewo),, 4 - sygnał z prosowaniem (ważne ylko przy dźwigni przeł. dwupoz. w prawo) Prosowanie - dwupołówkowe - jedno[połowkopwe (dodanie) 4- jednopołówkowe (ujemne) Gniazdo BNC na kórym wysępuje sygnał przewarzany (do obserwacji) Czeropozycyjny przełącznik rodzaju warości mierzonej (-skueczna, -średnia, -szczyowa, 4-międzyszczyowa) SYGNŁ BDNY Do oru Y oscyloskopu MKIE MD- WROŚĆ MIERZON Zaciski sygnału napięcia sałego o warości równej warości mierzonego parameru Sygnalizaor zasilania Ma świecić na zielono!! Rys. Pokręła na płycie czołowej makiey MD- i ich funkcje 5. W kolejnym eapie ćwiczenia przełącznik przechylny na polu SYGNŁ BDNY przełączyć w prawo. Przełącznik obroowy w pozycję (prosowanie dwupołówkowe). Dla akiego usawienia przełączników na polu SYGNŁ BDNY przełączać kolejno przełącznik WROŚĆ MIERZON od pozycji do pozycji 4 odczyując za każdym razem wskazania mulimeru cyfrowego oraz rejesrując kszał sygnału (obraz w kanale oscyloskopu). 6. Po wykonaniu pomiarów dla sygnału prosowanego dwupołówkowo, przełącznik obroowy na polu SYGNŁ BDNY usawić w pozycji (prosowanie jednopołówkowe dodania część fali sygnału). Ponownie zmierzyć warości paramerów ampliudowych sygnału oraz rejesrować kszał sygnału. 7. e same pomiary powórzyć dla sygnału wyprosowanego jednopołówkowo, ale przy prosowaniu ujemnej części fali sygnału (przełącznik obroowy na polu SYGNŁ BDNY w pozycji 4 ). 8. Zmienić kszał sygnału z sinusoidalnego na prosokąny (pozosałe paramery sygnału pozosają bez zmian) i powórzyć całą procedurę pomiarową od punku 4 do punku 7 programu ćwiczenia. 9. Zmienić kszał sygnału z prosokąnego na rójkąny (pozosałe paramery sygnału pozosają bez zmian) i powórzyć całą procedurę pomiarową od punku 4 do punku 7 programu ćwiczenia.. Wyniki pomiarów zesawić w formie abeli. W sprawozdaniu wyliczyć warości odpowiednich paramerów ampliudowych dla sygnałów wskazanych przez prowadzącego i porównać wyliczone warości z warościami zmierzonymi w czasie ćwiczenia. Wyliczyć warości odpowiednich współczynników szczyu i kszału na podsawie wyników pomiarów i porównać z współczynnikami wynikającymi z obliczeń eoreycznych. Przy porównywaniu wykazać jak duży wpływ ma dokładność pomiaru mulimeru cyfrowego oraz dokładność wyznaczenia warości sygnału z obrazu widzianego na ekranie oscyloskopu. Określić, jaki jes wpływ składowej sałej sygnału zmiennego na warości wyznaczanych współczynników ampliudowych sygnału zmiennego? Odpowiedź uzasadnić Wyniki analizy przedsawić w sprawozdaniu w punkcie uwagi i wnioski końcowe. Srona z 5

3 WYDZIŁ PP LBORORIUM Z ELEKROECHNIKI I ELEKRONIKI D- Ćwiczenie nr 6. Okresowe sygnały elekryczne, paramery ampliudowe Przykładowe abele pomiarowe Kszał sygnału: sinusoida, (prosoką?, rójką?) częsoliwość: khz, d = u = [V] Paramer ampliudowy Deekcja sygnału Sygnał bez deekcji U sk [V] U śr [V] U szczy [V] U pp [V] Warości napięć sałych zmierzonych mulimerem cyfrowym,78,,,999 Kszał sygnału obserwowanego na ekranie oscyloskopu (kanał ) [V] dz 4 dz / S y =,5[V/dz] [V] dz 4 dz / S y =,5[V/dz] [V] dz 4 dz / S y =,5[V/dz] [V] dz 4 dz / S y =,5[V/dz] Sygnał wyprosowany Deekcja dwupołówkowa Sygnał wyprosowany Deekcja jednopołówkowa Dodania połówka sygnału Sygnał wyprosowany Deekcja jednopołówkowa Ujemna połówka sygnału Warości napięć sałych zmierzonych mulimerem cyfrowym Kszał sygnału obserwowanego na ekranie oscyloskopu (kanał ) Warości napięć sałych zmierzonych mulimerem cyfrowym Kszał sygnału obserwowanego na ekranie oscyloskopu (kanał ) Warości napięć sałych zmierzonych mulimerem cyfrowym Kszał sygnału obserwowanego na ekranie oscyloskopu (kanał ) Wprowadzenie Zachodzącą w czasie zmianę wielkości fizycznych, jakimi są prąd i napięcie nazywamy sygnałem elekrycznym. Najczęściej spoykane sygnały elekryczne należą do grupy ak zwanych sygnałów analogowych (ciągłych w czasie). ym sygnałom poświęcone jes niniejsze ćwiczenie. Z sygnałem analogowym bezpośrednio związane są jego paramery czasowe (rysunek ) i ampliudowe (rysunek 4). Paramery czasowe analogowego sygnału elekrycznego Okres sygnału periodycznego = f Czas rwania dodaniej części sygnału Czas rwania ujemnej części sygnału Faza począkowa sygnału Pole dodanie S + d Pole ujemne S u - = d + u Rys. Zesawienie podsawowych paramerów czasowych sygnału zmiennego i ich inerpreacja fizyczna na przykładzie sygnału prosokąnego o różnych czasach rwania dodaniej i ujemnej części sygnału. Omawiany sygnał ma kszał fali prosokąnej, niesymerycznej względem osi czasu, jak również o różnych czasach rwania dodaniej ( τ ) i ujemnej części ( τ ) fali. W podanym przykładzie ( -τ )>τ. Ławo zauważyć, że zarówno dodania jak i ujemna część fali mają swoją warość maksymalną; d i u. Warość d nazywana jes ampliudą dodanią lub dodanią warością szczyową sygnału, a warość u ampliudą ujemną Srona z 5

