Metody eksploracji danych. Reguły asocjacyjne

Wielkość: px
Rozpocząć pokaz od strony:

Download "Metody eksploracji danych. Reguły asocjacyjne"

Transkrypt

1 Metody eksploracji danych Reguły asocjacyjne

2 Analiza podobieństw i koszyka sklepowego Analiza podobieństw jest badaniem atrybutów lub cech, które są powiązane ze sobą. Metody analizy podobieństw, znane również jako analiza koszyka sklepowego, szukają nieodkrytych powiązań pomiędzy tymi atrybutami, to znaczy szukają nieodkrytych reguł do ilościowego określania relacji pomiędzy dwoma lub więcej atrybutami Reguły asocjacyjne przyjmują postać: Jeżeli poprzednik, to następnik razem z miarą wsparcia i dokładności (ufności) reguły

3 Analiza podobieństw i koszyka sklepowego - przykład W supermarkecie sporządzono raport sprzedaży, z którego m.in. wynika, że w ostatni czwartek w nocy z 1000 klientów robiących zakupy 200 kupiło chleb, a z tych 200, którzy kupili chleb, 50 kupiło masło Reguła asocjacyjna: Jeżeli kupuje chleb, to kupuje masło miarą wsparcia 5% miara dokładności 25%

4 Wsparcie i ufność reguły Niech D oznacza zbiór transakcji, gdzie każda transakcja T z D reprezentuje zbiór artykułów z I. Wsparcie (ang. support) s dla danej reguły asocjacyjnej A => B jest procentem transakcji w D, które zawierają A i B, tzn. s P A B liczba transakcji zawierajacych A i B calkowita liczba transakcji Ufność (ang. confidence) c dla danej reguły asocjacyjnej A => B jest miarą dokładności reguły, określoną jako procent transakcji zawierających A, które również zawierają B, tzn. P A B c P B A P A liczba transakcji zawierajacych A i B liczba transakcji zawierajacych A Mocna reguła reguła, dla której s i c są >= od pewnych, określonych wartości minimalnych.

5 Zbiory zdarzeń i zbiory częste Zbiór zdarzeń jest zbiorem zawartym w I (np. {fasola, kabaczki} to 2- elementowy zbiór zdarzeń, {brokuły, kukurydza, pomidory} to 3-elementowy zbiór zdarzeń). Częstość zbioru zdarzeń jest liczbą transakcji zawierającym dany zbiór zdarzeń. Zbiór częsty to zbiór zdarzeń, który występuje przynajmniej pewną minimalną liczbę razy, czyli z częstością Φ. Zbiór częstych zbiorów zdarzeń o k elementach będziemy oznaczać przez F k

6 Mówimy, że transakcja t wspiera (ang. supports) zbiór X wtedy i tylko wtedy gdy dla wszystkich elementów I k X, I k t (t zawiera co najmniej wszystkie elementy zbioru X). Wsparciem zbioru X nazywamy iloraz liczby transakcji w T, które wspierają X do liczby wszystkich transakcji w T.

7 Reguła asocjacyjna Regułą asocjacyjną nazywamy implikację postaci X Y, gdzie X i Y są dowolnymi zbiorami elementów z I i zachodzi X I, Y I i X Y=. Zbiór X nazywamy poprzednikiem reguły (ang. body, antecedent), a zbiór Y następnikiem reguły (ang. head, consequent).

8 Z każdą regułą asocjacyjną są związane dwie wartości liczbowe opisujące jej siłę i dokładność. Mówimy, że reguła X Y ma wsparcie s (ang. support), 0 s 1, jeżeli dokładnie s% transakcji w T wspiera X Y. Mówimy, że reguła X Y ma ufność c (ang. confidence), 0 c 1, jeżeli dokładnie c% transakcji w T, które wspierają X, wspiera również Y.

9

10 Ogólny algorytm generowania reguł asocjacyjnych Ogólny algorytm generowania reguł asocjacyjnych, dla zadanej bazy danych transakcji T, ma następującą postać: Krok 1: Ogólny algorytm generowania reguł Asocjacyjnych Krok 2: Generowanie reguł ze zbiorów częstych

11 Krok 1: Ogólny algorytm generowania reguł asocjacyjnych 1. Utworzyć zbiory elementów Li={Ii1, Ii2,..., Iim}, takie, że Li I, posiadające wsparcie support(li) minsup. Zbiory Li są nazywane zbiorami częstymi (ang. large, frequent itemsets). 2. Na podstawie zbiorów częstych znalezionych w kroku (1) wygenerować wszystkie reguły asocjacyjne dla elementów zbiorów częstych - zastosuj algorytm (krok 2->)

12 Krok 2: Generowanie reguł ze zbiorów częstych. 1. Dla każdego zbioru częstego Li znajdź wszystkie niepuste podzbiory subli. 2. Dla każdego podzbioru subli wygeneruj regułę postaci: subli (Li-subLi) support(li)/support(subli) minconf. jeżeli

13 Ogólny algorytm generowania reguł asocjacyjnych Algorytm (krok 1) składa się z dwóch kroków. W pierwszym kroku znajdowane są zbiory częste, które reprezentują zbiory elementów występujących wspólnie w transakcjach. Zakłada się przy tym, że interesujące są tylko te zbiory częste, których wsparcie w bazie danych jest większe, niż zadany próg wsparcia minsup. W kroku drugim, na podstawie znalezionych zbiorów częstych są generowane wszystkie reguły asocjacyjne, których ufność jest większa niż zadany próg ufności minconf.

14 przykład Załóżmy, że: minimalne wsparcie wynosi 30% (0.3), natomiast minimalna ufność 70% (0.7).

15 W pierwszym kroku są znajdowane zbiory częste 1-elementowe:

16 Funkcja apriori-gen generuje zbiory kandydujące 2-elementowe: Zbiór częsty 2-elementowy składa się z tych zbiorów częstych 2- elementowych, których wsparcie jest większe niż 0.30

17 Funkcja apriori-gen generuje zbiory kandydujące 3-elementowe

18 Na podstawie otrzymanych zbiorów częstych wygenerowano następujące reguły asocjacyjne Zauważmy, że tylko cześć otrzymanych reguł spełnia warunki na minimalne wsparcie i minimalną ufność.

