Wprowadzenie do Sieci Neuronowych lista zadań 1

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wprowadzenie do Sieci Neuronowych lista zadań 1"

Transkrypt

1 Wprowadzenie do Sieci Neuronowych lista zadań 1 Maja Czoków, Jarosław Piersa Zasadyzaliczania 1.1 Oceny Zaliczenie laboratoriów na podstawie implementowania omawianych algorytmów. Każde zadanie jest punktowane za 1 punkt. Dopuszczane są oceny wymierne(czyt. ułamkowe za brzydko napisane zadania) oraz powyżej jednego punktu za wybitnie napisane zadania. dst 3p. db 4p. bdb 5p. bdb+ 6plubwięcej. Dodatkowonaocenębdb+wymaganejestoddaniezadańzpięciu 1 działów: perceptrony proste i maszyny liniow, algorytmy konstrukcyjne dla sieci skierowanych, wsteczna propagacja błędu uczenie bez nauczyciela, samoorganizacja, PCA, sieci Hopfielda, maszyny Boltzmanna, symulowane wyżarzanie. Oraznależyoddać 2 : przynajmniej jeden program do końca października, przynajmniej dwa programy do końca listopada, przynajmniej trzy programy do końca stycznia. Zwolnienie z egzaminu za wybitną pracę na zajęciach jest możliwe do dnia Wskazówki Na co należy zwrócić uwagę pisząc progamy: Zadania będą sprawdzane z autorem siedzącym obok, zaoczne sprawdzanie zadań dopuszczane będzie tylko w wyjątkowych sytuacjach. Zadania powinny być napisane tak by umożliwić prostą i szybką ocenę poprawności działania po efektach(ocena poprawności poprzez wypisanie-nastu stron liczb na stdout nie jest ani prosta ani szybka!) Program w zależności od autora będzie uruchamiany na laptopie(może być to laptop autora) bądź komputerze w sali laboratoryjnej. Prosimy upewnić się, że mają Państwo pod ręką wszystkie wymagane środowiska lub/i biblioteki(dotnet framework, jdk, interpreter pythona,...). Podczas sprawdzania należy mieć pod ręką kod źródłowy programu(oraz edytor podświetlający składnię). 1 Zmianawporównaniudopoprzedniegoroku. 2 Zmianawporównaniudopoprzedniegoroku. 1

2 Optymalnie zadania powinny być oddawane w trakcie zajęć. Fragmentem zaliczenia może być dodatkowe pytanie o algorytm, sposób implementacji, zagadnienia teoretyczne powiązane z zadaniem. Podobnie może być to dopisanie dodatkowej funkcjonalniści w trakcie sprawdzania. Im później oddawane zadanie tym większe szanse na dodatkowe pytania i wyższy poziom trudności. Progamy korzystające z gotowych bibliotek do sieci neuronowych nie będą akceptowane. Teoretycznie dopuszczane są programy z tekstowym interfejsem użytkownika. Teoretycznie. Jeżeli jednak autor nie jest mistrzem ascii-artu, to gorąco rekomendujemy zrobić interfejs graficzny. 21 września 2011 USOS sam wstawi oceny niedostateczne studentom, którzy nie uzyskali zaliczenia. 2 Powtórzenie 2.1 ModelPreceptronu Perceptronem nazywamy następujący model składający się z: określonej liczby wejść n, wagistowarzyszonejzkażdymwejściem w i, i = 1..n funkcji aktywującej f Dynamikaperceptronu.Mając nwejść x 1...x n liczbowychperceptronzwracawartość out = f( n x i w i ) (1) Zakładającprogowąpostaćfunkcji,perceptrondziałajakoklasyfikator,dladanych x 1,.., x n zwracacałkowitą liczbę będącą klasą, do której dane należą. 2.2 Postacie funkcji aktywującej Identyczność f(s) = s takajednostkaliczypoprostusumęważonąwejść, Funkcja progowa(bipolarna) f(s) = i=1 { 0 s < p 1 s p Wartość p może być dodatkowym parametrem opisującym perceptron. Ten typ funkcji modeluje wysyłanie impulsu po przekroczeniu pewnego progu, które to zachowanie z pewnym przybliżeniem charakteryzuje komórki neuronowe. funkcja polarna. Jest to funkcja zalecana do używania w implementacji. { 1 s < p f(s) = +1 s p Funkcja podobna do poprzedniej z tą różnicą, że wartość 1 nie jest elementem neutralnym dodawania i odpowiedź negatywna może mieć pewien wpływ. Sigmoida f(s) = σ(s) = exp( s) Funkcja sigmoidalna może tu dziwić. Wymaga dzielenia i potęgowania, czyli więcej obliczeń, co nie powinno być wskazane przy wielokrotnym wykonywaniu. Jednakże jest ciągła i różniczkowalna co ma zasadnicze znaczenie przy algorytmach uczenia i przybliża funkcją bipolarną. Ponadto zachodzi σ (s) = σ(s) (1 σ(s)) 2

3 Rysunek1:Funkcjasigmoidalnazparametrami β = 1, β = 3, β = 10. out 2.3 Uczeniepreceptronu Rysunek 2: Schemat działania perceptronu Danyniechbędziezestaw kprzykładów E = { E (1)...E (k)},gdzie E (i) = (e (i) 1,..., e(i) N ) RN iodpowiadająceimpoprawnewyniki T (1)...T (k).danyteżmamyperceptrononwejściachijednymwyjściu. Rozważmyprzykład E j iodpowiadającąmupoprawnąodpowiedź T j,niechsiećzbieżącymzestawem wag zwróci wartość O. Rozważmy błąd: ERR = T j O Jeżelijestdodatnitomusimyzwiększyć O,jeżeliwejście e j i > 0tozwiększeniewagi w izwiększy O,jeżeli e j i < 0tozmniejszenie w izwiększy O. Jeżeli błąd ERR jest ujemny to musimy zmniejszyć O. Podobnie rozumując musimy zmniejszyć wagi w i jeśliwejście e j i > 0izwiększyć w iwprzeciwnymwypadkutj. e j i < 0. Podsumowując te rozważania otrzymujemy algorytm: Wylosujwagi w i małe,blisko 0. Wybierzprzykład E j iodpowiadającąmupoprawnąodpowiedź T j, Oblicz O wynikdziałaniasiecina E j Oblicz ERR = T j O Uaktualnij wszystkie wagi zgodnie ze wzorem η > 0jeststałąuczenia. w i = w i + η ERR e j i Jeżeli sieć klasyfikuje poprawnie wszystkie(większość) przykłady to zakończ, wpw wróć do 2. UWAGA: Powyższego algorytmu nie należy stosować w implementacjach! UWAGA: W 1969 matematycy Minsky oraz Papert udowodnili, że pojedynczy perceptron jest w stanie poprawnie klasyfikować wyłącznie problemy linowo separowalne. Algorytm sformułowany powyżej nie zatrzyma się, jeżeli nie istnieją wagi, dla których przykłady uczące są poprawnie klasyfikowane. A nawet jeżeli(zostanie to wymuszone ograniczeniem ilości iteracji), to nie gwarantuje, że zwrócone wagi będą optymalne. 3