4 WYDZIŁ PP LBORORIUM Z ELEKROECHNIKI I ELEKRONIKI D- Ćwiczenie nr 6. Okresowe sygnały elekryczne, paramery ampliudowe lub ujemną warością szczyową. Zaem w przypadku sygnału zmiennego w czasie, jedną z wielkości opisujących en sygnał są jego warości maksymalne, czyli ampliudy lub inaczej warości szczyowe. Suma warości bezwzględnych ampliud, dodaniej d i ujemnej u przebiegu przemiennego, jes równa warości wielkości oznaczonej symbolem ss, nazywanej inaczej warością międzyszczyową (warość szczy szczy). Obie wielkości j. warości ampliud d, u, jak i warość międzyszczyowa ss sygnałów przemiennych, są prose w inerpreacji (parz rysunek 4). Oprócz wyżej wymienionych, zmienny w czasie sygnał, charakeryzują jeszcze rzy kolejne wielkości. Nazywamy je odpowiednio: Warość skueczna sygnału - nazwana w niniejszym opracowaniu jako sk (w nazewnicwie angielskojęzycznym oznaczana symbolem eff ). Reprezenuje ona warość sygnału zmiennego, kóry może wykonać aką samą pracę jak sygnał sałoprądowy spełniający nasępujący warunek DC = sk (gdzie DC jes warością napięcia lub prądu sałego). Warość średnia z modułu warości funkcji - warość. Jes ona równa warości średniej przebiegu przemiennego po prosowaniu jego dodaniej i ujemnej części i w niniejszym opracowaniu oznaczana jes symbolem śrb. aki sposób przemiany sygnału nosi nazwę prosowania pełno-okresowego lub prosowania dwu-połówkowego. Na rysunku 4 warość średnia z odpowiada warości średniej wyliczonej z sumy warości pól dodaniej S i ujemnej S części sygnału. Jes o warość (S +S ) rozłożona równomiernie na odcinku równym, co do długości, okresowi sygnału. Warość średnia sygnału, jes warością wyliczaną za jeden okres dla sygnału nie poddanego procesowi prosowania (deekcji). Na rysunku 4 omawiana warość średnia sygnału, odpowiada warości średniej sumy pola powierzchni dodaniej S i ujemnej S części sygnału zsumowanych z przynależnymi znakami (S S ). Warość a jes eż rozłożona równomiernie na odcinku równym okresowi sygnału. W opracowaniu a warość średnia jes oznaczana symbolem śr. Ławo zauważyć, że pomiędzy warościami wyżej wymienionych wielkości charakerysycznych dla sygnału, o kszałcie jak na rysunku 4 słuszne są relacje: ss > d > sk > śrb > śr () W przypadku sygnałów o kszałcie innym niż pokazany na rysunku 4, podane w zależności () relacje mogą być inne. Warość każdej z wyżej omówionych wielkości charakerysycznych dla przebiegów zmiennych, może być przedmioem pomiaru. Dla każdego sygnału okresowego, można wyznaczyć warość liczbową określającą sosunek warości skuecznej ( sk ) ego przebiegu do jego warości średniej bezwzględnej ( śrb ). sk () śrb Wyznaczony według wzoru () współczynnik K nosi nazwę współczynnika kszału. Podobnie można wyznaczyć sosunek warości maksymalnej sygnału ( d lub u ) do jego warości skuecznej sk, czyli: F = () sk. gdzie: jes przyjęą do obliczeń bezwzględną warością maksymalną. Dla przebiegu symerycznego słuszne jes, że d = u =. Wyliczony według równania () współczynnik F nosi nazwę współczynnika szczyu. Między współczynnikami szczyu i kszału słuszne są relacje K, F, F K. Z podanych powyżej uwag ławo wywnioskować, że ak zdefiniowane współczynniki kszału i szczyu są różne dla sygnałów o różnych kszałach. Dla sygnałów o idenycznych kszałach, niezależnie od częsoliwości ych sygnałów ich ampliudy i fazy począkowej, współczynniki K i F mają ą samą warość. Warości współczynników K i F, dla kilku podsawowych kszałów sygnałów elekrycznych zesawiono w abeli. Oporność (w ogólnym przypadku impedancja) wewnęrzna źródła sygnału zmienno-prądowego jes jednym z elemenów określających wydajność energeyczną źródła. Idealne źródło napięciowe ma oporność (impedancję) wewnęrzną o warości równej zero (R źr = ). Oznacza o, że napięcie na zaciskach źródła ma sałą warość równą warości SEM (SEM-siła elekromooryczna) ego źródła. Warość napięcia Srona 4 z 5

5 WYDZIŁ PP LBORORIUM Z ELEKROECHNIKI I ELEKRONIKI D- Ćwiczenie nr 6. Okresowe sygnały elekryczne, paramery ampliudowe wyjściowego jes niezależna od warości oporności obciążenia dołączonego do zacisków idealnego źródła napięcia a więc nie zależy od warości prądu pobieranego ze źródła. Paramery ampliudowe analogowego sygnału elekrycznego Maksymalna warość dodania (am pliuda dodania ) d. Warość ś rednia sygnału śr. śr = u ( ) d Maksymalna warość ujemna (ampliuda ujemna ) u. Warość skueczna sygnału sk. sk = u ( ) d Warość mię dzyszczyowa ss = d + u Warość ś rednia z modułu funkcji ś rb. śrb = u ( ) d Pole dodanie S Pole dodanie S d ss sk śrb śr τ u czas Pole ujemne S Rys 4. Zesawienie podsawowych paramerów ampliudowych sygnałów zmiennych, opisujące je zależności maemayczne, przykład ilusrujący fizyczne znaczenie podsawowych paramerów ampliudowych (na przykładzie sygnału prosokąnego niesymerycznych ampliudach dodaniej i ujemnej oraz różnych czasach ich rwania). abela. Zesawienie współczynników szczyu i kszału dla wybranych sygnałów zmiennych. Lp. Kszał sygnału Sinus Wzory określające współczynniki F = π 8 Warość liczbowa Lp. Kszał sygnału F = Połowa sinusoidy, prosowanie jednopołówkowe Wzory określające współczynniki F = π Warość liczbowa F=,57 rójką Prosoką F = F =.7.55 F = 5 6 Wyprosowana sinusoida Wyprosowany rójką F = π F = F=,44 K=, F =,7 K=,55 Rzeczywise źródło napięciowe ma oporność wewnęrzną większą od zera (R źr >). Dołączenie do rzeczywisego źródła oporności obciążenia R ob powoduje zamknięcie obwodu i inicjuje w ym obwodzie przepływ prądu (prąd obciążenia). Warość prądu wyznaczamy z prawa Ohma znając warość SEM źródła oraz warość sumy oporności wysępujących w obwodzie przepływu prądu. W najprosszym przypadku jes Srona 5 z 5

6 WYDZIŁ PP LBORORIUM Z ELEKROECHNIKI I ELEKRONIKI D- Ćwiczenie nr 6. Okresowe sygnały elekryczne, paramery ampliudowe o suma warości szeregowo połączonych oporności R źr i R ob. Prakycznie, każdy bardziej złożony obwód obciążający źródło, można sprowadzić do ego najprosszego przypadku. Prąd obciążenia, przepływając przez oporność wewnęrzną źródła powoduje, powsanie spadku napięcia na ej oporności (prawo Ohma). Wiemy, że suma spadków napięć w zamknięym oczku jes równa zeru (prawo Kirchhoffa). Zaem można bez problemów wyznaczyć warość napięcia wysępującego na zaciskach rzeczywisego źródła napięciowego. Z wyliczeń wynika, że warość napięcia na zaciskach wyjściowych rzeczywisego źródła napięcia jes ym mniejsza od warości SEM źródła im większa jes warość oporności wewnęrznej źródła oraz im większa jes warość prądu pobieranego ze źródła. Spadek napięcia wysępujący na oporności wewnęrznej źródła oznacza sraę energii. Warość ej energii jes wpros proporcjonalna do warości oporności wewnęrznej źródła napięcia oraz kwadrau warości skuecznej prądu płynącego przez ą oporność. Idealne źródło prądowe ma oporność wewnęrzną nieskończenie dużą (R źr = ). Oznacza o, że idealne źródło prądu dosarcza do obciążenia sałej warości prądu niezależnej od warości oporności obciążenia dołączonego do ego źródła. Zadania konrolne (minima programowe do przygoowania) Minimalny zakres wiadomości eoreycznych sudena przysępującego realizacji do ćwiczenia laboraoryjnego sygnały zmiennoprądowe doyczy zagadnień akich jak: pojęcie sygnału elekrycznego zmiennego i sałego, jednoski napięcia i prądu (wielokroności i pod-wielokroności ych jednosek), znajomość i umiejęność inerpreacji znaczenia pojęć paramery czasowe sygnału oraz paramery ampliudowe sygnału, znajomość sposobu obliczeniowego i doświadczalnego (na podsawie obrazu sygnału na ekranie lampy oscyloskopowej) wyznaczania warości niekórych paramerów czasowych i ampliudowych sygnałów analogowych (w szczególności dla sygnałów o kszałcie sinusoidy, prosokąa i rójkąa), rozumienie procesu prosowania (deekcji) sygnału. Wskazane są również wiadomości z zakresu; oporność wewnęrzna źródła sygnału zmienno-prądowego, oporność wewnęrzna idealnego źródła napięcia i idealnego źródła prądu, prose schemay zasępcze źródeł idealnych i rzeczywisych, wpływ warości oporności wewnęrznej źródła na warość sygnału wysępującego na jego zaciskach, prawo Ohma, prawa Kirchhoffa, pojęcie impedancji (część rzeczywisa i urojona impedancji, zasady łączenia oporności (połączenie szeregowe i równoległe). Wykonanie ćwiczenia wymaga wcześniejszego opanowania w sopniu, co najmniej dosaecznym; umiejęności prakycznej obsługi oscyloskopu, prosego generaora funkcyjnego (np. zabudowanego we wspólnej obudowie z oscyloskopem) oraz mulimeru cyfrowego. Lieraura.. Jellonek, Z. Karkowski.: Miernicwo radioechniczne. Wyd. III, WN, Warszawa 97r.. Praca zbiorowa.: Elekroechnika i elekronika dla nieelekryków. WN, Warszawa 97r.. S. Bolkowski.: eoria obwodów elekrycznych. WN, Warszawa 995r. 4. Maeriał z wykładu Podsawy Elekroechniki i Elekroniki Zesaw przyrządów pomiarowych. Oscyloskop analogowy, dwukanałowy sz.. Generaor funkcyjny G-4 lub wbudowany w oscyloskop sz.. Mulimer cyfrowy ypu MEEX sz. 4. Makiea dydakyczna MD- sz. 5. ransformaor zasilający 5-V/,5/5Hz sz. 6. rójnik BNC sz. 7. Kabel koncenryczny wyk BNC-wyk BNC sz. 8. Kabel wyk radiowy-wyk radiowy sz. Opracował: Pior Ruszel Insyu Inżynierii Biomedycznej i Pomiarowej Wydziału PP Poliechniki Wrocławskiej Srona 6 z 5

Parametry czasowe analogowego sygnału elektrycznego. Czas trwania ujemnej części sygnału (t u. Pole dodatnie S 1. Pole ujemne S 2.