19 Stąd, końcowy wynik działania algorytmu Apriori jest następujący:

20 Stąd, końcowy wynik działania algorytmu Apriori jest następujący:

21

22 Rzut ekranu z WEKA

23 Rzut ekranu z Rattle

24 Rzut ekranu z Rattle

Wprowadzenie Sformułowanie problemu Typy reguł asocjacyjnych Proces odkrywania reguł asocjacyjnych. Data Mining Wykład 2

Wprowadzenie Sformułowanie problemu Typy reguł asocjacyjnych Proces odkrywania reguł asocjacyjnych. Data Mining Wykład 2 Data Mining Wykład 2 Odkrywanie asocjacji Plan wykładu Wprowadzenie Sformułowanie problemu Typy reguł asocjacyjnych Proces odkrywania reguł asocjacyjnych Geneza problemu Geneza problemu odkrywania reguł

Bardziej szczegółowo

Eksploracja danych - wykład VIII

Eksploracja danych - wykład VIII I Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska 2 grudnia 2016 1/31 1 2 2/31 (ang. affinity analysis) polega na badaniu atrybutów lub cech, które są ze sobą powiązane. Metody

Bardziej szczegółowo

Reguły asocjacyjne. Żródło: LaroseD.T., Discovering Knowledge in Data. An Introduction to Data Minig, John Wiley& Sons, Hoboken, New Jersey, 2005.

Reguły asocjacyjne. Żródło: LaroseD.T., Discovering Knowledge in Data. An Introduction to Data Minig, John Wiley& Sons, Hoboken, New Jersey, 2005. Reguły asocjacyjne Żródło: LaroseD.T., Discovering Knowledge in Data. An Introduction to Data Minig, John Wiley& Sons, Hoboken, New Jersey, 2005. Stragan warzywny -transakcje zakupów Transakcja Produkty

Bardziej szczegółowo

Ćwiczenie 5. Metody eksploracji danych

Ćwiczenie 5. Metody eksploracji danych Ćwiczenie 5. Metody eksploracji danych Reguły asocjacyjne (association rules) Badaniem atrybutów lub cech, które są powiązane ze sobą, zajmuje się analiza podobieństw (ang. affinity analysis). Metody analizy

Bardziej szczegółowo

Data Mining Wykład 3. Algorytmy odkrywania binarnych reguł asocjacyjnych. Plan wykładu

Data Mining Wykład 3. Algorytmy odkrywania binarnych reguł asocjacyjnych. Plan wykładu Data Mining Wykład 3 Algorytmy odkrywania binarnych reguł asocjacyjnych Plan wykładu Algorytm Apriori Funkcja apriori_gen(ck) Generacja zbiorów kandydujących Generacja reguł Efektywności działania Własności

Bardziej szczegółowo

Odkrywanie asocjacji

Odkrywanie asocjacji Odkrywanie asocjacji Cel odkrywania asocjacji Znalezienie interesujących zależności lub korelacji, tzw. asocjacji Analiza dużych zbiorów danych Wynik procesu: zbiór reguł asocjacyjnych Witold Andrzejewski,

Bardziej szczegółowo

Odkrywanie asocjacji

Odkrywanie asocjacji Odkrywanie asocjacji Wprowadzenie Sformułowanie problemu Typy reguł asocjacyjnych Odkrywanie asocjacji wykład 1 Wykład jest poświęcony wprowadzeniu i zaznajomieniu się z problemem odkrywania reguł asocjacyjnych.

Bardziej szczegółowo

INDUKOWANE REGUŁY DECYZYJNE ALORYTM APRIORI JAROSŁAW FIBICH

INDUKOWANE REGUŁY DECYZYJNE ALORYTM APRIORI JAROSŁAW FIBICH INDUKOWANE REGUŁY DECYZYJNE ALORYTM APRIORI JAROSŁAW FIBICH 1. Czym jest eksploracja danych Eksploracja danych definiowana jest jako zbiór technik odkrywania nietrywialnych zależności i schematów w dużych

Bardziej szczegółowo

Ewelina Dziura Krzysztof Maryański

Ewelina Dziura Krzysztof Maryański Ewelina Dziura Krzysztof Maryański 1. Wstęp - eksploracja danych 2. Proces Eksploracji danych 3. Reguły asocjacyjne budowa, zastosowanie, pozyskiwanie 4. Algorytm Apriori i jego modyfikacje 5. Przykład

Bardziej szczegółowo

Systemy Wspomagania Decyzji

Systemy Wspomagania Decyzji Reguły Asocjacyjne Szkoła Główna Służby Pożarniczej Zakład Informatyki i Łączności March 18, 2014 1 Wprowadzenie 2 Definicja 3 Szukanie reguł asocjacyjnych 4 Przykłady użycia 5 Podsumowanie Problem Lista

Bardziej szczegółowo

Inżynieria Wiedzy i Systemy Ekspertowe. Reguły asocjacyjne

Inżynieria Wiedzy i Systemy Ekspertowe. Reguły asocjacyjne Inżynieria Wiedzy i Systemy Ekspertowe Reguły asocjacyjne Dr inż. Michał Bereta p. 144 / 10, Instytut Modelowania Komputerowego mbereta@pk.edu.pl beretam@torus.uck.pk.edu.pl www.michalbereta.pl Reguły

Bardziej szczegółowo

Inżynieria biomedyczna

Inżynieria biomedyczna Inżynieria biomedyczna Projekt Przygotowanie i realizacja kierunku inżynieria biomedyczna studia międzywydziałowe współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego.

Bardziej szczegółowo

METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING. EKSPLORACJA DANYCH Ćwiczenia. Adrian Horzyk. Akademia Górniczo-Hutnicza

METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING. EKSPLORACJA DANYCH Ćwiczenia. Adrian Horzyk. Akademia Górniczo-Hutnicza METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING EKSPLORACJA DANYCH Ćwiczenia Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej

Bardziej szczegółowo

Odkrywanie reguł asocjacyjnych. Rapid Miner

Odkrywanie reguł asocjacyjnych. Rapid Miner Odkrywanie reguł asocjacyjnych Rapid Miner Zbiory częste TS ID_KLIENTA Koszyk 12:57 1123 {mleko, pieluszki, piwo} 13:12 1412 {mleko, piwo, bułki, masło, pieluszki} 13:55 1425 {piwo, wódka, wino, paracetamol}

Bardziej szczegółowo

Algorytmy odkrywania binarnych reguł asocjacyjnych

Algorytmy odkrywania binarnych reguł asocjacyjnych Algorytmy odkrywania binarnych reguł asocjacyjnych A-priori FP-Growth Odkrywanie asocjacji wykład 2 Celem naszego wykładu jest zapoznanie się z dwoma podstawowymi algorytmami odkrywania binarnych reguł

Bardziej szczegółowo

1. Odkrywanie asocjacji

1. Odkrywanie asocjacji 1. 2. Odkrywanie asocjacji...1 Algorytmy...1 1. A priori...1 2. Algorytm FP-Growth...2 3. Wykorzystanie narzędzi Oracle Data Miner i Rapid Miner do odkrywania reguł asocjacyjnych...2 3.1. Odkrywanie reguł

Bardziej szczegółowo

Reguły asocjacyjne. 1. Uruchom system weka i wybierz aplikację Knowledge Flow.