4 Rysunek 3: Problem liniowo separowalny(po lewej) i nieseparowalny(po prawej) 2.4 Algorytm Uczenia Kieszonkowego/ Pocket Learning Algorithm Dane: Perceptrononwejsciach, kprzykładówuczących E 1...E k wrazzpoprawnymiodpowiedziami T 1...T k.zakładamy,żefunkcjaaktywującamapostaćpolarną.wtejsytuacjidodatkowymparametram uczącym jest wartość progu p. Wynik:Wartościwag w i orazprogu pktóredająoptymalnąklasyfikację. 1. Przypisujemy wagom i progowi małe losowe wartosci wokół 0, przypisujemy takiemu układowi wag zerowy czas życia, 2. Przebiegamy przykłady losując z listy, 3.Dlawybranegoprzykładu E j sprawdzamy,czy E j jestdobrzeklasyfikowany, Jeslitak,zwiekszamymuczasżyciaojeden.Jezelijesttowyniklepszyniżudotychczasowego rekordzisty, zapominamy go(dotychczasowego rekordzistę) i zapisujemy bieżący układ wag jako nowego rekordzistę. Wracamy do 2. Jeslinie,to w i := w i + T j E j i p := p T j Nowo powstałemu układowi wag przypisujemy zerowy czas życia. Wracamy do Algorytm kończymy po przebiegnięciu odpowiedniej liczby iteracji. Zwracamy najbardziej żywotny zestaw wag. 2.5 Algorytm Uczenia z Zapadką/ Ratchet Learning Algorithm Dane i wyjście jak wyżej. 1. jak powyżej, 2. jak powyżej, 3. jak powyżej, Jeslitak,zwiekszamymuczasżyciaojeden.Jezelijesttowyniklepszyniżudotychczasowego rekordzisty i dodatkowo nowy zestaw wag poprawnie klasyfikuje więcej przykładów uczących niż poprzedni, to zapominamy go(dotychczasowego rekordzistę) i zapisujemy bieżący układ wag jako nowego rekordzistę. Wracamy do 2. Jeslinie,tojakpowyżej 4. jak powyżej, 4

5 2.6 MaszynyLiniowe Maszyna liniowa składa się z n wejść, l perceptronów. Perceptrony mają swoje kolejne indeksy i te samewejścia.oznaczato,żemlmałącznie nlwag(po ndlakażdegozlperceptronów).będziemyje oznaczaćpoprzez w ij,gdzie i = 1..njestindeksemwejścia,natomaist j = 1..ljestindeksemperceptronu. Uznajemy ponadto, że we wszystkich perceptronach funkcja aktywująca jest identycznością f(x) = x To jest każdy z perceptronów zwraca wyłącznie sumę ważoną out j = n w ij x i (2) i=1 Odpowiedzącałejmaszynyliniowejjestindeksperceptronu,któryzwróciłnajwiększąwartość out j. OUT = {j : k=1..l out k out j } (3) Maszynalinowazwracakategoriędanychwejściowych x 1..x n,alekategoryzacjaniemusibyćbinarna. 2.7 Algorytm Uczenia Maszyny Lionowej Dane:zestawprzykładówuczących E j, j = 1..korazpoprawnychodpowiedzi T j, j = 1..k. Wynik:wagi w ij,dlaktórychsiećdajepoprawneklasyfikacje. 1. Przypisujemy wagom małe losowe wartosci wokół 0, 2. Przebiegamy przykłady losując z listy, 3.Dlawybranegoprzykładu E j sprawdzamy,czy E j jestdobrzeklasyfikowany, Jeslitak,wracamydo2. Jeslinie(npjestkategoria pzamiast q),to w ip + = E j i Wracamy do 2. w iq = E j i 4. Algorytm kończymy po przebiegnięciu odpowiedniej liczby iteracji. Dodajemy modyfikację kieszeni i zapadki(tj. zapamiętywanie najbardziej żywotnych zestawów wag). 3 Zadania 3.1 Zadanie1 Napisz program, który wykorzystuje maszynę liniową lub kilka(naście) perceptronów do rozpoznawania cyfr(lub liter uwaga na liczbę mnogą! program powinien rozpoznawać kilka cyfr). Cyfry powinny być wyświetlane jako układy pikseli na matrycy o niewielkich wymiarach(max. 100 pikseli, oczywiście mowa tu o pikselach na cyfrę, wyświetlanie może być z dużym powiększeniem). Program dodatkowo powinien mieć możliwość wyklikania cyfry(lub czegoś cyfropodobnego) i automatycznej klasyfikacji. Pomysły na rozbudowanie programu: Weścia uczące można zaburzać(tj. odwracać piksel z niewielkim prawdopodobieństwem niezależnie dla danego piksela). Można w ten sposób uzyskać częściową odporność na szumy, Rozpoznawanie cyfr w systemie szesnastkowym, Rozpoznawanie liter(wymaga większej matrycy!), Rozpoznawanie kształtów(okrąg, kwadrat, linia, domek itd), Rozpoznawanie symboliczne Rozpoznawanie tekstu pisanego(np. całych liczb) za pomocą myszki na matrycy w programie. 5

6 3.2 Zadanie2 Dany będzie plik(kilka plików) z listą punktów na płaszczyźnie oraz poprawną klasyfikacją punktu. Klasyfikacja jest binarna: 0 lub 1(+1,-1). # komentarze, informacje o pliku, itp #(ewentualnie wymiar przestrzeni i liczba przykładów uczących) x1y1o1 x2y2o2... Należy napisać program, który nauczy perceptron klasyfikacji na zadanej liście przykładów. Dodatkowo program powinien mieć możliwość wczytać parametry innych punktów(z poza listy uczącej) i wyświetlić je na płaszczyźnie wraz z oznaczeniem klasy. Ponadto dla przykładów z listy uczącej powinno być oznaczenie zarówno o oczekiwanej(z listy) jak i faktycznej(tj. zwróconej przez perceptron) klasyfikacji, np oczekiwana klasyfikacja poprzez kształt, faktyczna poprzez kolor. Pomysłynarozbudowanieprogramu:zadaniedlapunktówwwyżej-wymiarowychprzestrzeniach(R 3, R 4,...),klasyfikacja,któraniejestbinarna(3klasy,4klasy...),statystykinadanychwejściowychoraz wynikach uczenia, automatyczny zapis wyników do pliku. 6

Wstęp do sieci neuronowych laboratorium 01 Organizacja zajęć. Perceptron prosty

Wstęp do sieci neuronowych laboratorium 01 Organizacja zajęć. Perceptron prosty Wstęp do sieci neuronowych laboratorium 01 Organizacja zajęć. Perceptron prosty Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2012-10-03 Projekt pn. Wzmocnienie potencjału

Bardziej szczegółowo

Wprowadzenie do Sieci Neuronowych Laboratorium 01 Organizacja zajęć. Perceptron.