Parametry czasowe analogowego sygnału elektrycznego. Czas trwania ujemnej części sygnału (t u. Pole dodatnie S 1. Pole ujemne S 2. POLIECHNIK WROCŁWSK, WYDZIŁ PP I- LBORORIUM Z PODSW ELEKROECHNIKI I ELEKRONIKI Ćwiczenie nr 9. Pomiary podsawowych paramerów przebiegów elekrycznych Cel ćwiczenia: Celem ćwiczenia jes zapoznanie ćwiczących

Bardziej szczegółowo

POLITECHNIKA WROCŁAWSKA, WYDZIAŁ PPT I-21 LABORATORIUM Z PODSTAW ELEKTROTECHNIKI I ELEKTRONIKI 2 Ćwiczenie nr 8. Generatory przebiegów elektrycznych

POLITECHNIKA WROCŁAWSKA, WYDZIAŁ PPT I-21 LABORATORIUM Z PODSTAW ELEKTROTECHNIKI I ELEKTRONIKI 2 Ćwiczenie nr 8. Generatory przebiegów elektrycznych Cel ćwiczenia: Celem ćwiczenia jes zapoznanie sudenów z podsawowymi właściwościami ów przebiegów elekrycznych o jes źródeł małej mocy generujących przebiegi elekryczne. Przewidywane jes również (w miarę

Bardziej szczegółowo

LABORATORIUM PODSTAW ELEKTRONIKI PROSTOWNIKI

LABORATORIUM PODSTAW ELEKTRONIKI PROSTOWNIKI ZESPÓŁ LABORATORIÓW TELEMATYKI TRANSPORTU ZAKŁAD TELEKOMUNIKJI W TRANSPORCIE WYDZIAŁ TRANSPORTU POLITECHNIKI WARSZAWSKIEJ LABORATORIUM PODSTAW ELEKTRONIKI INSTRUKCJA DO ĆWICZENIA NR 5 PROSTOWNIKI DO UŻYTKU

Bardziej szczegółowo

POMIAR PARAMETRÓW SYGNAŁOW NAPIĘCIOWYCH METODĄ PRÓKOWANIA I CYFROWEGO PRZETWARZANIA SYGNAŁU

POMIAR PARAMETRÓW SYGNAŁOW NAPIĘCIOWYCH METODĄ PRÓKOWANIA I CYFROWEGO PRZETWARZANIA SYGNAŁU Pomiar paramerów sygnałów napięciowych. POMIAR PARAMERÓW SYGNAŁOW NAPIĘCIOWYCH MEODĄ PRÓKOWANIA I CYFROWEGO PRZEWARZANIA SYGNAŁU Cel ćwiczenia Poznanie warunków prawidłowego wyznaczania elemenarnych paramerów

Bardziej szczegółowo

Badanie funktorów logicznych TTL - ćwiczenie 1

Badanie funktorów logicznych TTL - ćwiczenie 1 adanie funkorów logicznych TTL - ćwiczenie 1 1. Cel ćwiczenia Zapoznanie się z podsawowymi srukurami funkorów logicznych realizowanych w echnice TTL (Transisor Transisor Logic), ich podsawowymi paramerami

Bardziej szczegółowo

Zauważmy, że wartość częstotliwości przebiegu CH2 nie jest całkowitą wielokrotnością przebiegu CH1. Na oscyloskopie:

Zauważmy, że wartość częstotliwości przebiegu CH2 nie jest całkowitą wielokrotnością przebiegu CH1. Na oscyloskopie: Wydział EAIiIB Kaedra Merologii i Elekroniki Laboraorium Podsaw Elekroniki Cyfrowej Wykonał zespół w składzie (nazwiska i imiona): Ćw.. Wprowadzenie do obsługi przyrządów pomiarowych cz. Daa wykonania:

Bardziej szczegółowo

Podstawy elektrotechniki

Podstawy elektrotechniki Wydział Mechaniczno-Energeyczny Podsawy elekroechniki Prof. dr hab. inż. Juliusz B. Gajewski, prof. zw. PWr Wybrzeże S. Wyspiańskiego 27, 50-370 Wrocław Bud. A4 Sara kołownia, pokój 359 Tel.: 71 320 3201

Bardziej szczegółowo

... nazwisko i imię ucznia klasa data

... nazwisko i imię ucznia klasa data ... nazwisko i imię ucznia klasa daa Liczba uzyskanych punków Ocena TEST SPRAWDZAJĄCY Z PRZYRZĄDÓW POMIAROWYCH W dniu dzisiejszym przysąpisz do esu pisemnego, kóry ma na celu sprawdzenie Twoich umiejęności

Bardziej szczegółowo

Laboratorium z PODSTAW AUTOMATYKI, cz.1 EAP, Lab nr 3

Laboratorium z PODSTAW AUTOMATYKI, cz.1 EAP, Lab nr 3 I. ema ćwiczenia: Dynamiczne badanie przerzuników II. Cel/cele ćwiczenia III. Wykaz użyych przyrządów IV. Przebieg ćwiczenia Eap 1: Przerzunik asabilny Przerzuniki asabilne służą jako generaory przebiegów

Bardziej szczegółowo

POMIARY CZĘSTOTLIWOŚCI I PRZESUNIĘCIA FAZOWEGO SYGNAŁÓW OKRESOWYCH

POMIARY CZĘSTOTLIWOŚCI I PRZESUNIĘCIA FAZOWEGO SYGNAŁÓW OKRESOWYCH Program ćwiczeń: Pomiary częsoliwości i przesunięcia fazowego sygnałów okresowych POMIARY CZĘSTOTLIWOŚCI I PRZESUNIĘCIA FAZOWEGO SYGNAŁÓW OKRESOWYCH Cel ćwiczenia Celem ćwiczenia jes poznanie: podsawowych

Bardziej szczegółowo

LABORATORIUM Z ELEKTRONIKI

LABORATORIUM Z ELEKTRONIKI LABORAORIM Z ELEKRONIKI PROSOWNIKI Józef Boksa WA 01 1. PROSOWANIKI...3 1.1. CEL ĆWICZENIA...3 1.. WPROWADZENIE...3 1..1. Prosowanie...3 1.3. PROSOWNIKI NAPIĘCIA...3 1.4. SCHEMAY BLOKOWE KŁADÓW POMIAROWYCH...5

Bardziej szczegółowo

Podstawy Elektroniki dla Elektrotechniki

Podstawy Elektroniki dla Elektrotechniki AGH Kaedra Elekroniki Podsawy Elekroniki dla Elekroechniki Klucze Insrukcja do ćwiczeń symulacyjnych (5a) Insrukcja do ćwiczeń sprzęowych (5b) Ćwiczenie 5a, 5b 2015 r. 1 1. Wsęp. Celem ćwiczenia jes ugrunowanie

Bardziej szczegółowo

Źródła zasilania i parametry przebiegu zmiennego

Źródła zasilania i parametry przebiegu zmiennego POLIECHNIKA ŚLĄSKA WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGEYKI INSYU MASZYN I URZĄDZEŃ ENERGEYCZNYCH LABORAORIUM ELEKRYCZNE Źródła zasilania i parametry przebiegu zmiennego (E 1) Opracował: Dr inż. Włodzimierz

Bardziej szczegółowo

ZASTOSOWANIE WZMACNIACZY OPERACYJNYCH DO LINIOWEGO PRZEKSZTAŁCANIA SYGNAŁÓW. Politechnika Wrocławska