Reguły asocjacyjne. 1. Uruchom system weka i wybierz aplikację Knowledge Flow. Reguły asocjacyjne Niniejsze ćwiczenie demonstruje działanie implementacji algorytmu apriori w systemie WEKA. Ćwiczenie ma na celu zaznajomienie studenta z działaniem systemu WEKA oraz znaczeniem podstawowych

Bardziej szczegółowo

Zastosowanie metod eksploracji danych Data Mining w badaniach ekonomicznych SAS Enterprise Miner. rok akademicki 2014/2015

Zastosowanie metod eksploracji danych Data Mining w badaniach ekonomicznych SAS Enterprise Miner. rok akademicki 2014/2015 Zastosowanie metod eksploracji danych Data Mining w badaniach ekonomicznych SAS Enterprise Miner rok akademicki 2014/2015 Analiza asocjacji i sekwencji Analiza asocjacji Analiza asocjacji polega na identyfikacji

Bardziej szczegółowo

Wielopoziomowe i wielowymiarowe reguły asocjacyjne

Wielopoziomowe i wielowymiarowe reguły asocjacyjne Wielopoziomowe i wielowymiarowe reguły asocjacyjne Wielopoziomowe reguły asocjacyjne Wielowymiarowe reguły asocjacyjne Asocjacje vs korelacja Odkrywanie asocjacji wykład 3 Kontynuując zagadnienia związane

Bardziej szczegółowo

Algorytm DIC. Dynamic Itemset Counting. Magdalena Przygórzewska Karolina Stanisławska Aleksander Wieczorek

Algorytm DIC. Dynamic Itemset Counting. Magdalena Przygórzewska Karolina Stanisławska Aleksander Wieczorek Algorytm DIC Dynamic Itemset Counting Magdalena Przygórzewska Karolina Stanisławska Aleksander Wieczorek Spis treści 1 2 3 4 Algorytm DIC jako rozszerzenie apriori DIC Algorytm znajdowania reguł asocjacyjnych

Bardziej szczegółowo

Reguły asocjacyjne, wykł. 11

Reguły asocjacyjne, wykł. 11 Reguły asocjacyjne, wykł. 11 Joanna Jędrzejowicz Instytut Informatyki Przykłady reguł Analiza koszyka sklepowego (ang. market basket analysis) - jakie towary kupowane są razem, Jakie towary sprzedają się

Bardziej szczegółowo

Krzysztof Kawa. empolis arvato. e mail: krzysztof.kawa@empolis.com

Krzysztof Kawa. empolis arvato. e mail: krzysztof.kawa@empolis.com XI Konferencja PLOUG Kościelisko Październik 2005 Zastosowanie reguł asocjacyjnych, pakietu Oracle Data Mining for Java do analizy koszyka zakupów w aplikacjach e-commerce. Integracja ze środowiskiem Oracle

Bardziej szczegółowo

Analiza i eksploracja danych

Analiza i eksploracja danych Krzysztof Dembczyński Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Inteligentne Systemy Wspomagania Decyzji Studia magisterskie, semestr I Semestr letni

Bardziej szczegółowo

Odkrywanie asocjacji. Cel. Geneza problemu analiza koszyka zakupów

Odkrywanie asocjacji. Cel. Geneza problemu analiza koszyka zakupów Odkrywanie asocjacji Cel Celem procesu odkrywania asocjacji jest znalezienie interesujących zależności lub korelacji (nazywanych ogólnie asocjacjami) pomiędzy danymi w dużych zbiorach danych. Wynikiem

Bardziej szczegółowo

data mining machine learning data science

data mining machine learning data science data mining machine learning data science deep learning, AI, statistics, IoT, operations research, applied mathematics KISIM, WIMiIP, AGH 1 Machine Learning / Data mining / Data science Uczenie maszynowe

Bardziej szczegółowo

Odkrywanie reguł asocjacyjnych

Odkrywanie reguł asocjacyjnych Odkrywanie reguł asocjacyjnych Tomasz Kubik Na podstawie dokumentu: CS583-association-rules.ppt 1 Odkrywanie reguł asocjacyjnych n Autor metody Agrawal et al in 1993. n Analiza asocjacji danych w bazach

Bardziej szczegółowo

Odkrywanie wzorców sekwencji

Odkrywanie wzorców sekwencji Odkrywanie wzorców sekwencji Sformułowanie problemu Algorytm GSP Eksploracja wzorców sekwencji wykład 1 Na wykładzie zapoznamy się z problemem odkrywania wzorców sekwencji. Rozpoczniemy od wprowadzenia

Bardziej szczegółowo

EKSPLORACJA DANYCH METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING. Adrian Horzyk. Akademia Górniczo-Hutnicza

EKSPLORACJA DANYCH METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING. Adrian Horzyk. Akademia Górniczo-Hutnicza METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING EKSPLORACJA DANYCH Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra

Bardziej szczegółowo

Reguły asocjacyjne w programie RapidMiner Michał Bereta

Reguły asocjacyjne w programie RapidMiner Michał Bereta Reguły asocjacyjne w programie RapidMiner Michał Bereta www.michalbereta.pl 1. Wstęp Reguły asocjacyjne mają na celu odkrycie związków współwystępowania pomiędzy atrybutami. Stosuje się je często do danych

Bardziej szczegółowo

Algorytmy optymalizacji zapytań eksploracyjnych z wykorzystaniem materializowanej perspektywy eksploracyjnej

Algorytmy optymalizacji zapytań eksploracyjnych z wykorzystaniem materializowanej perspektywy eksploracyjnej Algorytmy optymalizacji zapytań eksploracyjnych z wykorzystaniem materializowanej perspektywy eksploracyjnej Jerzy Brzeziński, Mikołaj Morzy, Tadeusz Morzy, Łukasz Rutkowski RB-006/02 1. Wstęp 1.1. Rozwój

Bardziej szczegółowo

Plan wykładu. Reguły asocjacyjne. Przykłady asocjacji. Reguły asocjacyjne. Jeli warunki to efekty. warunki efekty

Plan wykładu. Reguły asocjacyjne. Przykłady asocjacji. Reguły asocjacyjne. Jeli warunki to efekty. warunki efekty Plan wykładu Reguły asocjacyjne Marcin S. Szczuka Wykład 6 Terminologia dla reguł asocjacyjnych. Ogólny algorytm znajdowania reguł. Wyszukiwanie czstych zbiorów. Konstruowanie reguł - APRIORI. Reguły asocjacyjne

Bardziej szczegółowo

Reguły decyzyjne, algorytm AQ i CN2. Reguły asocjacyjne, algorytm Apriori.

