Wprowadzenie do Sieci Neuronowych Laboratorium 01 Organizacja zajęć. Perceptron.

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wprowadzenie do Sieci Neuronowych Laboratorium 01 Organizacja zajęć. Perceptron."

Transkrypt

1 Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu w dziedzinach matematyczno-przyrodniczych realizowany w ramach Poddziałania 4.. Programu Operacyjnego Kapitał Ludzki Wprowadzenie do Sieci Neuronowych Laboratorium 0 Organizacja zajęć. Perceptron. Jarosław Piersa Organizacja zajęć. Co będzie Dużo programowania (pisanie programów), Trochę matematyki, Małe zadania do zaimplementowania na zajęciach (język dowolny, ściągawki będą w Matlabie / Octavie), Programy zaliczeniowe pisane głównie w domu, prezentowane na zajęciach, Obecność wymagana..2 Zaliczenie Zaliczenie laboratoriów na podstawie implementowania omawianych algorytmów. Punktacja ocena dst db bdb bdb+ programy 3 programy 4 programy 5 programów 6 lub więcej programów / 5 wybitnych programów Na ocenę bdb+ wymagana jest terminowość: przynajmniej jeden program w październiku, przynajmniej jeden program w listopadzie, przynajmniej jeden program w grudniu, przynajmniej jeden program w styczniu, wszystkie programy przed egzaminem..3 Wskazówki Na co należy zwrócić uwagę pisząc programy: (Zależnie od autora) zadania mogą być prezentowane na forum grupy ćwiczeniowej. Do wykorzystania projektor w sali laboratoryjnej. Prezentacja powinna trwać 5 do 0 minut. W trakcie prezentacji należy przedstawić funkcjonalności programu, zastosowane rozwiązanie, wykorzystaną technologię, zaakcentować rzeczy, którymi autor chciałby się pochwalić. Prezentację może kończyć krótka dyskusja. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Wyrażam zgodę na wydruk dokumentu do celów dydaktycznych

2 (Jeżeli autor nie chce prezentować publicznie) Zadania będą sprawdzane z autorem siedzącym obok, w trakcie laboratorium lub na konsultacjach. Zadania nie będą sprawdzane zaocznie. Zadania powinny być napisane tak, aby umożliwić prostą i szybką ocenę poprawności działania po efektach (ocena poprawności poprzez wypisanie -nastu stron liczb na stdout nie jest ani prosta ani szybka!) Program w zależności od autora będzie uruchamiany na laptopie (może być to laptop autora) bądź komputerze w sali laboratoryjnej. Proszę upewnić się, że mają Państwo pod ręką wszystkie wymagane środowiska lub/i biblioteki (dotnet framework, jdk, interpreter pythona, karta graficzna obsługująca Cuda etc). Podczas sprawdzania należy mieć kod źródłowy programu (oraz edytor podświetlający składnię). Fragmentem zaliczenia może być dodatkowe pytanie o algorytm, sposób implementacji, zagadnienia teoretyczne powiązane z zadaniem. Może być to dopisanie dodatkowej funkcjonalności w trakcie sprawdzania. Im później oddawane zadanie tym większa liczba dodatkowych pytań. Programy korzystające z gotowych bibliotek do sieci neuronowych nie będą akceptowane. Teoretycznie dopuszczane są programy z tekstowym interfejsem użytkownika. Jeżeli jednak autor nie jest mistrzem ascii-artu, to lepiej jest zrobić interfejs graficzny..4 Program zajęć Pojedynczy neuron, model perceptronu prostego, maszyny liniowej, Adaline, Sieci skierowane, Algorytm wstecznej propagacji błędu (BEP), Uczenie bez nauczyciela, samoorganizacja topologiczna, analiza składowych głównych (PCA), Sieci rekurencyjne, sieć Hopfielda, maszyny Boltzmanna i symulowane wyżarzanie, (*) Wielowartościowe sieci neuronowe, sieci zespolone, (*) Algorytmy genetyczne. Literatura [] R. Rojas Neural Networks, A Systematic Introduction, Springer 996, [2] P. Peretto, Introduction to Modeling Neural Networks, Cambridge University Press 994, [3] T. Schreiber, Notatki do wykładu WSN, [4] E. Izhikevich, Dynamical Systems in Neuroscience, 2007 Massachusetts Institute of Technology [5] C. Bishop, Neural Networks for Pattern Recognition, Oxford University Press