ZASTOSOWANIE WZMACNIACZY OPERACYJNYCH DO LINIOWEGO PRZEKSZTAŁCANIA SYGNAŁÓW. Politechnika Wrocławska Poliechnika Wrocławska Insyu elekomunikacji, eleinformayki i Akusyki Zakład kładów Elekronicznych Insrukcja do ćwiczenia laboraoryjnego ZASOSOWANIE WZMACNIACZY OPEACYJNYCH DO LINIOWEGO PZEKSZAŁCANIA SYGNAŁÓW

Bardziej szczegółowo

Ćwiczenie E-5 UKŁADY PROSTUJĄCE

Ćwiczenie E-5 UKŁADY PROSTUJĄCE KŁADY PROSJĄCE I. Cel ćwiczenia: pomiar podsawowych paramerów prosownika jedno- i dwupołówkowego oraz najprosszych filrów. II. Przyrządy: płyka monaŝowa, wolomierz magneoelekryczny, wolomierz elekrodynamiczny

Bardziej szczegółowo

POMIARY CZĘSTOTLIWOŚCI I PRZESUNIĘCIA FAZOWEGO SYGNAŁÓW OKRESOWYCH. Cel ćwiczenia. Program ćwiczenia

POMIARY CZĘSTOTLIWOŚCI I PRZESUNIĘCIA FAZOWEGO SYGNAŁÓW OKRESOWYCH. Cel ćwiczenia. Program ćwiczenia Pomiary częsoliwości i przesunięcia fazowego sygnałów okresowych POMIARY CZĘSOLIWOŚCI I PRZESUNIĘCIA FAZOWEGO SYGNAŁÓW OKRESOWYCH Cel ćwiczenia Poznanie podsawowych meod pomiaru częsoliwości i przesunięcia

Bardziej szczegółowo

ĆWICZENIE NR 43 U R I (1)

ĆWICZENIE NR 43 U R I (1) ĆWCZENE N 43 POMY OPO METODĄ TECHNCZNĄ Cel ćwiczenia: wyznaczenie warości oporu oporników poprzez pomiary naężania prądu płynącego przez opornik oraz napięcia na oporniku Wsęp W celu wyznaczenia warości

Bardziej szczegółowo

Rys.1. Podstawowa klasyfikacja sygnałów

Rys.1. Podstawowa klasyfikacja sygnałów Kaedra Podsaw Sysemów echnicznych - Podsawy merologii - Ćwiczenie 1. Podsawowe rodzaje i ocena sygnałów Srona: 1 1. CEL ĆWICZENIA Celem ćwiczenia jes zapoznanie się z podsawowymi rodzajami sygnałów, ich

Bardziej szczegółowo

ĆWICZENIE 4 Badanie stanów nieustalonych w obwodach RL, RC i RLC przy wymuszeniu stałym

ĆWICZENIE 4 Badanie stanów nieustalonych w obwodach RL, RC i RLC przy wymuszeniu stałym ĆWIZENIE 4 Badanie sanów nieusalonych w obwodach, i przy wymuszeniu sałym. el ćwiczenia Zapoznanie się z rozpływem prądów, rozkładem w sanach nieusalonych w obwodach szeregowych, i Zapoznanie się ze sposobami

Bardziej szczegółowo

Sygnały zmienne w czasie

Sygnały zmienne w czasie Sygnały zmienne w czasie a) b) c) A = A = a A = f(+) d) e) A d = A = A sinω / -A -A ys.. odzaje sygnałów: a)sały, b)zmienny, c)okresowy, d)przemienny, e)sinusoidalny Sygnały zmienne okresowe i ich charakerysyczne

Bardziej szczegółowo

Sprzęt i architektura komputerów

Sprzęt i architektura komputerów Krzysztof Makles Sprzęt i architektura komputerów Laboratorium Temat: Elementy i układy półprzewodnikowe Katedra Architektury Komputerów i Telekomunikacji Zakład Systemów i Sieci Komputerowych SPIS TREŚCI

Bardziej szczegółowo

Instrukcja do ćwiczenia laboratoryjnego. Badanie przerzutników

Instrukcja do ćwiczenia laboratoryjnego. Badanie przerzutników Insrukcja do ćwiczenia laboraoryjnego Badanie przerzuników Opracował: mgr inż. Andrzej Biedka Wymagania, znajomość zagadnień: 1. 2. Właściwości, ablice sanów, paramery sayczne przerzuników RS, D, T, JK.

Bardziej szczegółowo

PRACOWNIA ELEKTRONIKI

PRACOWNIA ELEKTRONIKI PRACOWNIA ELEKTRONIKI Tema ćwiczenia: BADANIE MULTIWIBRATORA UNIWERSYTET KAZIMIERZA WIELKIEGO W BYDGOSZCZY INSTYTUT TECHNIKI. 2. 3. Imię i Nazwisko 4. Daa wykonania Daa oddania Ocena Kierunek Rok sudiów

Bardziej szczegółowo

Wydział Elektryczny, Katedra Maszyn, Napędów i Pomiarów Elektrycznych Laboratorium Przetwarzania i Analizy Sygnałów Elektrycznych

Wydział Elektryczny, Katedra Maszyn, Napędów i Pomiarów Elektrycznych Laboratorium Przetwarzania i Analizy Sygnałów Elektrycznych Wydział Elekryczny, Kaedra Maszyn, Napędów i Pomiarów Elekrycznych Laboraorium Przewarzania i Analizy Sygnałów Elekrycznych (bud A5, sala 310) Insrukcja dla sudenów kierunku Auomayka i Roboyka do zajęć

Bardziej szczegółowo

AMD. Wykład Elektrotechnika z elektroniką

AMD. Wykład Elektrotechnika z elektroniką Andrzej M. Dąbrowski AGH Universiy of Science and Technology Kaedra Elekroechniki i Elekroenergeyki e-mail: amd@agh.edu.pl Wykład Elekroechnika z elekroniką Wykład. Informacje wsępne i organizacyjne, zaliczenie

Bardziej szczegółowo

MULTIMETR CYFROWY. 1. CEL ĆWICZENIA: Celem ćwiczenia jest zapoznanie się z zasadą działania, obsługą i możliwościami multimetru cyfrowego

MULTIMETR CYFROWY. 1. CEL ĆWICZENIA: Celem ćwiczenia jest zapoznanie się z zasadą działania, obsługą i możliwościami multimetru cyfrowego 1 MLIMER CYFROWY 1. CEL ĆWICZEIA: Celem ćwiczenia jes zapoznanie się z zasadą działania, obsługą i możliwościami mulimeru cyfrowego 2. WPROWADZEIE: Współczesna echnologia elekroniczna pozwala na budowę

Bardziej szczegółowo

imei 1. Cel ćwiczenia 2. Zagadnienia do przygotowania 3. Program ćwiczenia

imei 1. Cel ćwiczenia 2. Zagadnienia do przygotowania 3. Program ćwiczenia CYFROWE PRZEWARZANIE SYGNAŁÓW Laboraorium Inżynieria Biomedyczna sudia sacjonarne pierwszego sopnia ema: Wyznaczanie podsawowych paramerów okresowych sygnałów deerminisycznych imei Insyu Merologii Elekroniki

Bardziej szczegółowo

PAlab_4 Wyznaczanie charakterystyk częstotliwościowych

PAlab_4 Wyznaczanie charakterystyk częstotliwościowych PAlab_4 Wyznaczanie charakerysyk częsoliwościowych Ćwiczenie ma na celu przedsawienie prakycznych meod wyznaczania charakerysyk częsoliwościowych elemenów dynamicznych. 1. Wprowadzenie Jedną z podsawowych

Bardziej szczegółowo

Podstawy elektrotechniki

Podstawy elektrotechniki Wydział Mechaniczno-Energeyczny Podsawy elekroechniki Prof. dr hab. inż. Juliusz B. Gajewski, prof. zw. PWr Wybrzeże S. Wyspiańskiego 27, 50-370 Wrocław Bud. A4 Sara kołownia, pokój 359 Tel.: 7 320 320

Bardziej szczegółowo

Ćwiczenie 6 WŁASNOŚCI DYNAMICZNE DIOD

Ćwiczenie 6 WŁASNOŚCI DYNAMICZNE DIOD 1. Cel ćwiczenia Ćwiczenie 6 WŁASNOŚCI DYNAMICZNE DIOD Celem ćwiczenia jes poznanie własności dynamicznych diod półprzewodnikowych. Obejmuje ono zbadanie sanów przejściowych podczas procesu przełączania