Reguły decyzyjne, algorytm AQ i CN2. Reguły asocjacyjne, algorytm Apriori. Analiza danych Reguły decyzyjne, algorytm AQ i CN2. Reguły asocjacyjne, algorytm Apriori. Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ REGUŁY DECYZYJNE Metoda reprezentacji wiedzy (modelowania

Bardziej szczegółowo

ANALIZA ZACHOWAŃ UŻYTKOWNIKÓW PORTALU ONET.PL W UJĘCIU REGUŁ ASOCJACYJNYCH

ANALIZA ZACHOWAŃ UŻYTKOWNIKÓW PORTALU ONET.PL W UJĘCIU REGUŁ ASOCJACYJNYCH PAWEŁ WEICHBROTH POLITECHIKA GDAŃSKA, ASYSTET, ZAKŁAD ZARZĄDZAIA TECHOLOGIAMI IFORMATYCZYMI, POLITECHIKA GDAŃSKA 1 STRESZCZEIE Portale internetowe są obecnie powszechnym źródłem informacji, notując bardzo

Bardziej szczegółowo

EKSPLORACJA DANYCH METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING. Adrian Horzyk. Akademia Górniczo-Hutnicza

EKSPLORACJA DANYCH METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING. Adrian Horzyk. Akademia Górniczo-Hutnicza METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING EKSPLORACJA DANYCH Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra

Bardziej szczegółowo

A C T A UNIVERSITATIS LODZIENSIS FOLIA OECONOMICA 183,2004. Sebastian Szamański, Ryszard Budziński

A C T A UNIVERSITATIS LODZIENSIS FOLIA OECONOMICA 183,2004. Sebastian Szamański, Ryszard Budziński A C T A UNIVERSITATIS LODZIENSIS FOLIA OECONOMICA 183,2004 Sebastian Szamański, Ryszard Budziński METODY EKSPLORACJI REGUŁ ASOCJACYJNYCH I ICH ZASTOSOWANIE Wprowadzenie Ogromny postęp technologiczny ostatnich

Bardziej szczegółowo

Analiza asocjacji i reguły asocjacyjne w badaniu wyborów zajęć dydaktycznych dokonywanych przez studentów. Zastosowanie algorytmu Apriori

Analiza asocjacji i reguły asocjacyjne w badaniu wyborów zajęć dydaktycznych dokonywanych przez studentów. Zastosowanie algorytmu Apriori Ekonomia nr 34/2013 Analiza asocjacji i reguły asocjacyjne w badaniu wyborów zajęć dydaktycznych dokonywanych przez studentów. Zastosowanie algorytmu Apriori Mirosława Lasek *, Marek Pęczkowski * Streszczenie

Bardziej szczegółowo

Sztuczna Inteligencja Projekt

Sztuczna Inteligencja Projekt Sztuczna Inteligencja Projekt Temat: Algorytm LEM2 Liczba osób realizujących projekt: 2 1. Zaimplementować algorytm LEM 2. 2. Zaimplementować klasyfikator Classif ier. 3. Za pomocą algorytmu LEM 2 wygenerować

Bardziej szczegółowo

Indukcja matematyczna, zasada minimum i maksimum. 17 lutego 2017

Indukcja matematyczna, zasada minimum i maksimum. 17 lutego 2017 Indukcja matematyczna, zasada minimum i maksimum 17 lutego 2017 Liczby naturalne - Aksjomatyka Peano (bez zera) Aksjomatyka liczb naturalnych N jest nazwą zbioru liczb naturalnych, 1 jest nazwą elementu

Bardziej szczegółowo

Odkrywanie wzorców sekwencyjnych z zachowaniem prywatności

Odkrywanie wzorców sekwencyjnych z zachowaniem prywatności Politechnika Warszawska Wydział Elektroniki i Technik Informacyjnych Instytut Informatyki Rok akademicki 2013/2013 PRACA DYPLOMOWA MAGISTERSKA Andrzej Makarewicz Odkrywanie wzorców sekwencyjnych z zachowaniem

Bardziej szczegółowo

B jest globalnym pokryciem zbioru {d} wtedy i tylko wtedy, gdy {d} zależy od B i nie istnieje B T takie, że {d} zależy od B ;

B jest globalnym pokryciem zbioru {d} wtedy i tylko wtedy, gdy {d} zależy od B i nie istnieje B T takie, że {d} zależy od B ; Algorytm LEM1 Oznaczenia i definicje: U - uniwersum, tj. zbiór obiektów; A - zbiór atrybutów warunkowych; d - atrybut decyzyjny; IND(B) = {(x, y) U U : a B a(x) = a(y)} - relacja nierozróżnialności, tj.

Bardziej szczegółowo

SYSTEMY UCZĄCE SIĘ WYKŁAD 4. DRZEWA REGRESYJNE, INDUKCJA REGUŁ. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska

SYSTEMY UCZĄCE SIĘ WYKŁAD 4. DRZEWA REGRESYJNE, INDUKCJA REGUŁ. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska SYSTEMY UCZĄCE SIĘ WYKŁAD 4. DRZEWA REGRESYJNE, INDUKCJA REGUŁ Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska DRZEWO REGRESYJNE Sposób konstrukcji i przycinania

Bardziej szczegółowo

Wnioskowanie z wiedzy niepełnej

Wnioskowanie z wiedzy niepełnej Politechnika Warszawska Wydział Elektroniki i Technik Informacyjnych Instytut Informatyki Rok akademicki 2011/2012 Praca dyplomowa magisterska Jakub Siudziński Wnioskowanie z wiedzy niepełnej Opiekun pracy:

Bardziej szczegółowo

Reguły asocjacyjne, algorytm Apriori

Reguły asocjacyjne, algorytm Apriori Reguły asocjacyjne, algorytm Apriori (przykład dla zbioru Sodowrażliwość ) Przemysław Klęsk pklesk@wi.zut.edu.pl Zakład Sztucznej Inteligencji Wydział Informatyki, ZUT Reguły asocjacyjne Zastosowania Analiza

Bardziej szczegółowo

Odkrywanie wzorców sekwencji

Odkrywanie wzorców sekwencji Odkrywanie wzorców sekwencji Prefix Span Odkrywanie wzorców sekwencji z ograniczeniami Uogólnione wzorce sekwencji Eksploracja wzorców sekwencji wykład 2 Kontynuujemy nasze rozważania dotyczące odkrywania

Bardziej szczegółowo

Reguły asocjacyjne na giełdzie

Reguły asocjacyjne na giełdzie Hurtownie danych i data mining - Grupa dra Piotra Lipińskiego II UWr 2009/2010 Adam Grycner, Mateusz Łyczek, Marta Ziobro Reguły asocjacyjne na giełdzie 1 Problem 1.1 Opis problemu - intuicyjnie Będziemy

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /10

Matematyka dyskretna. Andrzej Łachwa, UJ, /10 Matematyka dyskretna Andrzej Łachwa, UJ, 2018 andrzej.lachwa@uj.edu.pl 10/10 Podziały i liczby Stirlinga Liczba Stirlinga dla cykli (często nazywana liczbą Stirlinga pierwszego rodzaju) to liczba permutacji

Bardziej szczegółowo

Logika Stosowana. Wykład 10 - Wnioskowanie indukcyjne Część 3 Indukcja reguł i ILP. Marcin Szczuka. Instytut Informatyki UW

Logika Stosowana. Wykład 10 - Wnioskowanie indukcyjne Część 3 Indukcja reguł i ILP. Marcin Szczuka. Instytut Informatyki UW Logika Stosowana Wykład 10 - Wnioskowanie indukcyjne Część 3 Indukcja reguł i ILP Marcin Szczuka Instytut Informatyki UW Wykład monograficzny, semestr letni 2016/2017 Marcin Szczuka (MIMUW) Logika Stosowana

Bardziej szczegółowo

Sprawozdanie z laboratorium: Hurtownie Danych. Algorytm generowania reguł asocjacyjnych. FP-Growth. 9 czerwca 2011

Sprawozdanie z laboratorium: Hurtownie Danych. Algorytm generowania reguł asocjacyjnych. FP-Growth. 9 czerwca 2011 Sprawozdanie z laboratorium: Hurtownie Danych Algorytm generowania reguł asocjacyjnych 9 czerwca 2011 Prowadzący: dr inż. Izabela Szczęch dr inż. Szymon Wilk Autorzy: Łukasz Idkowiak Tomasz Kamiński Jacek

Bardziej szczegółowo

Klasyfikacja obiektów Drzewa decyzyjne (drzewa klasyfikacyjne)

Klasyfikacja obiektów Drzewa decyzyjne (drzewa klasyfikacyjne) Klasyfikacja obiektów Drzewa decyzyjne (drzewa klasyfikacyjne) Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski Klasyfikacja i predykcja. Odkrywaniem reguł klasyfikacji nazywamy proces znajdowania

Bardziej szczegółowo

Integracja technik eksploracji danych ]V\VWHPHP]DU]G]DQLDED]GDQ\FK QDSU]\NáDG]LH2UDFOHi Data Mining

Integracja technik eksploracji danych ]V\VWHPHP]DU]G]DQLDED]GDQ\FK QDSU]\NáDG]LH2UDFOHi Data Mining Integracja technik eksploracji danych ]V\VWHPHP]DU]G]DQLDED]GDQ\FK QDSU]\NáDG]LH2UDFOHi Data Mining 0LNRáDM0RU]\ Marek Wojciechowski Instytut Informatyki PP Eksploracja danych 2GNU\ZDQLHZ]RUFyZZGX*\FK

Bardziej szczegółowo

Sztuczna Inteligencja Projekt

Sztuczna Inteligencja Projekt Sztuczna Inteligencja Projekt Temat: Algorytm F-LEM1 Liczba osób realizujących projekt: 2 1. Zaimplementować algorytm F LEM 1. 2. Zaimplementować klasyfikator Classif ier. 3. Za pomocą algorytmu F LEM1

Bardziej szczegółowo

RACHUNEK ZDAŃ 7. Dla każdej tautologii w formie implikacji, której poprzednik również jest tautologią, następnik także jest tautologią.

RACHUNEK ZDAŃ 7. Dla każdej tautologii w formie implikacji, której poprzednik również jest tautologią, następnik także jest tautologią. Semantyczne twierdzenie o podstawianiu Jeżeli dana formuła rachunku zdań jest tautologią i wszystkie wystąpienia pewnej zmiennej zdaniowej w tej tautologii zastąpimy pewną ustaloną formułą, to otrzymana

Bardziej szczegółowo

Laboratorium 3. Odkrywanie reguł asocjacyjnych.

Laboratorium 3. Odkrywanie reguł asocjacyjnych. Laboratorium 3 Odkrywanie reguł asocjacyjnych. 1. Uruchom narzędzie Oracle Data Miner i połącz się z serwerem bazy danych. 2. Z menu głównego wybierz Tools SQL Worksheet. W górnym oknie wprowadź i wykonaj

Bardziej szczegółowo

Matematyczne Podstawy Kognitywistyki

Matematyczne Podstawy Kognitywistyki Matematyczne Podstawy Kognitywistyki Dorota Leszczyńska-Jasion Kombinatoryka, ci agi liczbowe, skończone przestrzenie probabilistyczne Przykłady zagadnień kombinatorycznych Rozważmy układ n miast o bardzo

Bardziej szczegółowo

Machine Learning. KISIM, WIMiIP, AGH

Machine Learning. KISIM, WIMiIP, AGH Machine Learning KISIM, WIMiIP, AGH 1 Machine Learning Uczenie maszynowe jest konsekwencją rozwoju idei sztucznej inteligencji i jej praktycznego wdrażania. Algorytmy pozwalają na zautomatyzowanie procesu

Bardziej szczegółowo

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl

Bardziej szczegółowo

Implementacja metod eksploracji danych - Oracle Data Mining

Implementacja metod eksploracji danych - Oracle Data Mining Implementacja metod eksploracji danych - Oracle Data Mining 395 Plan rozdziału 396 Wprowadzenie do eksploracji danych Architektura Oracle Data Mining Możliwości Oracle Data Mining Etapy procesu eksploracji