3 2 Powtórzenie 2. Model Perceptronu Perceptronem nazywamy następujący model składający się z: określonej liczby wejść n, wagi stowarzyszonej z każdym wejściem w i, i =..n funkcji aktywującej f Dynamika perceptronu. Mając n wejść x...x n liczbowych perceptron zwraca wartość O = f( n x i w i ) () i= Zakładając progową postać funkcji, perceptron działa jak klasyfikator, dla danych x,.., x n zwraca całkowitą liczbę będącą klasą, do której dane należą. out Rysunek : Schemat działania perceptronu 2.2 Postacie funkcji aktywującej Identyczność f(s) = s taka jednostka liczy po prostu sumę ważoną wejść, Funkcja progowa (bipolarna) f(s) = { 0 s < p s p Wartość p może być dodatkowym parametrem opisującym perceptron. Ten typ funkcji modeluje wysyłanie impulsu po przekroczeniu pewnego progu, które to zachowanie z pewnym przybliżeniem charakteryzuje komórki neuronowe. funkcja polarna. Jest to funkcja zalecana do używania w implementacji. { s < p f(s) = + s p Funkcja podobna do poprzedniej z tą różnicą, że wartość nie jest elementem neutralnym dodawania i odpowiedź negatywna może mieć pewien wpływ. Sigmoida f(s) = σ(s) = + exp( s) Wymaga dzielenia i potęgowania, czyli więcej obliczeń, co nie powinno być wskazane przy wielokrotnym wykonywaniu. Z drugiej strony jest ciągła i różniczkowalna, co będzie miało znaczenie przy algorytmach uczenia (za kilka zajęć) i przybliża funkcją bipolarną. Ponadto zachodzi σ (s) = σ(s) ( σ(s)) Symetryczna sigmoida (tangens hiperboliczny) 2σ(s) = exp( s) + exp( s) (= tanh( s 2 ) ) 3

4 -0.5 y.5 = =2 =5 =0.5 beta = beta = 3 beta = (a) Funkcja sigmoidalna z parametrami β =, β = 3, β = (b) Symetryczna sigmoidalna (tangens hiperbiliczny). x Rysunek 2: Funkcje sigmoidale. 2.3 Perceptron prosty (progowy) Będziemy korzystać z jednostki z polarną funkcją aktywacji. Tj. neuron ma wagi w,.., w n, próg θ oraz zwraca: { O(x) = i w ix i < θ + i w ix i θ 2.4 Perceptron z obciążeniem (biasem) Alternatywnie będziemy korzystać z modelu składającego się z: n + wag w 0, w,..., w n. Waga w 0 jest stowarzyszona ze sztucznym n + -szym wejściem x 0, które zawsze jest równe +. Perceptron zwraca wartość { n O(x) = i=0 w ix i < 0 n + i=0 w ix i Uczenie perceptronu Dany niech będzie zestaw k przykładów E = { E ()...E (k)}, gdzie E (i) = (e (i),..., e(i) N ) RN i odpowiadające im poprawne wyniki T ()...T (k). Dany też mamy perceptron o N wejściach i jednym wyjściu. Rozważmy przykład E j i odpowiadającą mu poprawną odpowiedź T j, niech sieć z bieżącym zestawem wag zwróci wartość O. Rozważmy błąd: ERR = T j O Jeżeli jest dodatni to musimy zwiększyć O, jeżeli wejście e j i > 0, to zwiększenie wagi w i zwiększy O, jeżeli e j i < 0 to zmniejszenie w i zwiększy O. Jeżeli błąd ERR jest ujemny to musimy zmniejszyć O. Podobnie rozumując musimy zmniejszyć wagi w i jeśli wejście e j i > 0 i zwiększyć w i w przeciwnym wypadku tj. e j i < 0. Podsumowując te rozważania otrzymujemy algorytm (SPLA, Simple Perceptron Learning Algorithm):. Losujemy wagi w i małe, blisko Wybieramy kolejny (lub losowy zalecane) przykład E j i odpowiadającą mu poprawną odpowiedź T j, 3. Obliczamy O wynik działania sieci na E j 4. Obliczamy ERR = T j O 5. Jeżeli ERR = 0 (klasyfikacja jest poprawna), to wróć do 2, 6. W przeciwnym wypadku uaktualniamy wszystkie wagi zgodnie ze wzorem w i := w i + η ERR E j i η > 0 jest stałą uczenia. θ := θ ERR 7. Jeżeli sieć klasyfikuje poprawnie wszystkie (większość) przykłady to kończymy, wpw wracamy do kroku 2. 4