Bardziej szczegółowo

Metodę poprawnie mierzonego prądu powinno się stosować do pomiaru dużych rezystancji, tzn. wielokrotnie większych od rezystancji amperomierza: (4)

Metodę poprawnie mierzonego prądu powinno się stosować do pomiaru dużych rezystancji, tzn. wielokrotnie większych od rezystancji amperomierza: (4) OBWODY JEDNOFAZOWE POMIAR PRĄDÓW, NAPIĘĆ. Obwody prądu stałego.. Pomiary w obwodach nierozgałęzionych wyznaczanie rezystancji metodą techniczną. Metoda techniczna pomiaru rezystancji polega na określeniu

Bardziej szczegółowo

POMIARY OSCYLOSKOPOWE. Instrukcja wykonawcza

POMIARY OSCYLOSKOPOWE. Instrukcja wykonawcza ĆWICZENIE 51 POMIARY OSCYLOSKOPOWE Instrukcja wykonawcza 1. Wykaz przyrządów a. Oscyloskop dwukanałowy b. Dwa generatory funkcyjne (jednym z nich może być generator zintegrowany z oscyloskopem) c. Przesuwnik

Bardziej szczegółowo

WSTĘP DO ELEKTRONIKI

WSTĘP DO ELEKTRONIKI WSTĘP DO ELEKTRONIKI Część I Napięcie, naężenie i moc prądu elekrycznego Sygnały elekryczne i ich klasyfikacja Rodzaje układów elekronicznych Janusz Brzychczyk IF UJ Elekronika Dziedzina nauki i echniki

Bardziej szczegółowo

Wyznaczanie charakterystyk częstotliwościowych

Wyznaczanie charakterystyk częstotliwościowych Wyznaczanie charakerysyk częsoliwościowych Ćwiczenie ma na celu przedsawienie prakycznych meod wyznaczania charakerysyk częsoliwościowych elemenów dynamicznych. 1. Wprowadzenie Jedną z podsawowych meod

Bardziej szczegółowo

Instrukcja do ćwiczenia laboratoryjnego. Badanie liczników

Instrukcja do ćwiczenia laboratoryjnego. Badanie liczników Insrukcja do ćwiczenia laboraoryjnego Badanie liczników Opracował: mgr inż. Andrzej Biedka Wymagania, znajomość zagadnień: 3. 4. Budowa licznika cyfrowego. zielnik częsoliwości, różnice między licznikiem

Bardziej szczegółowo

Wydział Mechaniczno-Energetyczny Laboratorium Elektroniki. Badanie zasilaczy ze stabilizacją napięcia

Wydział Mechaniczno-Energetyczny Laboratorium Elektroniki. Badanie zasilaczy ze stabilizacją napięcia Wydział Mechaniczno-Energeyczny Laboraorium Elekroniki Badanie zasilaczy ze sabilizacją napięcia 1. Wsęp eoreyczny Prawie wszyskie układy elekroniczne (zarówno analogowe, jak i cyfrowe) do poprawnej pracy

Bardziej szczegółowo

Laboratorium Metrologii

Laboratorium Metrologii Laboratorium Metrologii Ćwiczenie nr 3 Oddziaływanie przyrządów na badany obiekt I Zagadnienia do przygotowania na kartkówkę: 1 Zdefiniować pojęcie: prąd elektryczny Podać odpowiednią zależność fizyczną

Bardziej szczegółowo

( 3 ) Kondensator o pojemności C naładowany do różnicy potencjałów U posiada ładunek: q = C U. ( 4 ) Eliminując U z równania (3) i (4) otrzymamy: =

( 3 ) Kondensator o pojemności C naładowany do różnicy potencjałów U posiada ładunek: q = C U. ( 4 ) Eliminując U z równania (3) i (4) otrzymamy: = ROZŁADOWANIE KONDENSATORA I. el ćwiczenia: wyznaczenie zależności napięcia (i/lub prądu I ) rozładowania kondensaora w funkcji czasu : = (), wyznaczanie sałej czasowej τ =. II. Przyrządy: III. Lieraura:

Bardziej szczegółowo

Spis treści ZASTOSOWANIE PAKIETU MATLAB W OBLICZENIACH ZAGADNIEŃ ELEKTRYCZNYCH I41

Spis treści ZASTOSOWANIE PAKIETU MATLAB W OBLICZENIACH ZAGADNIEŃ ELEKTRYCZNYCH I41 Ćwiczenie I4 Poliechnika Białosocka Wydział Elekryczny Kaedra Elekroechniki Teoreycznej i Merologii Spis reści Insrukcja do pracowni specjalisycznej INFORMTYK Kod zajęć ESC 9 Tyuł ćwiczenia ZSTOSOWNIE

Bardziej szczegółowo

Temat: Wyznaczanie charakterystyk baterii słonecznej.

Temat: Wyznaczanie charakterystyk baterii słonecznej. Ćwiczenie Nr 356 Tema: Wyznaczanie charakerysyk baerii słonecznej. I. Lieraura. W. M. Lewandowski Proekologiczne odnawialne źródła energii, WNT, 007 (www.e-link.com.pl). Ćwiczenia laboraoryjne z fizyki

Bardziej szczegółowo

Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej STUDIA DZIENNE. Przełącznikowy tranzystor mocy MOSFET

Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej STUDIA DZIENNE. Przełącznikowy tranzystor mocy MOSFET Wydział Elekroniki Mikrosysemów i Fooniki Poliechniki Wrocławskiej STUDIA DZIENNE LABORATORIUM PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH Ćwiczenie nr 5 Przełącznikowy ranzysor mocy MOSFET Wykonując pomiary PRZESTRZEGAJ

Bardziej szczegółowo

Ćwiczenie 3: Pomiar parametrów przebiegów sinusoidalnych, prostokątnych i trójkątnych. REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU

Ćwiczenie 3: Pomiar parametrów przebiegów sinusoidalnych, prostokątnych i trójkątnych. REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU R C E Z w B I Ł G O R A J U LABORATORIUM pomiarów elektronicznych UKŁADÓW ANALOGOWYCH Ćwiczenie 3: Pomiar parametrów przebiegów sinusoidalnych, prostokątnych

Bardziej szczegółowo

Bogdan Olech Mirosław Łazoryszczak Dorota Majorkowska-Mech. Elektronika. Laboratorium nr 3. Temat: Diody półprzewodnikowe i elementy reaktancyjne

Bogdan Olech Mirosław Łazoryszczak Dorota Majorkowska-Mech. Elektronika. Laboratorium nr 3. Temat: Diody półprzewodnikowe i elementy reaktancyjne Bogdan Olech Mirosław Łazoryszczak Dorota Majorkowska-Mech Elektronika Laboratorium nr 3 Temat: Diody półprzewodnikowe i elementy reaktancyjne SPIS TREŚCI Spis treści... 2 1. Cel ćwiczenia... 3 2. Wymagania...

Bardziej szczegółowo

C d u. Po podstawieniu prądu z pierwszego równania do równania drugiego i uporządkowaniu składników lewej strony uzyskuje się:

C d u. Po podstawieniu prądu z pierwszego równania do równania drugiego i uporządkowaniu składników lewej strony uzyskuje się: Zadanie. Obliczyć przebieg napięcia na pojemności C w sanie przejściowym przebiegającym przy nasępującej sekwencji działania łączników: ) łączniki Si S są oware dla < 0, ) łącznik S zamyka się w chwili

Bardziej szczegółowo

BADANIE ELEMENTÓW RLC

BADANIE ELEMENTÓW RLC KATEDRA ELEKTRONIKI AGH L A B O R A T O R I U M ELEMENTY ELEKTRONICZNE BADANIE ELEMENTÓW RLC REV. 1.0 1. CEL ĆWICZENIA - zapoznanie się z systemem laboratoryjnym NI ELVIS II, - zapoznanie się z podstawowymi

Bardziej szczegółowo

LABORATORIUM PODSTAWY ELEKTRONIKI Badanie Bramki X-OR

LABORATORIUM PODSTAWY ELEKTRONIKI Badanie Bramki X-OR LORTORIUM PODSTWY ELEKTRONIKI adanie ramki X-OR 1.1 Wsęp eoreyczny. ramka XOR ramka a realizuje funkcję logiczną zwaną po angielsku EXLUSIVE-OR (WYŁĄZNIE LU). Polska nazwa brzmi LO. Funkcję EX-OR zapisuje

Bardziej szczegółowo

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Skręcalność właściwa sacharozy. opiekun ćwiczenia: dr A. Pietrzak

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Skręcalność właściwa sacharozy. opiekun ćwiczenia: dr A. Pietrzak Kaedra Chemii Fizycznej Uniwersyeu Łódzkiego Skręcalność właściwa sacharozy opiekun ćwiczenia: dr A. Pierzak ćwiczenie nr 19 Zakres zagadnień obowiązujących do ćwiczenia 1. Akywność opyczna a srukura cząseczki.