Bardziej szczegółowo

Text mining w programie RapidMiner Michał Bereta www.michalbereta.pl

Text mining w programie RapidMiner Michał Bereta www.michalbereta.pl Text mining w programie RapidMiner Michał Bereta www.michalbereta.pl 1. Wstęp Aby skorzystać z możliwości RapidMinera w zakresie analizy tekstu, należy zainstalować Text Mining Extension. Wybierz: 1 Po

Bardziej szczegółowo

Ćwiczenia z Zaawansowanych Systemów Baz Danych

Ćwiczenia z Zaawansowanych Systemów Baz Danych Ćwiczenia z Zaawansowanych Systemów Baz Danych Hurtownie danych Zad 1. Projekt schematu hurtowni danych W źródłach danych dostępne są następujące informacje dotyczące operacji bankowych: Klienci banku

Bardziej szczegółowo

Wyszukiwanie reguł asocjacji i ich zastosowanie w internecie

Wyszukiwanie reguł asocjacji i ich zastosowanie w internecie Bartosz BACHMAN 1, Paweł Karol FRANKOWSKI 1,2 1 Wydział Elektryczny, 2 Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie E mail: bartosz.bachman@sk.sep.szczecin.pl 1. Wprowadzenie

Bardziej szczegółowo

WSPOMAGANIE DECYZJI - MIŁOSZ KADZIŃSKI LAB IV ZBIORY PRZYBLIŻONE I ODKRYWANIE REGUŁ DECYZYJNYCH

WSPOMAGANIE DECYZJI - MIŁOSZ KADZIŃSKI LAB IV ZBIORY PRZYBLIŻONE I ODKRYWANIE REGUŁ DECYZYJNYCH WSOMAGANIE DECYZJI - MIŁOSZ KADZIŃSKI LAB IV ZBIORY RZYBLIŻONE I ODKRYWANIE REGUŁ DECYZYJNYCH 1. Definicje Zbiory, które nie są zbiorami definiowalnymi, są nazywane zbiorami przybliżonymi. Zbiory definiowalne

Bardziej szczegółowo

Technologie baz danych

Technologie baz danych Plan wykładu Technologie baz danych Wykład 2: Relacyjny model danych - zależności funkcyjne. SQL - podstawy Definicja zależności funkcyjnych Reguły dotyczące zależności funkcyjnych Domknięcie zbioru atrybutów

Bardziej szczegółowo

SAS wybrane elementy. DATA MINING Część III. Seweryn Kowalski 2006

SAS wybrane elementy. DATA MINING Część III. Seweryn Kowalski 2006 SAS wybrane elementy DATA MINING Część III Seweryn Kowalski 2006 Algorytmy eksploracji danych Algorytm eksploracji danych jest dobrze zdefiniowaną procedurą, która na wejściu otrzymuje dane, a na wyjściu

Bardziej szczegółowo

1 Działania na zbiorach

1 Działania na zbiorach M. Beśka, Wstęp do teorii miary, rozdz. 1 1 1 Działania na zbiorach W rozdziale tym przypomnimy podstawowe działania na zbiorach koncentrując się na własnościach tych działań, które będą przydatne w dalszej

Bardziej szczegółowo

ALGEBRA Z GEOMETRIĄ BAZY PRZESTRZENI WEKTOROWYCH

ALGEBRA Z GEOMETRIĄ BAZY PRZESTRZENI WEKTOROWYCH ALGEBRA Z GEOMETRIĄ 1/10 BAZY PRZESTRZENI WEKTOROWYCH Piotr M. Hajac Uniwersytet Warszawski Wykład 11, 18.12.2013 Typeset by Jakub Szczepanik. Istnienie bazy Tak jak wśród wszystkich pierścieni wyróżniamy

Bardziej szczegółowo

Logika. Michał Lipnicki. 15 stycznia Zakład Logiki Stosowanej UAM. Michał Lipnicki () Logika 15 stycznia / 37

Logika. Michał Lipnicki. 15 stycznia Zakład Logiki Stosowanej UAM. Michał Lipnicki () Logika 15 stycznia / 37 Logika Michał Lipnicki Zakład Logiki Stosowanej UAM 15 stycznia 2011 Michał Lipnicki () Logika 15 stycznia 2011 1 / 37 Wstęp Materiały na dzisiejsze zajęcia zostały opracowane na podstawie pomocy naukowych

Bardziej szczegółowo

1 Podstawowe oznaczenia

1 Podstawowe oznaczenia Poniżej mogą Państwo znaleźć skondensowane wiadomości z wykładu. Należy je traktować jako przegląd pojęć, które pojawiły się na wykładzie. Materiały te nie są w pełni tożsame z tym co pojawia się na wykładzie.

Bardziej szczegółowo

Plan prezentacji 0 Wprowadzenie 0 Zastosowania 0 Przykładowe metody 0 Zagadnienia poboczne 0 Przyszłość 0 Podsumowanie 7 Jak powstaje wiedza? Dane Informacje Wiedza Zrozumienie 8 Przykład Teleskop Hubble

Bardziej szczegółowo

Wykład z równań różnicowych

Wykład z równań różnicowych Wykład z równań różnicowych 1 Wiadomości wstępne Umówmy się, że na czas tego wykładu zrezygnujemy z oznaczania n-tego wyrazu ciągu symbolem typu x n, y n itp. Zamiast tego pisać będziemy x (n), y (n) itp.

Bardziej szczegółowo

Pozyskiwanie wiedzy z dużych zbiorów danych z zastosowaniem adaptacyjnych procedur generowania zapytań

Pozyskiwanie wiedzy z dużych zbiorów danych z zastosowaniem adaptacyjnych procedur generowania zapytań Akademia Górniczo-Hutnicza im. Stanisława Staszica Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Rozprawa doktorska Pozyskiwanie wiedzy z dużych zbiorów danych z zastosowaniem adaptacyjnych

Bardziej szczegółowo

Zastosowanie logiki matematycznej w procesie weryfikacji wymagań oprogramowania

Zastosowanie logiki matematycznej w procesie weryfikacji wymagań oprogramowania Zastosowanie logiki matematycznej w procesie weryfikacji wymagań oprogramowania Testerzy oprogramowania lub osoby odpowiedzialne za zapewnienie jakości oprogramowania oprócz wykonywania testów mogą zostać

Bardziej szczegółowo

Elementy logiki i teorii mnogości

Elementy logiki i teorii mnogości Elementy logiki i teorii mnogości Zdanie logiczne Zdanie logiczne jest to zdanie oznajmujące, któremu można przypisać określoną wartość logiczną. W logice klasycznej zdania dzielimy na: prawdziwe (przypisujemy

Bardziej szczegółowo

Wprowadzenie do technologii informacyjnej.