Wprowadzenie do Sieci Neuronowych Laboratorium 01 Organizacja zajęć. Perceptron. Wprowadzenie do Sieci Neuronowych Laboratorium Organizacja zajęć. Perceptron. Jarosław Piersa --3 Organizacja zajęć. Co będzie Dużo programowania (pisanie programów), Trochę matematyki, Małe zadania do

Bardziej szczegółowo

Wprowadzenie do Sieci Neuronowych Laboratorium 01 Organizacja zajęć. Perceptron.

Wprowadzenie do Sieci Neuronowych Laboratorium 01 Organizacja zajęć. Perceptron. Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu w dziedzinach matematyczno-przyrodniczych realizowany w ramach Poddziałania 4.. Programu Operacyjnego Kapitał Ludzki Wprowadzenie do Sieci

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-10-11 1 Modelowanie funkcji logicznych

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2012-10-10 Projekt pn. Wzmocnienie

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 01 Neuron biologiczny. Model perceptronu prostego.

Wstęp do sieci neuronowych, wykład 01 Neuron biologiczny. Model perceptronu prostego. Wstęp do sieci neuronowych, wykład 01. Model perceptronu prostego. M. Czoków, J. Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-10-04 In memoriam prof. dr hab. Tomasz Schreiber

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 01 Neuron biologiczny. Model perceptronu prostego.

Wstęp do sieci neuronowych, wykład 01 Neuron biologiczny. Model perceptronu prostego. Wstęp do sieci neuronowych, wykład 01. Model perceptronu prostego. M. Czoków, J. Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2012-10-03 Projekt pn. Wzmocnienie potencjału dydaktycznego

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa, Andrzej Rutkowski Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2018-10-15 Projekt

Bardziej szczegółowo

Uczenie sieci neuronowych i bayesowskich

Uczenie sieci neuronowych i bayesowskich Wstęp do metod sztucznej inteligencji www.mat.uni.torun.pl/~piersaj 2009-01-22 Co to jest neuron? Komputer, a mózg komputer mózg Jednostki obliczeniowe 1-4 CPU 10 11 neuronów Pojemność 10 9 b RAM, 10 10

Bardziej szczegółowo

Wprowadzenie do Sieci Neuronowych Laboratorium 02 Perceptron prosty cd

Wprowadzenie do Sieci Neuronowych Laboratorium 02 Perceptron prosty cd Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu w dziedzinach matematyczno-przyrodniczych realizowany w ramach Poddziałania 4.1.1 Programu Operacyjnego Kapitał Ludzki Wprowadzenie do Sieci

Bardziej szczegółowo

Wprowadzenie do Sieci Neuronowych Laboratorium 05 Algorytm wstecznej propagacji błędu

Wprowadzenie do Sieci Neuronowych Laboratorium 05 Algorytm wstecznej propagacji błędu Wprowadzenie do Sieci Neuronowych Laboratorium Algorytm wstecznej propagacji błędu Maja Czoków, Jarosław Piersa --7. Powtórzenie Perceptron sigmoidalny Funkcja sigmoidalna: σ(x) = + exp( c (x p)) () Parametr

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 04. Skierowane sieci neuronowe. Algorytmy konstrukcyjne dla sieci skierowanych

Wstęp do sieci neuronowych, wykład 04. Skierowane sieci neuronowe. Algorytmy konstrukcyjne dla sieci skierowanych Wstęp do sieci neuronowych, wykład 04. Skierowane sieci neuronowe. dla sieci skierowanych Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-10-25 1 Motywacja

Bardziej szczegółowo

Sztuczna Inteligencja Tematy projektów Sieci Neuronowe

Sztuczna Inteligencja Tematy projektów Sieci Neuronowe PB, 2009 2010 Sztuczna Inteligencja Tematy projektów Sieci Neuronowe Projekt 1 Stwórz projekt implementujący jednokierunkową sztuczną neuronową złożoną z neuronów typu sigmoidalnego z algorytmem uczenia

Bardziej szczegółowo

Wprowadzenie do Sieci Neuronowych Laboratorium 04 Algorytmy konstrukcyjne dla sieci skierowanych

Wprowadzenie do Sieci Neuronowych Laboratorium 04 Algorytmy konstrukcyjne dla sieci skierowanych Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu w dziedzinach matematyczno-przyrodniczych realizowany w ramach Poddziałania 4.1.1 Programu Operacyjnego Kapitał Ludzki Wprowadzenie do Sieci

Bardziej szczegółowo

Uczenie się pojedynczego neuronu. Jeśli zastosowana zostanie funkcja bipolarna s y: y=-1 gdy z<0 y=1 gdy z>=0. Wówczas: W 1 x 1 + w 2 x 2 + = 0

Uczenie się pojedynczego neuronu. Jeśli zastosowana zostanie funkcja bipolarna s y: y=-1 gdy z<0 y=1 gdy z>=0. Wówczas: W 1 x 1 + w 2 x 2 + = 0 Uczenie się pojedynczego neuronu W0 X0=1 W1 x1 W2 s f y x2 Wp xp p x i w i=x w+wo i=0 Jeśli zastosowana zostanie funkcja bipolarna s y: y=-1 gdy z=0 Wówczas: W 1 x 1 + w 2 x 2 + = 0 Algorytm

Bardziej szczegółowo

1. Historia 2. Podstawy neurobiologii 3. Definicje i inne kłamstwa 4. Sztuczny neuron i zasady działania SSN. Agenda

1. Historia 2. Podstawy neurobiologii 3. Definicje i inne kłamstwa 4. Sztuczny neuron i zasady działania SSN. Agenda Sieci neuropodobne 1. Historia 2. Podstawy neurobiologii 3. Definicje i inne kłamstwa 4. Sztuczny neuron i zasady działania SSN Agenda Trochę neurobiologii System nerwowy w organizmach żywych tworzą trzy

Bardziej szczegółowo

synaptycznych wszystko to waży 1.5 kg i zajmuje objętość około 1.5 litra. A zużywa mniej energii niż lampka nocna.

synaptycznych wszystko to waży 1.5 kg i zajmuje objętość około 1.5 litra. A zużywa mniej energii niż lampka nocna. Sieci neuronowe model konekcjonistyczny Plan wykładu Mózg ludzki a komputer Modele konekcjonistycze Perceptron Sieć neuronowa Uczenie sieci Sieci Hopfielda Mózg ludzki a komputer Twój mózg to 00 000 000

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 01 Neuron biologiczny. Model perceptronu prostego.