5 UWAGA: Powyższego algorytmu nie należy stosować w implementacjach! UWAGA: W 969 matematycy Minsky oraz Papert udowodnili, że pojedynczy perceptron jest w stanie poprawnie klasyfikować wyłącznie problemy liniowo separowalne (a) Problem separowalny liniowo (b) Problem nieseparowalny. Rysunek 3: Problem liniowo separowalny (po lewej) i nieseparowalny (po prawej) Algorytm sformułowany powyżej nie zatrzyma się, jeżeli nie istnieją wagi, dla których przykłady uczące są poprawnie klasyfikowane. A nawet jeżeli (zostanie to wymuszone ograniczeniem ilości iteracji), to nie gwarantuje, że zwrócone wagi będą optymalne. 2.6 Algorytm Uczenia Kieszonkowego / Pocket Learning Algorithm Dane: Perceptron o n wejściach, k przykładów uczących E...E k wraz z poprawnymi odpowiedziami T...T k. Zakładamy, że funkcja aktywująca ma postać polarną. W tej sytuacji dodatkowym parametrem uczącym jest wartość progu p. Wynik: Wartości wag w i oraz progu p które dają optymalną klasyfikację.. Losujemy wagi i próg wokół 0, 2. Przypisujemy układowi wag zerowy czas życia i zapisujemy go w kieszonce jako rekordzistę, 3. Przebiegamy przykłady losując z listy, 4. Dla wybranego przykładu E j sprawdzamy, czy E j jest dobrze klasyfikowany, Jeśli tak, zwiększamy mu czas życia o jeden. Jeżeli jest to wynik lepszy niż u rekordzisty, zapominamy starego rekordzistę i zapisujemy w kieszonce nowy układ wag. Wracamy do 3. Jeśli nie, to korygujemy wagi i próg: w i := w i + η ERR E j i θ := θ ERR Nowemu układowi wag przypisujemy zerowy czas życia. Wracamy do Algorytm kończymy po przebiegnięciu odpowiedniej liczby iteracji. Zwracamy najbardziej żywotny zestaw wag. 2.7 Algorytm Uczenia z Zapadką / Ratchet Learning Algorithm Dane i wyjście jak wyżej.. Losujemy wagi i próg wokół 0, przypisujemy układowi wag zerowy czas życia i zapisujemy go jako rekordzistę, 2. Przebiegamy przykłady losując z listy, oznaczmy wylosowany przykład jako E j, 3. Sprawdzamy czy E j jest dobrze klasyfikowany (ERR = T j O = 0), 5