Bardziej szczegółowo

POMIARY OSCYLOSKOPOWE

POMIARY OSCYLOSKOPOWE Ćwiczenie 51 E. Popko POMIARY OSCYLOSKOPOWE Cel ćwiczenia: wykonanie pomiarów wielkości elektrycznych charakteryzują-cych przebiegi przemienne. Zagadnienia: prąd przemienny, składanie drgań, pomiar amplitudy,

Bardziej szczegółowo

zestaw laboratoryjny (generator przebiegu prostokątnego + zasilacz + częstościomierz), oscyloskop 2-kanałowy z pamięcią, komputer z drukarką,

zestaw laboratoryjny (generator przebiegu prostokątnego + zasilacz + częstościomierz), oscyloskop 2-kanałowy z pamięcią, komputer z drukarką, - Ćwiczenie 4. el ćwiczenia Zapoznanie się z budową i działaniem przerzunika asabilnego (muliwibraora) wykonanego w echnice dyskrenej oraz TTL a akże zapoznanie się z działaniem przerzunika T (zwanego

Bardziej szczegółowo

LABORATORIUM ELEKTROTECHNIKI POMIAR PRZESUNIĘCIA FAZOWEGO

LABORATORIUM ELEKTROTECHNIKI POMIAR PRZESUNIĘCIA FAZOWEGO POLITECHNIKA ŚLĄSKA WYDZIAŁ TRANSPORTU KATEDRA LOGISTYKI I TRANSPORTU PRZEMYSŁOWEGO NR 1 POMIAR PRZESUNIĘCIA FAZOWEGO Katowice, październik 5r. CEL ĆWICZENIA Poznanie zjawiska przesunięcia fazowego. ZESTAW

Bardziej szczegółowo

Szeregi Fouriera. Powyższe współczynniki można wyznaczyć analitycznie z następujących zależności:

Szeregi Fouriera. Powyższe współczynniki można wyznaczyć analitycznie z następujących zależności: Trygonomeryczny szereg Fouriera Szeregi Fouriera Każdy okresowy sygnał x() o pulsacji podsawowej ω, spełniający warunki Dirichlea:. całkowalny w okresie: gdzie T jes okresem funkcji x(), 2. posiadający

Bardziej szczegółowo

Podstawy Elektroniki dla Elektrotechniki. Układy przełączające

Podstawy Elektroniki dla Elektrotechniki. Układy przełączające AGH Kaedra Elekroniki Podsawy Elekroniki dla Elekroechniki Układy przełączające Insrukcja do ćwiczeń symulacyjnych (5a) Insrukcja do ćwiczeń sprzęowych (5b) Ćwiczenie 5a, 5b 2017 r. 1. Wsęp. Celem ćwiczenia

Bardziej szczegółowo

Ile wynosi całkowite natężenie prądu i całkowita oporność przy połączeniu równoległym?

Ile wynosi całkowite natężenie prądu i całkowita oporność przy połączeniu równoległym? Domowe urządzenia elektryczne są często łączone równolegle, dzięki temu każde tworzy osobny obwód z tym samym źródłem napięcia. Na podstawie poszczególnych rezystancji, można przewidzieć całkowite natężenie

Bardziej szczegółowo

LABORATORIUM PODZESPOŁÓW ELEKTRONICZNYCH. Ćwiczenie nr 2. Pomiar pojemności i indukcyjności. Szeregowy i równoległy obwód rezonansowy

LABORATORIUM PODZESPOŁÓW ELEKTRONICZNYCH. Ćwiczenie nr 2. Pomiar pojemności i indukcyjności. Szeregowy i równoległy obwód rezonansowy LABORATORIUM PODZESPOŁÓW ELEKTRONICZNYCH Ćwiczenie nr 2 Pomiar pojemności i indukcyjności. Szeregowy i równoległy obwód rezonansowy Wykonując pomiary PRZESTRZEGAJ przepisów BHP związanych z obsługą urządzeń

Bardziej szczegółowo

Ćwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDALNEGO

Ćwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDALNEGO Politechnika Gdańska Wydział Elektrotechniki i Automatyki 1. Wstęp st. stacjonarne I st. inżynierskie, Mechatronika (WM) Laboratorium Elektrotechniki Ćwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDALNEGO

Bardziej szczegółowo

SERIA V. a). b). c). R o D 2 D 3

SERIA V. a). b). c). R o D 2 D 3 SEIA V ĆWIZENIE 5_ Temat ćwiczenia: Badanie prostowników. Wiadomości do powtórzenia: Prostowniki są to układy, w których z przebiegów sinusoidalnych otrzymuje się jednokierunkowy lub stały przebieg tych

Bardziej szczegółowo

Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7

Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7 Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi zastosowaniami wzmacniacza operacyjnego, poznanie jego charakterystyki przejściowej

Bardziej szczegółowo

Laboratorium Podstaw Elektrotechniki i Elektroniki

Laboratorium Podstaw Elektrotechniki i Elektroniki Politechnika Gdańska Wydział Elektrotechniki i utomatyki 1. Wstęp st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 3 OBWODY LINIOWE PĄDU SINUSOIDLNEGO

Bardziej szczegółowo

Instrukcja do ćwiczenia laboratoryjnego nr 6b

Instrukcja do ćwiczenia laboratoryjnego nr 6b Instrukcja do ćwiczenia laboratoryjnego nr 6b Temat: Charakterystyki i parametry półprzewodnikowych przyrządów optoelektronicznych. Cel ćwiczenia: Zapoznać z budową, zasadą działania, charakterystykami

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki Poliechnika Gdańska Wydział Elekroechniki i Auomayki Kaedra Inżynierii Sysemów Serowania Podsawy Auomayki Repeyorium z Podsaw auomayki Zadania do ćwiczeń ermin T15 Opracowanie: Kazimierz Duzinkiewicz,

Bardziej szczegółowo

Pomiar podstawowych parametrów liniowych układów scalonych

Pomiar podstawowych parametrów liniowych układów scalonych Instytut Fizyki ul Wielkopolska 15 70-451 Szczecin 5 Pracownia Elektroniki Pomiar podstawowych parametrów liniowych układów scalonych Zakres materiału obowiązujący do ćwiczenia: wzmacniacz operacyjny,

Bardziej szczegółowo

4.1 Obsługa oscyloskopu(f10)

4.1 Obsługa oscyloskopu(f10) 164 Fale 4.1 Obsługa oscyloskopu(f10) Bezpośrednim celem ćwiczenia jes zapoznanie się z działaniem i obsługą oscyloskopuak,abywprzyszłościmożnabyłoprzyjegopomocywykonywaćpomiary.wym celu należy przeprowadzić

Bardziej szczegółowo

Przetworniki analogowo-cyfrowe.

Przetworniki analogowo-cyfrowe. POLITECHNIKA ŚLĄSKA WYDZIAŁ INŻYNIEII ŚODOWISKA I ENEGETYKI INSTYTUT MASZYN I UZĄDZEŃ ENEGETYCZNYCH LABOATOIUM ELEKTYCZNE Przeworniki analogowo-cyfrowe. (E 11) Opracował: Dr inż. Włodzimierz OGULEWICZ

Bardziej szczegółowo

Podstawowe wyidealizowane elementy obwodu elektrycznego Rezystor ( ) = ( ) ( ) ( ) ( ) ( ) ( ) ( τ ) i t i t u ( ) u t u t i ( ) i t. dowolny.