Wstęp do sieci neuronowych, wykład 01 Neuron biologiczny. Model perceptronu prostego. Wstęp do sieci neuronowych, wykład 01 Neuron biologiczny. Model perceptronu prostego. M. Czoków, J. Piersa, A. Rutkowski Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2017-10-04 Projekt

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 03 Warstwy RBF, jednostka Adaline.

Wstęp do sieci neuronowych, wykład 03 Warstwy RBF, jednostka Adaline. Wstęp do sieci neuronowych, wykład 3 Warstwy, jednostka Adaline. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 211-1-18 1 Pomysł Przykłady Zastosowanie 2

Bardziej szczegółowo

Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe.

Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe. Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe. zajecia.jakubw.pl/nai Literatura: S. Osowski, Sieci neuronowe w ujęciu algorytmicznym. WNT, Warszawa 997. PODSTAWOWE ZAGADNIENIA TECHNICZNE AI

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 10 Sieci rekurencyjne. Autoasocjator Hopfielda

Wstęp do sieci neuronowych, wykład 10 Sieci rekurencyjne. Autoasocjator Hopfielda Wstęp do sieci neuronowych, wykład 10. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2012-12-19 Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu

Bardziej szczegółowo

Elektroniczne materiały dydaktyczne do przedmiotu Wstęp do Sieci Neuronowych

Elektroniczne materiały dydaktyczne do przedmiotu Wstęp do Sieci Neuronowych Elektroniczne materiały dydaktyczne do przedmiotu Wstęp do Sieci Neuronowych Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-12-21 Koncepcja kursu Koncepcja

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 03 Warstwy RBF, jednostka ADALINE.

Wstęp do sieci neuronowych, wykład 03 Warstwy RBF, jednostka ADALINE. Wstęp do sieci neuronowych, wykład 3 Warstwy, jednostka ADALINE. Maja Czoków, Jarosław Piersa, Andrzej Rutkowski Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 218-1-15/22 Projekt pn.

Bardziej szczegółowo

Wstęp do Sieci Neuronowych

Wstęp do Sieci Neuronowych Wstęp do Sieci Neuronowych T. Schreiber, M. Czoków, J. Piersa 9 listopada 1 Streszczenie Dokument poniższy nie jest skryptem do wykładu w roku akademickim 1/11. Co najwyżej podsumowanim najważniejszych

Bardziej szczegółowo

Temat: Sztuczne Sieci Neuronowe. Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE

Temat: Sztuczne Sieci Neuronowe. Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Temat: Sztuczne Sieci Neuronowe Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Dr inż. Barbara Mrzygłód KISiM, WIMiIP, AGH mrzyglod@ agh.edu.pl 1 Wprowadzenie Sztuczne sieci neuronowe

Bardziej szczegółowo

Uniwersytet Mikołaja Kopernika. Wydział Matematyki i Informatyki. Jarosław Piersa piersaj(at)mat.uni.torun.pl

Uniwersytet Mikołaja Kopernika. Wydział Matematyki i Informatyki. Jarosław Piersa piersaj(at)mat.uni.torun.pl Uniwersytet Mikołaja Kopernika Wydział Matematyki i Informatyki Jarosław Piersa piersaj(at)mat.uni.torun.pl Abstrakt Poniższy referat dotyczy zagadnień uczenia w sieciach neuronowych i bayesowskich(sieciach

Bardziej szczegółowo

Programowanie w języku Python. Grażyna Koba

Programowanie w języku Python. Grażyna Koba Programowanie w języku Python Grażyna Koba Kilka definicji Program komputerowy to ciąg instrukcji języka programowania, realizujący dany algorytm. Język programowania to zbiór określonych instrukcji i

Bardziej szczegółowo

Wprowadzenie do Sieci Neuronowych Laboratorium 06 Algorytm wstecznej propagacji błędu

Wprowadzenie do Sieci Neuronowych Laboratorium 06 Algorytm wstecznej propagacji błędu Wprowadzenie do Sieci Neuronowych Laboratorium 6 Algorytm wstecznej propagacji błędu Maja Czoków, Jarosław Piersa 3--6 Powtórzenie. Perceptron sigmoidalny Funkcja sigmoidalna: σ(x) = + exp( c (x p)) ()

Bardziej szczegółowo

IMPLEMENTACJA SIECI NEURONOWYCH MLP Z WALIDACJĄ KRZYŻOWĄ

IMPLEMENTACJA SIECI NEURONOWYCH MLP Z WALIDACJĄ KRZYŻOWĄ IMPLEMENTACJA SIECI NEURONOWYCH MLP Z WALIDACJĄ KRZYŻOWĄ Celem ćwiczenia jest zapoznanie się ze sposobem działania sieci neuronowych typu MLP (multi-layer perceptron) uczonych nadzorowaną (z nauczycielem,

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 10 Sieci rekurencyjne. Autoasocjator Hopfielda

Wstęp do sieci neuronowych, wykład 10 Sieci rekurencyjne. Autoasocjator Hopfielda Wstęp do sieci neuronowych, wykład 10. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-12-13 1 Modele sieci rekurencyjnej Energia sieci 2 3 Modele sieci

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Laboratorium MATLAB Zadanie nr 2 Detekcja twarzy autorzy: A. Gonczarek, J.M. Tomczak Cel zadania Celem zadania jest zapoznanie się algorytmem gradientu prostego

Bardziej szczegółowo

Zapisywanie algorytmów w języku programowania

Zapisywanie algorytmów w języku programowania Temat C5 Zapisywanie algorytmów w języku programowania Cele edukacyjne Zrozumienie, na czym polega programowanie. Poznanie sposobu zapisu algorytmu w postaci programu komputerowego. Zrozumienie, na czym

Bardziej szczegółowo

Pomorski Czarodziej 2016 Zadania. Kategoria C

Pomorski Czarodziej 2016 Zadania. Kategoria C Pomorski Czarodziej 2016 Zadania. Kategoria C Poniżej znajduje się 5 zadań. Za poprawne rozwiązanie każdego z nich możesz otrzymać 10 punktów. Jeżeli otrzymasz za zadanie maksymalną liczbę punktów, możesz

Bardziej szczegółowo

Elementy inteligencji obliczeniowej

Elementy inteligencji obliczeniowej Elementy inteligencji obliczeniowej Paweł Liskowski Institute of Computing Science, Poznań University of Technology 9 October 2018 1 / 19 Perceptron Perceptron (Rosenblatt, 1957) to najprostsza forma sztucznego

Bardziej szczegółowo

Systemy Czasu Rzeczywistego FPGA

Systemy Czasu Rzeczywistego FPGA 01. Systemy Czasu Rzeczywistego FPGA 1 Systemy Czasu Rzeczywistego FPGA laboratorium: 06 autor: mgr inż. Mateusz Baran 01. Systemy Czasu Rzeczywistego FPGA 2 1 Spis treści FPGA... 1 1 Spis treści... 2