Wprowadzenie do technologii informacyjnej. Wprowadzenie do technologii informacyjnej. Data mining i jego biznesowe zastosowania dr Tomasz Jach Definicje Eksploracja danych polega na torturowaniu danych tak długo, aż zaczną zeznawać. Eksploracja

Bardziej szczegółowo

Metody Inżynierii Wiedzy

Metody Inżynierii Wiedzy Metody Inżynierii Wiedzy Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie AGH University of Science and Technology Mateusz Burcon Kraków, czerwiec 2017 Wykorzystane technologie Python 3.4

Bardziej szczegółowo

MECHANIZM PERSPEKTYW MATERIALIZOWANYCH W EKSPLORACJI DANYCH

MECHANIZM PERSPEKTYW MATERIALIZOWANYCH W EKSPLORACJI DANYCH MECHANIZM PERSPEKTYW MATERIALIZOWANYCH W EKSPLORACJI DANYCH Mikołaj MORZY, Marek WOJCIECHOWSKI Streszczenie: Eksploracja danych to proces interaktywny i iteracyjny. Użytkownik definiuje zbiór interesujących

Bardziej szczegółowo

NEGATYWNE REGUŁY ASOCJACYJNE WYZNACZANIE, MIARY I OBSZARY ZASTOSOWANIA

NEGATYWNE REGUŁY ASOCJACYJNE WYZNACZANIE, MIARY I OBSZARY ZASTOSOWANIA STUDIA INFORMATICA 2012 Volume 33 Number 2B (106) Anna KOTULLA Politechnika Śląska, Instytut Informatyki NEGATYWNE REGUŁY ASOCJACYJNE WYZNACZANIE, MIARY I OBSZARY ZASTOSOWANIA Streszczenie. Artykuł opisuje

Bardziej szczegółowo

0 + 0 = 0, = 1, = 1, = 0.

0 + 0 = 0, = 1, = 1, = 0. 5 Kody liniowe Jak już wiemy, w celu przesłania zakodowanego tekstu dzielimy go na bloki i do każdego z bloków dodajemy tak zwane bity sprawdzające. Bity te są w ścisłej zależności z bitami informacyjnymi,

Bardziej szczegółowo

Modelowanie wzorców zachowań klientów Delikatesów Alma przy wykorzystaniu reguł asocjacyjnych

Modelowanie wzorców zachowań klientów Delikatesów Alma przy wykorzystaniu reguł asocjacyjnych UNIWERSYTET EKONOMICZNY WE WROCŁAWIU WYDZIAŁ ZARZĄDZANIA, INFORMATYKI I FINANSÓW Piotr Skrzypczak Modelowanie wzorców zachowań klientów Delikatesów Alma przy wykorzystaniu reguł asocjacyjnych Praca magisterska

Bardziej szczegółowo

Wielkie wolumeny danych są trudne w analizowaniu. system satelitarnej obserwacji EOS zbudowany przez NASA generuje

Wielkie wolumeny danych są trudne w analizowaniu. system satelitarnej obserwacji EOS zbudowany przez NASA generuje Eksploracja danych - Odkrywanie wiedzy w danych Marek Wojciechowski Instytut Informatyki Politechnika Poznańska Zależności w bazach danych Przykład 1 wiek lat prawo kolor poj. moc razem kierowcy jazdy

Bardziej szczegółowo

Odkrywanie wiedzy w danych

Odkrywanie wiedzy w danych Inżynieria Wiedzy i Systemy Ekspertowe Odkrywanie wiedzy w danych dr inż. Michał Bereta Politechnika Krakowska http://torus.uck.pk.edu.pl/~beretam/ beretam@torus.uck.pk.edu.pl 1 Data Mining W pewnym teleturnieju

Bardziej szczegółowo

Algorytmy klasyfikacji

Algorytmy klasyfikacji Algorytmy klasyfikacji Konrad Miziński Instytut Informatyki Politechnika Warszawska 6 maja 2015 1 Wnioskowanie 2 Klasyfikacja Zastosowania 3 Drzewa decyzyjne Budowa Ocena jakości Przycinanie 4 Lasy losowe

Bardziej szczegółowo

Matematyka dyskretna - wykład - część Podstawowe algorytmy kombinatoryczne

Matematyka dyskretna - wykład - część Podstawowe algorytmy kombinatoryczne A. Permutacja losowa Matematyka dyskretna - wykład - część 2 9. Podstawowe algorytmy kombinatoryczne Załóżmy, że mamy tablice p złożoną z n liczb (ponumerowanych od 0 do n 1). Aby wygenerować losową permutację

Bardziej szczegółowo

WYKŁAD 6. Reguły decyzyjne

WYKŁAD 6. Reguły decyzyjne Wrocław University of Technology WYKŁAD 6 Reguły decyzyjne autor: Maciej Zięba Politechnika Wrocławska Reprezentacje wiedzy Wiedza w postaci reguł decyzyjnych Wiedza reprezentowania jest w postaci reguł

Bardziej szczegółowo

Programowanie liniowe

Programowanie liniowe Programowanie liniowe Maciej Drwal maciej.drwal@pwr.wroc.pl 1 Problem programowania liniowego min x c T x (1) Ax b, (2) x 0. (3) gdzie A R m n, c R n, b R m. Oznaczmy przez x rozwiązanie optymalne, tzn.