Podstawowe wyidealizowane elementy obwodu elektrycznego Rezystor ( ) = ( ) ( ) ( ) ( ) ( ) ( ) ( τ ) i t i t u ( ) u t u t i ( ) i t. dowolny. Tema. Opracował: esław Dereń Kaedra Teorii Sygnałów Insyu Telekomunikacji Teleinformayki i Akusyki Poliechnika Wrocławska Prawa auorskie zasrzeżone Podsawowe wyidealizowane elemeny obwodu elekrycznego

Bardziej szczegółowo

Drgania elektromagnetyczne obwodu LCR

Drgania elektromagnetyczne obwodu LCR Ćwiczenie 61 Drgania elekromagneyczne obwodu LCR Cel ćwiczenia Obserwacja drgań łumionych i przebiegów aperiodycznych w obwodzie LCR. Pomiar i inerpreacja paramerów opisujących obserwowane przebiegi napięcia

Bardziej szczegółowo

Wykład 4 Metoda Klasyczna część III

Wykład 4 Metoda Klasyczna część III Teoria Obwodów Wykład 4 Meoda Klasyczna część III Prowadzący: dr inż. Tomasz Sikorski Insyu Podsaw Elekroechniki i Elekroechnologii Wydział Elekryczny Poliechnika Wrocławska D-, 5/8 el: (7) 3 6 fax: (7)

Bardziej szczegółowo

Ćw. III. Dioda Zenera

Ćw. III. Dioda Zenera Cel ćwiczenia Ćw. III. Dioda Zenera Zapoznanie się z zasadą działania diody Zenera. Pomiary charakterystyk statycznych diod Zenera. Wyznaczenie charakterystycznych parametrów elektrycznych diod Zenera,

Bardziej szczegółowo

Nr sprawozdania: 1 Sprawozdanie z ćwiczenia: 2 Elektronika i elektrotechnika laboratorium Prowadzący: dr inż. Elżbieta Szul-Pietrzak

Nr sprawozdania: 1 Sprawozdanie z ćwiczenia: 2 Elektronika i elektrotechnika laboratorium Prowadzący: dr inż. Elżbieta Szul-Pietrzak POLITECHNIKA WROCŁAWSKA Data: 26.03.2019r. Nr sprawozdania: 1 Sprawozdanie z ćwiczenia: 2 Elektronika i elektrotechnika laboratorium Prowadzący: dr inż. Elżbieta Szul-Pietrzak TEMAT: Oscyloskop elektroniczny

Bardziej szczegółowo

PRACOWNIA ELEKTRONIKI

PRACOWNIA ELEKTRONIKI PRACOWNIA ELEKTRONIKI Ćwiczenie nr 4 Temat ćwiczenia: Badanie wzmacniacza UNIWERSYTET KAZIMIERZA WIELKIEGO W BYDGOSZCZY INSTYTUT TECHNIKI 1. 2. 3. Imię i Nazwisko 1 szerokopasmowego RC 4. Data wykonania

Bardziej szczegółowo

WYDZIAŁ.. LABORATORIUM FIZYCZNE

WYDZIAŁ.. LABORATORIUM FIZYCZNE W S E i Z W WASZAWE WYDZAŁ.. LABOATOUM FZYCZNE Ćwiczenie Nr 10 Temat: POMA OPOU METODĄ TECHNCZNĄ. PAWO OHMA Warszawa 2009 Prawo Ohma POMA OPOU METODĄ TECHNCZNĄ Uporządkowany ruch elektronów nazywa się

Bardziej szczegółowo

Układy sekwencyjne asynchroniczne Zadania projektowe

Układy sekwencyjne asynchroniczne Zadania projektowe Układy sekwencyjne asynchroniczne Zadania projekowe Zadanie Zaprojekować układ dwusopniowej sygnalizacji opycznej informującej operaora procesu o przekroczeniu przez konrolowany paramer warości granicznej.

Bardziej szczegółowo

Ćwiczenie nr 28. Badanie oscyloskopu analogowego

Ćwiczenie nr 28. Badanie oscyloskopu analogowego Ćwiczenie nr 28 Badanie oscyloskopu analogowego 1. Cel ćwiczenia Celem ćwiczenia jest poznanie budowy i zasady działania oraz nabycie umiejętności posługiwania się oscyloskopem analogowym. 2. Dane znamionowe

Bardziej szczegółowo

Własności i charakterystyki czwórników

Własności i charakterystyki czwórników Własności i charakterystyki czwórników nstytut Fizyki kademia Pomorska w Słupsku Cel ćwiczenia. Celem ćwiczenia jest poznanie własności i charakterystyk czwórników. Zagadnienia teoretyczne. Pojęcia podstawowe

Bardziej szczegółowo

Podstawy użytkowania i pomiarów za pomocą MULTIMETRU

Podstawy użytkowania i pomiarów za pomocą MULTIMETRU Podstawy użytkowania i pomiarów za pomocą MULTIMETRU Spis treści Informacje podstawowe...2 Pomiar napięcia...3 Pomiar prądu...5 Pomiar rezystancji...6 Pomiar pojemności...6 Wartość skuteczna i średnia...7

Bardziej szczegółowo

Politechnika Warszawska

Politechnika Warszawska Politechnika Warszawska Wydział Elektryczny Laboratorium Teletechniki Skrypt do ćwiczenia T.02. Woltomierz RMS oraz Analizator Widma 1. Woltomierz RMS oraz Analizator Widma Ćwiczenie to ma na celu poznanie

Bardziej szczegółowo

Badanie właściwości multipleksera analogowego

Badanie właściwości multipleksera analogowego Ćwiczenie 3 Badanie właściwości multipleksera analogowego Program ćwiczenia 1. Sprawdzenie poprawności działania multipleksera 2. Badanie wpływu częstotliwości przełączania kanałów na pracę multipleksera

Bardziej szczegółowo

POLITECHNIKA WROCŁAWSKA, WYDZIAŁ PPT I-21 LABORATORIUM Z PODSTAW ELEKTROTECHNIKI I ELEKTRONIKI 2 Ćwiczenie nr 5. Źródła napięć i prądów stałych

POLITECHNIKA WROCŁAWSKA, WYDZIAŁ PPT I-21 LABORATORIUM Z PODSTAW ELEKTROTECHNIKI I ELEKTRONIKI 2 Ćwiczenie nr 5. Źródła napięć i prądów stałych POLITCHNIKA WROCŁAWSKA, WYDZIAŁ PPT I-2 Cel ćwiczenia: Celem ćwiczenia jest zapoznanie studentów wykonujących ćwiczenie ze źródłami sygnałów stałoprądowych stosowanych w elektronice, jak również z podstawowymi

Bardziej szczegółowo

BADANIE WŁAŚCIWOŚCI WYBRANEGO UKŁADU PRZECIWDESTRUKCYJNEGO

BADANIE WŁAŚCIWOŚCI WYBRANEGO UKŁADU PRZECIWDESTRUKCYJNEGO ZAKŁAD EKSPLOATACJI SYSTEMÓW ELEKTRONICZNYCH INSTYTUT SYSTEMÓW ELEKTRONICZNYCH WYDZIAŁ ELEKTRONIKI WOJSKOWA AKADEMIA TECHNICZNA ------------------------------------------------------------------------------------------------------------

Bardziej szczegółowo

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO ĆWICZENIE 53 PRAWO OHMA DLA PRĄDU PRZEMIENNEGO Cel ćwiczenia: wyznaczenie wartości indukcyjności cewek i pojemności kondensatorów przy wykorzystaniu prawa Ohma dla prądu przemiennego; sprawdzenie prawa

Bardziej szczegółowo

Instrukcja do ćwiczenia Nr 60

Instrukcja do ćwiczenia Nr 60 Instrukcja do ćwiczenia Nr 60 Temat: BADANIE PRĄDÓW ZMIENNYCH ZA POMOCĄ U ELEKTRONOWEGO I. Wstęp. Oscylograf elektronowy jest urządzeniem służącym do obserwacji przebiegu różnego rodzaju napięć oraz do

Bardziej szczegółowo

E5. KONDENSATOR W OBWODZIE PRĄDU STAŁEGO

E5. KONDENSATOR W OBWODZIE PRĄDU STAŁEGO E5. KONDENSATOR W OBWODZIE PRĄDU STAŁEGO Marek Pękała i Jadwiga Szydłowska Procesy rozładowania kondensaora i drgania relaksacyjne w obwodach RC należą do szerokiej klasy procesów relaksacyjnych. Procesy

Bardziej szczegółowo

ĆWICZENIE 7 WYZNACZANIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA. Wprowadzenie

ĆWICZENIE 7 WYZNACZANIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA. Wprowadzenie ĆWICZENIE 7 WYZNACZIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA Wprowadzenie Ciało drgające w rzeczywisym ośrodku z upływem czasu zmniejsza ampliudę drgań maleje energia mechaniczna

Bardziej szczegółowo

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude Podstawy Elektrotechniki i Elektroniki Opracował: Mgr inż. Marek Staude Część 1 Podstawowe prawa obwodów elektrycznych Prąd elektryczny definicja fizyczna Prąd elektryczny powstaje jako uporządkowany ruch

Bardziej szczegółowo

PRACOWNIA ELEKTRONIKI

PRACOWNIA ELEKTRONIKI PRACOWNIA ELEKTRONIKI Temat ćwiczenia: BADANIE WZMACNIA- CZA SELEKTYWNEGO Z OBWODEM LC NIWERSYTET KAZIMIERZA WIELKIEGO W BYDGOSZCZY INSTYTT TECHNIKI. 2. 3. Imię i Nazwisko 4. Data wykonania Data oddania

Bardziej szczegółowo

Rys. 1. Przykład umieszczenia regulatorów jasności i ostrości obrazu kreślonego na ekranie lampy oscyloskopowej.