Bardziej szczegółowo

Optymalizacja systemów

Optymalizacja systemów Optymalizacja systemów Laboratorium - problem detekcji twarzy autorzy: A. Gonczarek, J.M. Tomczak, S. Zaręba, P. Klukowski Cel zadania Celem zadania jest zapoznanie się z gradientowymi algorytmami optymalizacji

Bardziej szczegółowo

Metody Sztucznej Inteligencji II

Metody Sztucznej Inteligencji II 17 marca 2013 Neuron biologiczny Neuron Jest podstawowym budulcem układu nerwowego. Jest komórką, która jest w stanie odbierać i przekazywać sygnały elektryczne. Neuron działanie Jeżeli wartość sygnału

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Wstęp do sieci neuronowych, wykład 2 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 213-1-15 Projekt pn. Wzmocnienie potencjału

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Laboratorium JAVA Zadanie nr 2 Rozpoznawanie liter autorzy: A. Gonczarek, J.M. Tomczak Cel zadania Celem zadania jest zapoznanie się z problemem klasyfikacji

Bardziej szczegółowo

Programowanie w języku C++ Grażyna Koba

Programowanie w języku C++ Grażyna Koba Programowanie w języku C++ Grażyna Koba Kilka definicji: Program komputerowy to ciąg instrukcji języka programowania, realizujący dany algorytm. Język programowania to zbiór określonych instrukcji i zasad

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 9 Sieci rekurencyjne. Autoasocjator Hopfielda

Wstęp do sieci neuronowych, wykład 9 Sieci rekurencyjne. Autoasocjator Hopfielda Wstęp do sieci neuronowych, wykład 9. M. Czoków, J. Piersa 2010-12-07 1 Sieci skierowane 2 Modele sieci rekurencyjnej Energia sieci 3 Sieci skierowane Sieci skierowane Sieci skierowane graf połączeń synaptycznych

Bardziej szczegółowo

8. Neuron z ciągłą funkcją aktywacji.

8. Neuron z ciągłą funkcją aktywacji. 8. Neuron z ciągłą funkcją aktywacji. W tym ćwiczeniu zapoznamy się z modelem sztucznego neuronu oraz przykładem jego wykorzystania do rozwiązywanie prostego zadania klasyfikacji. Neuron biologiczny i

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 07 Uczenie nienadzorowane cd.

Wstęp do sieci neuronowych, wykład 07 Uczenie nienadzorowane cd. Wstęp do sieci neuronowych, wykład 07 Uczenie nienadzorowane cd. M. Czoków, J. Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika w Toruniu 2013-11-26 Projekt pn. Wzmocnienie potencjału

Bardziej szczegółowo

Wstęp do sztucznych sieci neuronowych

Wstęp do sztucznych sieci neuronowych Wstęp do sztucznych sieci neuronowych Michał Garbowski Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Wydział Informatyki 15 grudnia 2011 Plan wykładu I 1 Wprowadzenie Inspiracja biologiczna

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 9 Sieci rekurencyjne. Autoasocjator Hopfielda

Wstęp do sieci neuronowych, wykład 9 Sieci rekurencyjne. Autoasocjator Hopfielda Wstęp do sieci neuronowych, wykład 9. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2018-12-10 Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu

Bardziej szczegółowo

1. Logika, funkcje logiczne, preceptron.

1. Logika, funkcje logiczne, preceptron. Sieci neuronowe 1. Logika, funkcje logiczne, preceptron. 1. (Logika) Udowodnij prawa de Morgana, prawo pochłaniania p (p q), prawo wyłączonego środka p p oraz prawo sprzeczności (p p). 2. Wyraź funkcję

Bardziej szczegółowo

Obliczenia iteracyjne

Obliczenia iteracyjne Lekcja Strona z Obliczenia iteracyjne Zmienne iteracyjne (wyliczeniowe) Obliczenia iteracyjne wymagają zdefiniowania specjalnej zmiennej nazywanej iteracyjną lub wyliczeniową. Zmienną iteracyjną od zwykłej

Bardziej szczegółowo

Instytut Fizyki Politechniki Łódzkiej Laboratorium Metod Analizy Danych Doświadczalnych Ćwiczenie 3 Generator liczb losowych o rozkładzie Rayleigha.

Instytut Fizyki Politechniki Łódzkiej Laboratorium Metod Analizy Danych Doświadczalnych Ćwiczenie 3 Generator liczb losowych o rozkładzie Rayleigha. Instytut Fizyki Politechniki Łódzkiej Laboratorium Metod Analizy Danych Doświadczalnych Generator liczb losowych o rozkładzie Rayleigha. Generator liczb losowych o rozkładzie Rayleigha. 1. Cel ćwiczenia

Bardziej szczegółowo

Klasyfikator liniowy Wstęp Klasyfikator liniowy jest najprostszym możliwym klasyfikatorem. Zakłada on liniową separację liniowy podział dwóch klas między sobą. Przedstawia to poniższy rysunek: 5 4 3 2

Bardziej szczegółowo

Wstęp do Sieci Neuronowych

Wstęp do Sieci Neuronowych Wstęp do Sieci Neuronowych Maja Czoków, Jarosław Piersa, Tomasz Schreiber 5 listopada 3 975, Profesor Uniwersytetu Mikołaja Kopernika w Toruniu. Autor oryginalnej formy wykładu na WMiI. Spis treści Modele

Bardziej szczegółowo

Sztuczne sieci neuronowe (SNN)

Sztuczne sieci neuronowe (SNN) Sztuczne sieci neuronowe (SNN) Pozyskanie informacji (danych) Wstępne przetwarzanie danych przygotowanie ich do dalszej analizy Selekcja informacji Ostateczny model decyzyjny SSN - podstawy Sieci neuronowe

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 07 Uczenie nienadzorowane.

Wstęp do sieci neuronowych, wykład 07 Uczenie nienadzorowane. Wstęp do sieci neuronowych, wykład 7. M. Czoków, J. Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika w Toruniu 212-11-28 Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu

Bardziej szczegółowo

Oprogramowanie Systemów Obrazowania SIECI NEURONOWE

Oprogramowanie Systemów Obrazowania SIECI NEURONOWE SIECI NEURONOWE Przedmiotem laboratorium jest stworzenie algorytmu rozpoznawania zwierząt z zastosowaniem sieci neuronowych w oparciu o 5 kryteriów: ile zwierzę ma nóg, czy żyje w wodzie, czy umie latać,

Bardziej szczegółowo

ID1SII4. Informatyka I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) stacjonarne (stacjonarne / niestacjonarne)

ID1SII4. Informatyka I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) stacjonarne (stacjonarne / niestacjonarne) Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu ID1SII4 Nazwa modułu Systemy inteligentne 1 Nazwa modułu w języku angielskim Intelligent