6 Jeśli tak, to zwiększamy mu czas życia o jeden. Jeżeli jest to wynik lepszy niż u rekordzisty i klasyfikuje on więcej przykładów niż rekordzista, to zapominamy starego rekordzistę i zapisujemy nowy układ wag. Wracamy do 2. Jeśli nie, to korygujemy wagi i próg: w i := w i + η ERR E j i θ := θ ERR Nowemu układowi wag przypisujemy zerowy czas życia. Wracamy do Algorytm kończymy po przebiegnięciu odpowiedniej liczby iteracji. Zwracamy najbardziej żywotny zestaw wag. 3 Zadania na zajęcia Zadania przeznaczone na laboratoria. 3. Zadanie (Rachunkowe) Pokaż, że definicje perceptronu progowego i z biasem są równoważne. 3.2 Zadanie 2 (Rachunkowe) σ(s) = + exp( s) Pokaż, że 2σ(s) = exp( s) + exp( s) 3.3 Zadanie 3 Zaimplementuj pojedynczy perceptron progowy rozpoznający cyfrę zero na małym obrazku. Bryk dla Octave pod Linuxami, z małymi zmianami powinien działać również dla Matlaba. Z moodle pobieramy przykładowe pliki graficzne z cyframi, lub wygeneruj własne. (tylko Octave) dodajemy bibliotekę do pracy z obrazami pkg prefix "./ katalog /" pkg install - forge - auto image ; Wczytujemy plik graficzny z zerem. Plik zostanie zapisany jako tablica dwuwymiarowa wartości pikseli (Matlab: jako trzy tablice: RGB). cd katalog /z/ obrazami I = imread (./ c0.png ) Wyświetl wczytany plik graficzny. imshow (I) (tylko Matlab) Matlab wczytuje obraz jako trzy tablice (RGB), wyciągamy jedną z nich I = I(:, :, ) Wygenerujmy losowe wagi dla sieci r = size (I); wagi = randn (r(),r (2)); prog = randn (,); 6

7 Liczymy sumę ważoną s = 0; for i =:8 for j =:6 s += w(i,j) * I(i,j); Jeżeli suma jest większa od progu, to zwracamy, wpw. zwracamy -. if s >= prog odp = ; else odp = -; Łączymy kod w funkcję obliczającą aktywację mając dane wagi, próg i wejścia Plik: perceptron.m function odp = perceptron ( I, wagi, prog ) S = 0; r = size (I) for i =: r () for j =: r (2) S += I(i,j) * wagi (i,j); odp = sign ( S - prog ); Uwaga! Nazwa pliku i nazwa funkcji muszą się zgadzać! Jeżeli plik leży na katalogu bieżącym sesji Octave / Matlab, to można z funkcji skorzystać: odp = perceptron ( I, wagi, prog ); odp 3.4 Zadamie 4 Główny problem perceptronu (i ogólnie sieci neuronowych) to znalezienie właściwych wag, dla których perceptron będzie dokonywał poprawnych klasyfikacji. Przetestuj klasyfikacje w oparciu o ręcznie dobrane wagi oraz próg wagi = % wersja copy - paste - frily : wagi = [ ; ; ;]; wagi = [ wagi ; ; ]; wagi = [ wagi ; ; ; ]; prog = -; Zaimplementuj algorytm SPLA do uczenia perceptronu. Przykładowy prototyp funkcji: 7