Rys. 1. Przykład umieszczenia regulatorów jasności i ostrości obrazu kreślonego na ekranie lampy oscyloskopowej. Cel ćwiczenia: Celem ćwiczenia jest uzupełnienie wiedzy oraz nabycie przez ćwiczących praktycznych umiejętności z zakresu posługiwania się oscyloskopem analogowym jako narzędziem pomiarowym. Istotnym elementem

Bardziej szczegółowo

POLITECHNIKA WROCŁAWSKA, WYDZIAŁ PPT I-21 LABORATORIUM Z PODSTAW ELEKTROTECHNIKI I ELEKTRONIKI 2

POLITECHNIKA WROCŁAWSKA, WYDZIAŁ PPT I-21 LABORATORIUM Z PODSTAW ELEKTROTECHNIKI I ELEKTRONIKI 2 Cel ćwiczenia: Praktyczne poznanie podstawowych parametrów wzmacniaczy operacyjnych oraz ich możliwości i ograniczeń. Wyznaczenie charakterystyki amplitudowo-częstotliwościowej wzmacniacza operacyjnego.

Bardziej szczegółowo

Pomiar podstawowych wielkości elektrycznych

Pomiar podstawowych wielkości elektrycznych Instytut Fizyki ul. Wielkopolska 15 70-451 Szczecin 1 Pracownia Elektroniki. Pomiar podstawowych wielkości elektrycznych........ (Oprac. dr Radosław Gąsowski) Zakres materiału obowiązujący do ćwiczenia:

Bardziej szczegółowo

Co się stanie, gdy połączymy szeregowo dwie żarówki?

Co się stanie, gdy połączymy szeregowo dwie żarówki? Różne elementy układu elektrycznego można łączyć szeregowo. Z wartości poszczególnych oporów, można wyznaczyć oporność całkowitą oraz całkowite natężenie prądu. Zadania 1. Połącz szeregowo dwie identyczne

Bardziej szczegółowo

Laboratorium Podstaw Elektrotechniki i Elektroniki

Laboratorium Podstaw Elektrotechniki i Elektroniki Politechnika Gdańska Wydział Elektrotechniki i utomatyki 1) Wstęp st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDLNEGO

Bardziej szczegółowo

Ćwiczenie nr 4. Badanie filtrów składowych symetrycznych prądu i napięcia

Ćwiczenie nr 4. Badanie filtrów składowych symetrycznych prądu i napięcia Ćwiczenie nr 4 Badanie filtrów składowych symetrycznych prądu i napięcia 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą składowych symetrycznych, pomiarem składowych w układach praktycznych

Bardziej szczegółowo

13 K A T E D R A F I ZYKI S T O S O W AN E J

13 K A T E D R A F I ZYKI S T O S O W AN E J 3 K A T E D R A F I ZYKI S T O S O W AN E J P R A C O W N I A P O D S T A W E L E K T R O T E C H N I K I I E L E K T R O N I K I Ćw. 3. Wyznaczenie elementów L C metoda rezonansu Wprowadzenie Obwód złożony

Bardziej szczegółowo

Sprawozdanie z ćwiczenia na temat. Badanie dokładności multimetru cyfrowego dla funkcji pomiaru napięcia zmiennego

Sprawozdanie z ćwiczenia na temat. Badanie dokładności multimetru cyfrowego dla funkcji pomiaru napięcia zmiennego Szablon sprawozdania na przykładzie ćwiczenia badanie dokładności multimetru..... ================================================================== Stronę tytułową można wydrukować jak podano niżej lub

Bardziej szczegółowo

WZMACNIACZ OPERACYJNY

WZMACNIACZ OPERACYJNY 1. OPIS WKŁADKI DA 01A WZMACNIACZ OPERACYJNY Wkładka DA01A zawiera wzmacniacz operacyjny A 71 oraz zestaw zacisków, które umożliwiają dołączenie elementów zewnętrznych: rezystorów, kondensatorów i zwór.

Bardziej szczegółowo

Przyrządy i Układy Półprzewodnikowe

Przyrządy i Układy Półprzewodnikowe VI. Prostownik jedno i dwupołówkowy Cel ćwiczenia: Poznanie zasady działania układu prostownika jedno i dwupołówkowego. A) Wstęp teoretyczny Prostownik jest układem elektrycznym stosowanym do zamiany prądu

Bardziej szczegółowo

BADANIE WŁAŚCIWOŚCI WYBRANEGO UKŁADU PRZECIWDESTRUKCYJNEGO

BADANIE WŁAŚCIWOŚCI WYBRANEGO UKŁADU PRZECIWDESTRUKCYJNEGO ZAKŁAD EKSPLOATACJI SYSTEMÓW ELEKTRONICZNYCH INSTYTUT SYSTEMÓW ELEKTRONICZNYCH WYDZIAŁ ELEKTRONIKI WOJSKOWA AKADEMIA TECHNICZNA ------------------------------------------------------------------------------------------------------------

Bardziej szczegółowo

Laboratorium z Układów Analogowych

Laboratorium z Układów Analogowych Laboraorium z kładów Analogowych Prosowanie i Deekcja Józef Boksa WAT 13 1. PROSTOWANIE I DETEKCJA...3 1.1. CEL ĆWICZENIA...3 1.. WPROWADZENIE...3 1..1. Prosowanie...3 1... Modulacja i deekcja...3 1.3.

Bardziej szczegółowo

Ćw. 27. Wyznaczenie elementów L C metoda rezonansu

Ćw. 27. Wyznaczenie elementów L C metoda rezonansu 7 K A T E D R A F I ZYKI S T O S O W AN E J P R A C O W N I A F I Z Y K I Ćw. 7. Wyznaczenie elementów L C metoda rezonansu Wprowadzenie Obwód złożony z połączonych: kondensatora C cewki L i opornika R

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap szkolny 5 listopada 2013 Czas 90 minut

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap szkolny 5 listopada 2013 Czas 90 minut Wojewódzki Konkurs Maemayczny dla uczniów gimnazjów. Eap szkolny 5 lisopada 2013 Czas 90 minu ZADANIA ZAMKNIĘTE Zadanie 1. (1 punk) Liczby A = 0, 99, B = 0, 99 2, C = 0, 99 3, D = 0, 99, E=0, 99 1 usawiono

Bardziej szczegółowo

Badanie transformatora 3-fazowego

Badanie transformatora 3-fazowego adanie ransormaora 3-azowego ) Próba sanu jałowego ransormaora przy = N = cons adania przeprowadza się w układzie połączeń pokazanych na Rys.. Rys.. Schema połączeń do próby sanu jałowego ransormaora.

Bardziej szczegółowo

Ćwiczenie 1. Sprawdzanie podstawowych praw w obwodach elektrycznych przy wymuszeniu stałym

Ćwiczenie 1. Sprawdzanie podstawowych praw w obwodach elektrycznych przy wymuszeniu stałym Ćwiczenie 1 Sprawdzanie podstawowych praw w obwodach elektrycznych przy wymuszeniu stałym Wprowadzenie Celem ćwiczenia jest sprawdzenie podstawowych praw elektrotechniki w obwodach prądu stałego. Badaniu

Bardziej szczegółowo