Bardziej szczegółowo

Instrukcja realizacji ćwiczenia

Instrukcja realizacji ćwiczenia SIEĆ KOHONENA ROZPOZNAWANIE OBRAZÓW Cel ćwiczenia: zapoznanie się ze sposobem reprezentacji wiedzy w sieciach Kohonena i mechanizmami sąsiedztwa i sumienia neuronów. Zadanie do analizy: analizujemy sieć

Bardziej szczegółowo

CZĘŚĆ A PIERWSZE KROKI Z KOMPUTEREM

CZĘŚĆ A PIERWSZE KROKI Z KOMPUTEREM CZĘŚĆ A PIERWSZE KROKI Z KOMPUTEREM 1.1. PODSTAWOWE INFORMACJE PC to skrót od nazwy Komputer Osobisty (z ang. personal computer). Elementy komputera można podzielić na dwie ogólne kategorie: sprzęt - fizyczne

Bardziej szczegółowo

Optymalizacja ciągła

Optymalizacja ciągła Optymalizacja ciągła 5. Metoda stochastycznego spadku wzdłuż gradientu Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 04.04.2019 1 / 20 Wprowadzenie Minimalizacja różniczkowalnej

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 8 Uczenie nienadzorowane.

Wstęp do sieci neuronowych, wykład 8 Uczenie nienadzorowane. Wstęp do sieci neuronowych, wykład 8. M. Czoków, J. Piersa, A. Rutkowski Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika w Toruniu 1-811-6 Projekt pn. Wzmocnienie potencjału dydaktycznego

Bardziej szczegółowo

wiedzy Sieci neuronowe

wiedzy Sieci neuronowe Metody detekcji uszkodzeń oparte na wiedzy Sieci neuronowe Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 7 Wprowadzenie Okres kształtowania się teorii sztucznych sieci

Bardziej szczegółowo

Podstawy i języki programowania

Podstawy i języki programowania Podstawy i języki programowania Laboratorium 1 - wprowadzenie do przedmiotu mgr inż. Krzysztof Szwarc krzysztof@szwarc.net.pl Sosnowiec, 16 października 2017 1 / 25 mgr inż. Krzysztof Szwarc Podstawy i

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa

Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa M. Czoków, J. Piersa 2012-01-10 1 Łańcucha Markowa 2 Istnienie Szukanie stanu stacjonarnego 3 1 Łańcucha Markowa 2 Istnienie Szukanie stanu stacjonarnego

Bardziej szczegółowo

KARTA MODUŁU KSZTAŁCENIA

KARTA MODUŁU KSZTAŁCENIA KARTA MODUŁU KSZTAŁCENIA I. Informacje ogólne 1 Nazwa modułu kształcenia Sztuczna inteligencja 2 Nazwa jednostki prowadzącej moduł Instytut Informatyki, Zakład Informatyki Stosowanej 3 Kod modułu (wypełnia

Bardziej szczegółowo

Zajęcia: VBA TEMAT: VBA PROCEDURY NUMERYCZNE Metoda bisekcji i metoda trapezów

Zajęcia: VBA TEMAT: VBA PROCEDURY NUMERYCZNE Metoda bisekcji i metoda trapezów Zajęcia: VBA TEMAT: VBA PROCEDURY NUMERYCZNE Metoda bisekcji i metoda trapezów W ramach zajęć oprogramujemy jedną, wybraną metodę numeryczną: metodę bisekcji numerycznego rozwiązywania równania nieliniowego

Bardziej szczegółowo

Literatura. Sztuczne sieci neuronowe. Przepływ informacji w systemie nerwowym. Budowa i działanie mózgu

Literatura. Sztuczne sieci neuronowe. Przepływ informacji w systemie nerwowym. Budowa i działanie mózgu Literatura Wykład : Wprowadzenie do sztucznych sieci neuronowych Małgorzata Krętowska Wydział Informatyki Politechnika Białostocka Tadeusiewicz R: Sieci neuronowe, Akademicka Oficyna Wydawnicza RM, Warszawa

Bardziej szczegółowo

Rozdział 1 Sztuczne sieci neuronowe. Materiały do zajęć dydaktycznych - na podstawie dokumentacji programu Matlab opracował Dariusz Grzesiak

Rozdział 1 Sztuczne sieci neuronowe. Materiały do zajęć dydaktycznych - na podstawie dokumentacji programu Matlab opracował Dariusz Grzesiak 2 Rozdział 1 Sztuczne sieci neuronowe. 3 Sztuczna sieć neuronowa jest zbiorem prostych elementów pracujących równolegle, których zasada działania inspirowana jest biologicznym systemem nerwowym. Sztuczną

Bardziej szczegółowo

Zadanie projektowe nr 1

Zadanie projektowe nr 1 Zadanie projektowe nr 1 Badanie efektywności operacji dodawania (wstawiania), usuwania oraz wyszukiwania elementów w podstawowych strukturach danych Należy zaimplementować oraz dokonać pomiaru czasu działania

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA Z JĘZYKA POLSKIEGO Zespół Szkół Politechnicznych im. Bohaterów Monte Cassino we Wrześni

PRZEDMIOTOWY SYSTEM OCENIANIA Z JĘZYKA POLSKIEGO Zespół Szkół Politechnicznych im. Bohaterów Monte Cassino we Wrześni PRZEDMIOTOWY SYSTEM OCENIANIA Z JĘZYKA POLSKIEGO Zespół Szkół Politechnicznych im. Bohaterów Monte Cassino we Wrześni 1. Podstawa prawna opracowania Przedmiotowego Systemu Oceniania: a) rozporządzenie

Bardziej szczegółowo

Algorytmy decyzyjne będące alternatywą dla sieci neuronowych

Algorytmy decyzyjne będące alternatywą dla sieci neuronowych Algorytmy decyzyjne będące alternatywą dla sieci neuronowych Piotr Dalka Przykładowe algorytmy decyzyjne Sztuczne sieci neuronowe Algorytm k najbliższych sąsiadów Kaskada klasyfikatorów AdaBoost Naiwny

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 6 Wsteczna propagacja błędu - cz. 3

Wstęp do sieci neuronowych, wykład 6 Wsteczna propagacja błędu - cz. 3 Wstęp do sieci neuronowych, wykład 6 Wsteczna propagacja błędu - cz. 3 Andrzej Rutkowski, Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2018-11-05 Projekt

Bardziej szczegółowo

Konspekt lekcji matematyki kl. I gimnazjum Temat: Funkcje - powtórzenie

Konspekt lekcji matematyki kl. I gimnazjum Temat: Funkcje - powtórzenie Maria Żylska ul. Krasickiego 9/78-55 Kraków zyluska@interia.pl Konspekt lekcji matematyki kl. I gimnazjum Temat: Funkcje - powtórzenie Autor: Maria Żylska Gimnazjum 7 Kraków Temat: Funkcje powtórzenie

Bardziej szczegółowo

Sztuczne sieci neuronowe

Sztuczne sieci neuronowe www.math.uni.lodz.pl/ radmat Cel wykładu Celem wykładu jest prezentacja różnych rodzajów sztucznych sieci neuronowych. Biologiczny model neuronu Mózg człowieka składa się z około 10 11 komórek nerwowych,

Bardziej szczegółowo

Prognozowanie kierunku ruchu indeksów giełdowych na podstawie danych historycznych.