Bardziej szczegółowo

Eksploracja danych. Plan prezentacji. Problemy eksploracji danych. Wielkie bazy danych SCHEMATY. zakresie baz danych, uczenia maszynowego i statystyki

Eksploracja danych. Plan prezentacji. Problemy eksploracji danych. Wielkie bazy danych SCHEMATY. zakresie baz danych, uczenia maszynowego i statystyki Problemy eksploracji danych dr inż. Maciej Zakrzewicz Instytut Informatyki Politechnika Poznańska Wielkie bazy danych Wielkie bazy danych (Very Large atabases) i hurtownie danych (ata Warehouses) Rozmiary

Bardziej szczegółowo

BAZY DANYCH model związków encji. Opracował: dr inż. Piotr Suchomski

BAZY DANYCH model związków encji. Opracował: dr inż. Piotr Suchomski BAZY DANYCH model związków encji Opracował: dr inż. Piotr Suchomski Świat rzeczywisty a baza danych Świat rzeczywisty Diagram związków encji Model świata rzeczywistego Założenia, Uproszczenia, ograniczenia

Bardziej szczegółowo

Indukcja. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak

Indukcja. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak Indukcja Materiały pomocnicze do wykładu wykładowca: dr Magdalena Kacprzak Charakteryzacja zbioru liczb naturalnych Arytmetyka liczb naturalnych Jedną z najważniejszych teorii matematycznych jest arytmetyka

Bardziej szczegółowo

Data Mining Wykład 5. Indukcja drzew decyzyjnych - Indeks Gini & Zysk informacyjny. Indeks Gini. Indeks Gini - Przykład

Data Mining Wykład 5. Indukcja drzew decyzyjnych - Indeks Gini & Zysk informacyjny. Indeks Gini. Indeks Gini - Przykład Data Mining Wykład 5 Indukcja drzew decyzyjnych - Indeks Gini & Zysk informacyjny Indeks Gini Popularnym kryterium podziału, stosowanym w wielu produktach komercyjnych, jest indeks Gini Algorytm SPRINT

Bardziej szczegółowo

REGU LY ASOCJACYJNE. Nguyen Hung Son. 25 lutego i 04 marca Wydzia l Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski.

REGU LY ASOCJACYJNE. Nguyen Hung Son. 25 lutego i 04 marca Wydzia l Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski. REGU LY ASOCJACYJNE Wydzia l Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski 25 lutego i 04 marca 2005 Outline 1 2 3 regu l asocjacyjnych 4 5 Motywacje Lista autorów (items) A Jane Austen C

Bardziej szczegółowo

LOGIKA I TEORIA ZBIORÓW

LOGIKA I TEORIA ZBIORÓW LOGIKA I TEORIA ZBIORÓW Logika Logika jest nauką zajmującą się zdaniami Z punktu widzenia logiki istotne jest, czy dane zdanie jest prawdziwe, czy nie Nie jest natomiast istotne o czym to zdanie mówi Definicja

Bardziej szczegółowo

Spacery losowe generowanie realizacji procesu losowego

Spacery losowe generowanie realizacji procesu losowego Spacery losowe generowanie realizacji procesu losowego Michał Krzemiński Streszczenie Omówimy metodę generowania trajektorii spacerów losowych (błądzenia losowego), tj. szczególnych procesów Markowa z

Bardziej szczegółowo

REGU LY ASOCJACYJNE. Nguyen Hung Son. Wydzia l Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski. 28.II i 6.III, 2008

REGU LY ASOCJACYJNE. Nguyen Hung Son. Wydzia l Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski. 28.II i 6.III, 2008 REGU LY ASOCJACYJNE Nguyen Hung Son Wydzia l Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski 28.II i 6.III, 2008 Nguyen Hung Son (MIMUW) W2 28.II i 6.III, 2008 1 / 38 Outline 1 Dane transakcyjne

Bardziej szczegółowo

Grzegorz Harańczyk, StatSoft Polska Sp. z o.o.

Grzegorz Harańczyk, StatSoft Polska Sp. z o.o. CO Z CZYM I PO CZYM, CZYLI ANALIZA ASOCJACJI I SEKWENCJI W PROGRAMIE STATISTICA Grzegorz Harańczyk, StatSoft Polska Sp. z o.o. Jednym z zagadnień analizy danych jest wyszukiwanie w zbiorach danych wzorców,

Bardziej szczegółowo

A i. i=1. i=1. i=1. i=1. W dalszej części skryptu będziemy mieli najczęściej do czynienia z miarami określonymi na rodzinach, które są σ - algebrami.

A i. i=1. i=1. i=1. i=1. W dalszej części skryptu będziemy mieli najczęściej do czynienia z miarami określonymi na rodzinach, które są σ - algebrami. M. Beśka, Wstęp do teorii miary, rozdz. 3 25 3 Miara 3.1 Definicja miary i jej podstawowe własności Niech X będzie niepustym zbiorem, a A 2 X niepustą rodziną podzbiorów. Wtedy dowolne odwzorowanie : A

Bardziej szczegółowo

Cel normalizacji. Tadeusz Pankowski

Cel normalizacji. Tadeusz Pankowski Plan Normalizacja Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski 1. Cel normalizacji. 2. Klucze schematów relacyjnych atrybuty kluczowe i niekluczowe. 3. 2PN druga postać normalna. 4. 3PN trzecia

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /10

Matematyka dyskretna. Andrzej Łachwa, UJ, /10 Matematyka dyskretna Andrzej Łachwa, UJ, 2018 andrzej.lachwa@uj.edu.pl 6/10 Zasada Dirichleta 1 ZASADA SZUFLADKOWA DIRICHLETA (1ZSD) Jeśli n obiektów jest rozmieszczonych w m szufladach i n > m > 0, to

Bardziej szczegółowo

Algorytmy genetyczne. Paweł Cieśla. 8 stycznia 2009

Algorytmy genetyczne. Paweł Cieśla. 8 stycznia 2009 Algorytmy genetyczne Paweł Cieśla 8 stycznia 2009 Genetyka - nauka o dziedziczeniu cech pomiędzy pokoleniami. Geny są czynnikami, które decydują o wyglądzie, zachowaniu, rozmnażaniu każdego żywego organizmu.

Bardziej szczegółowo

Mikołaj Morzy, Marek Wojciechowski: "Integracja technik eksploracji danych z systemem zarządzania bazą danych na przykładzie Oracle9i Data Mining"

Mikołaj Morzy, Marek Wojciechowski: Integracja technik eksploracji danych z systemem zarządzania bazą danych na przykładzie Oracle9i Data Mining Mikołaj Morzy, Marek Wojciechowski: "Integracja technik eksploracji danych z systemem zarządzania bazą danych na przykładzie Oracle9i Data Mining" Streszczenie Eksploracja danych znajduje coraz szersze

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA WYKŁAD 4. WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH X - cecha populacji, θ parametr rozkładu cechy X.

STATYSTYKA MATEMATYCZNA WYKŁAD 4. WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH X - cecha populacji, θ parametr rozkładu cechy X. STATYSTYKA MATEMATYCZNA WYKŁAD 4 WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH X - cecha populacji, θ parametr rozkładu cechy X. Wysuwamy hipotezy: zerową (podstawową H ( θ = θ i alternatywną H, która ma jedną z

Bardziej szczegółowo