Prognozowanie kierunku ruchu indeksów giełdowych na podstawie danych historycznych. Metody Sztucznej Inteligencji 2 Projekt Prognozowanie kierunku ruchu indeksów giełdowych na podstawie danych historycznych. Autorzy: Robert Wojciechowski Michał Denkiewicz Mateusz Gągol Wstęp Celem projektu

Bardziej szczegółowo

Wstęp do teorii sztucznej inteligencji Wykład II. Uczenie sztucznych neuronów.

Wstęp do teorii sztucznej inteligencji Wykład II. Uczenie sztucznych neuronów. Wstęp do teorii sztucznej inteligencji Wykład II Uczenie sztucznych neuronów. 1 - powtórzyć o klasyfikacji: Sieci liniowe I nieliniowe Sieci rekurencyjne Uczenie z nauczycielem lub bez Jednowarstwowe I

Bardziej szczegółowo

Układy VLSI Bramki 1.0

Układy VLSI Bramki 1.0 Spis treści: 1. Wstęp... 2 2. Opis edytora schematów... 2 2.1 Dodawanie bramek do schematu:... 3 2.2 Łączenie bramek... 3 2.3 Usuwanie bramek... 3 2.4 Usuwanie pojedynczych połączeń... 4 2.5 Dodawanie

Bardziej szczegółowo

1 Opracowane przez: mgr Dorotę Knap

1 Opracowane przez: mgr Dorotę Knap INFORMACJE DLA UCZNIÓW rok szkolny 2008/2009 Przedmiot: CHEMIA klasa: I Nauczyciel: mgr inż. Dorota Knap Obowiązujące podręczniki: Ciekawa chemia cz 1wydawnictwo WSiP Autorzy: H. Gulińska, J. Smolińska,

Bardziej szczegółowo

Regulamin zajęć z przedmiotu Chemia analityczna dla II roku Farmacji w roku akademickim 2018/19

Regulamin zajęć z przedmiotu Chemia analityczna dla II roku Farmacji w roku akademickim 2018/19 Regulamin zajęć z przedmiotu Chemia analityczna dla II roku Farmacji w roku akademickim 2018/19 1. Koordynatorem przedmiotu Chemia analityczna jest dr hab. Urszula Hubicka. Kontakt z koordynatorem przedmiotu:

Bardziej szczegółowo

Program dla praktyki lekarskiej

Program dla praktyki lekarskiej Program dla praktyki lekarskiej ErLab Instrukcja konfiguracji i obsługi Spis Treści 1. Wstęp... 2 2. Konfiguracja... 3 2.1. Serwer... 3 2.2. Laboratorium... 3 2.3. Punkt pobrań... 4 3. Wysyłanie skierowania...

Bardziej szczegółowo

Uczenie sieci typu MLP

Uczenie sieci typu MLP Uczenie sieci typu MLP Przypomnienie budowa sieci typu MLP Przypomnienie budowy neuronu Neuron ze skokową funkcją aktywacji jest zły!!! Powszechnie stosuje -> modele z sigmoidalną funkcją aktywacji - współczynnik

Bardziej szczegółowo

Baltie 3. Podręcznik do nauki programowania dla klas I III gimnazjum. Tadeusz Sołtys, Bohumír Soukup

Baltie 3. Podręcznik do nauki programowania dla klas I III gimnazjum. Tadeusz Sołtys, Bohumír Soukup Baltie 3 Podręcznik do nauki programowania dla klas I III gimnazjum Tadeusz Sołtys, Bohumír Soukup Czytanie klawisza lub przycisku myszy Czytaj klawisz lub przycisk myszy - czekaj na naciśnięcie Polecenie

Bardziej szczegółowo

Programowanie i techniki algorytmiczne

Programowanie i techniki algorytmiczne Temat 2. Programowanie i techniki algorytmiczne Realizacja podstawy programowej 1) wyjaśnia pojęcie algorytmu, podaje odpowiednie przykłady algorytmów rozwiązywania różnych 2) formułuje ścisły opis prostej

Bardziej szczegółowo

Zadania semestralne. Programowanie obiektowe sem. II, lato 2014/2015

Zadania semestralne. Programowanie obiektowe sem. II, lato 2014/2015 Programowanie obiektowe sem. II, lato 2014/2015 Zadania semestralne Założenia wspólne dla wszystkich tematów W programie muszą być zastosowane następujące techniki i technologie obiektowe: 1. kapsułkowanie,

Bardziej szczegółowo

Przedmiotowy system oceniania z fizyki w Szkole Podstawowej nr 51

Przedmiotowy system oceniania z fizyki w Szkole Podstawowej nr 51 Przedmiotowy system oceniania z fizyki w Szkole Podstawowej nr 51 OGÓLNY OPIS OSIĄGNIĘĆ Na poziomie koniecznym uczeń: i słowami, niekoniecznie w pełni naukowym językiem) podstawowych praw i zależności

Bardziej szczegółowo

Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe

Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe Trening jednokierunkowych sieci neuronowych wykład 2. dr inż. PawełŻwan Katedra Systemów Multimedialnych Politechnika Gdańska

Bardziej szczegółowo

Programowanie obiektowe

Programowanie obiektowe Laboratorium z przedmiotu Programowanie obiektowe - zestaw 08 Cel zajęć. Celem zajęć jest zapoznanie z praktycznymi aspektami powiązania modelu obiektowego z modelem okienkowym w C#. Wprowadzenie teoretyczne.

Bardziej szczegółowo

Techniki multimedialne

Techniki multimedialne Techniki multimedialne Digitalizacja podstawą rozwoju systemów multimedialnych. Digitalizacja czyli obróbka cyfrowa oznacza przetwarzanie wszystkich typów informacji - słów, dźwięków, ilustracji, wideo

Bardziej szczegółowo

2. Graficzna prezentacja algorytmów

2. Graficzna prezentacja algorytmów 1. Uczeń: Uczeń: 2. Graficzna prezentacja algorytmów a. 1. Cele lekcji i. a) Wiadomości zna sposoby graficznego przedstawiania algorytmów, wie w jaki sposób skonstruować schemat blokowy w taki sposób aby

Bardziej szczegółowo

Zad. 3: Rotacje 2D. Demonstracja przykładu problemu skończonej reprezentacji binarnej liczb

Zad. 3: Rotacje 2D. Demonstracja przykładu problemu skończonej reprezentacji binarnej liczb Zad. 3: Rotacje 2D 1 Cel ćwiczenia Wykształcenie umiejętności modelowania kluczowych dla danego problemu pojęć. Definiowanie właściwego interfejsu klasy. Zwrócenie uwagi na dobór odpowiednich struktur

Bardziej szczegółowo

Wstęp do teorii sztucznej inteligencji Wykład III. Modele sieci neuronowych.

Wstęp do teorii sztucznej inteligencji Wykład III. Modele sieci neuronowych. Wstęp do teorii sztucznej inteligencji Wykład III Modele sieci neuronowych. 1 Perceptron model najprostzszy przypomnienie Schemat neuronu opracowany przez McCullocha i Pittsa w 1943 roku. Przykład funkcji

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE. Informatyka Szkoła Podstawowa Klasa 4 NA ŚRÓDROCZNĄ I ROCZNĄ OCENĘ KLASYFIKACYJNĄ

WYMAGANIA EDUKACYJNE. Informatyka Szkoła Podstawowa Klasa 4 NA ŚRÓDROCZNĄ I ROCZNĄ OCENĘ KLASYFIKACYJNĄ WYMAGANIA EDUKACYJNE Informatyka Szkoła Podstawowa Klasa 4 NA ŚRÓDROCZNĄ I ROCZNĄ OCENĘ KLASYFIKACYJNĄ NA ŚRÓDROCZNĄ CELUJĄCA Uczeń otrzymuje ocenę celującą, jeżeli jego wiedza i umiejętności w pełni spełniają

Bardziej szczegółowo

PRZEDMIOTOWE ZASADY OCENIANIA W GIMNAZJUM NR 1 HISTORIA

PRZEDMIOTOWE ZASADY OCENIANIA W GIMNAZJUM NR 1 HISTORIA PRZEDMIOTOWE ZASADY OCENIANIA W GIMNAZJUM NR 1 HISTORIA 1. Przedmiotowe wymagania edukacyjne z historii. 2. Sposoby sprawdzania dydaktycznych osiągnięć uczniów. 3. Sposoby informowania uczniów, rodziców

Bardziej szczegółowo

Sprawdzenie i ocena pracy z wykorzystaniem Archiwum Prac Dyplomowych

Sprawdzenie i ocena pracy z wykorzystaniem Archiwum Prac Dyplomowych Sprawdzenie i ocena pracy z wykorzystaniem Archiwum Prac Dyplomowych Instrukcja dla studentów Archiwum Prac Dyplomowych (APD) aplikacja systemu USOS wspomagająca obsługę procesu związanego ze złożeniem

Bardziej szczegółowo

1.1. Pozycyjne systemy liczbowe

1.1. Pozycyjne systemy liczbowe 1.1. Pozycyjne systemy liczbowe Systemami liczenia nazywa się sposób tworzenia liczb ze znaków cyfrowych oraz zbiór reguł umożliwiających wykonywanie operacji arytmetycznych na liczbach. Dla dowolnego

Bardziej szczegółowo

biegle i poprawnie posługuje się terminologią informatyczną,

biegle i poprawnie posługuje się terminologią informatyczną, INFORMATYKA KLASA 1 1. Wymagania na poszczególne oceny: 1) ocenę celującą otrzymuje uczeń, który: samodzielnie wykonuje na komputerze wszystkie zadania z lekcji, wykazuje inicjatywę rozwiązywania konkretnych

Bardziej szczegółowo

Systemy pomiarowo-diagnostyczne. Metody uczenia maszynowego wykład III 2016/2017

Systemy pomiarowo-diagnostyczne. Metody uczenia maszynowego wykład III 2016/2017 Systemy pomiarowo-diagnostyczne Metody uczenia maszynowego wykład III bogumil.konopka@pwr.edu.pl 2016/2017 Wykład III - plan Regresja logistyczna Ocena skuteczności klasyfikacji Macierze pomyłek Krzywe

Bardziej szczegółowo

Sieć Hopfielda. Sieci rekurencyjne. Ewa Adamus. ZUT Wydział Informatyki Instytut Sztucznej Inteligencji i Metod Matematycznych.

Sieć Hopfielda. Sieci rekurencyjne. Ewa Adamus. ZUT Wydział Informatyki Instytut Sztucznej Inteligencji i Metod Matematycznych. Sieci rekurencyjne Ewa Adamus ZUT Wydział Informatyki Instytut Sztucznej Inteligencji i Metod Matematycznych 7 maja 2012 Jednowarstwowa sieć Hopfielda, z n neuronami Bipolarna funkcja przejścia W wariancie

Bardziej szczegółowo

Zadania laboratoryjne i projektowe - wersja β

Zadania laboratoryjne i projektowe - wersja β Zadania laboratoryjne i projektowe - wersja β 1 Laboratorium Dwa problemy do wyboru (jeden do realizacji). 1. Water Jug Problem, 2. Wieże Hanoi. Water Jug Problem Ograniczenia dla każdej z wersji: pojemniki

Bardziej szczegółowo

REGULAMIN ZAJĘĆ Z PRZEDMIOTU BIOLOGIA MEDYCZNA dla studentów kierunku ANALITYKA MEDYCZNA

REGULAMIN ZAJĘĆ Z PRZEDMIOTU BIOLOGIA MEDYCZNA dla studentów kierunku ANALITYKA MEDYCZNA Zakład Biologii Komórki Wydział Farmaceutyczny z Oddziałem Medycyny Laboratoryjnej Śląski Uniwersytet Medyczny w Katowicach ul.jedności 8, 41-200 Sosnowiec, tel. 32 364 12 10-12, tel./fax. 32 364 12 11

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA z przedmiotu Fizyka. 1. Wymagania edukacyjne treści i umiejętności podlegające ocenie.

PRZEDMIOTOWY SYSTEM OCENIANIA z przedmiotu Fizyka. 1. Wymagania edukacyjne treści i umiejętności podlegające ocenie. PRZEDMIOTOWY SYSTEM OCENIANIA z przedmiotu Fizyka 1. Wymagania edukacyjne treści i umiejętności podlegające ocenie. Ocenie podlegają poniższe formy sprawdzenia wiedzy zdobytej podczas lekcji zgodnie z

Bardziej szczegółowo

Zastosowania sieci neuronowych

Zastosowania sieci neuronowych Zastosowania sieci neuronowych klasyfikacja LABORKA Piotr Ciskowski zadanie 1. klasyfikacja zwierząt sieć jednowarstwowa żródło: Tadeusiewicz. Odkrywanie własności sieci neuronowych, str. 159 Przykład

Bardziej szczegółowo

Temat 20. Techniki algorytmiczne

Temat 20. Techniki algorytmiczne Realizacja podstawy programowej 5. 1) wyjaśnia pojęcie algorytmu, podaje odpowiednie przykłady algorytmów rozwiązywania różnych problemów; 2) formułuje ścisły opis prostej sytuacji problemowej, analizuje

Bardziej szczegółowo