8 function [ wagi, prog ] = spla ( przyklady, odpowiedzi, ileiteracji ) Gdzie przykłady uczące są zebrane w trójwymiarową tablicę np: % przypisujemy cala podtablice przyklady (:, :, ) = imread ("c0.png "); przyklady (:, :, 2) = imread ("c.png "); (...) przyklady (:, :, 0) = imread ("c9.png "); % perceptron rozpoznaje cyfre " " odpowiedzi = [-, +, -,..., -]; 3.5 Zadanie 5 Napisz program (lub dostosuj powyższy) aby klasyfikował punkty na R 2 perceptronem z biasem. Tj. dane są wagi (w 0, w, w 2 ) i niech x 0 = +. Dla zadanego wejścia (x, x 2 ) zwraca klasyfikację + jeżeli i x iw i 0 i w przeciwnym wypadku. % klasa x = randn (, 00) - 2; y = randn (, 00) + 2; % klasa 2 x2 = randn (, 00) + 3; y2 = randn (, 00) - 2; plot (x,y, "bo"); hold on; plot (x2,y2, "r+"); 3.6 Zadanie 6 Napisz program, który dla zadanych wag perceptronu wyświetli klasyfikację na fragmencie płaszczyzny {x 0, x 0 + d, x 0 + 2d,..., x } {y 0, y 0 + d, y 0 + 2d,..., y }. 3.7 Zadanie 7 Wyznacz kanoniczną postać prostej separującej dane dla perceptronu z zadania (lub napisz program, który ją wyznacza). Wyświetl ją na wykresie w programie 6. Postać kanoniczna prostej: y = ax + b gdzie a, b R. 4 Zadania programistyczne (do wyboru) 4. Zadanie. Uczenie klasyfikacji punktów Dany jest plik (kilka plików) z listą punktów na płaszczyźnie oraz poprawną klasyfikacją punktu. Klasyfikacja jest binarna: 0 lub (+, -). # komentarze, informacje o pliku, itp # (ewentualnie wymiar przestrzeni i liczba przykładów uczących) x y o x2 y2 o2... Napisz program, który nauczy perceptron klasyfikacji na zadanej liście przykładów. Dodatkowo program powinien mieć możliwość wczytać (lub odczytać z kliknięcia myszką) parametry innych punktów (tj. z poza listy uczącej) i wyświetlić je na płaszczyźnie wraz z oznaczeniem klasy. Ponadto dla przykładów z listy uczącej powinno być oznaczenie zarówno o oczekiwanej (z listy) jak i faktycznej (tj. zwróconej przez perceptron) klasyfikacji, np. oczekiwana klasyfikacja poprzez kształt, faktyczna poprzez kolor. Program powinien wyświetlić przynajmniej odsetek poprawnie klasyfikowanych przykładów oraz prostą / płaszczyznę separującą. Pomysły na rozbudowanie programu: analogiczne zadanie dla punktów w R 3, 8

9 własne pliki uczące, możliwość wyklikania danych uczących w programie, klasyfikacja, która nie jest binarna (3 klasy, 4 klasy...), statystyki dla danych wejściowych oraz wyników uczenia (moda, mediana, odchylenie standardowe), automatyczny zapis wyników do pliku, zapis wykresu do pliku ps, pdf, svg, png... (*) analogiczne zadanie dla R 4, 4.2 Zadanie 2. Rozpoznawanie cyfr / liter / obrazów Napisz program, który wykorzystuje maszynę liniową lub kilkanaście perceptronów do rozpoznawania cyfr lub/i liter. Cyfry powinny być wyświetlane jako układy pikseli na matrycy o niewielkich wymiarach (max. 00 pikseli, oczywiście mowa tu o pikselach na cyfrę, wyświetlanie może być z dużym powiększeniem). Program dodatkowo powinien mieć możliwość wyklikania cyfry (lub czegoś cyfro-podobnego) i automatycznej klasyfikacji. Wejścia uczące należy zaburzać (tj. odwracać piksel z niewielkim prawdopodobieństwem niezależnie dla danego piksela). W ten sposób program uzyska częściową odporność na szumy, Pomysły na rozbudowanie programu: Aby uzyskać rozpoznawanie niezmiennicze ze względu na przesunięcia można wykorzystać dyskretną transformatę Fouriera. Wartości transformaty są traktowane jako dodatkowe wejścia do perceptronu, Rozpoznawanie liter (wymaga większej matrycy!), Rozpoznawanie kształtów (koło, kwadrat, linia, domek itd), Rozpoznawanie symboliczne OCR rozpoznawanie tekstu poprzez przesuwanie małego okna (perceptron) po większym obrazie (sliding window) 4.3 Zadanie 3*. Neuron Hodgkina-Huxleya (dla ambitnych, tego zagadnienia nie będzie na egzaminie) Zapoznaj się z modelem komórki neuronowej opisanym w terminach układów dynamicznych. Zaimplementuj model Hodgkina-Huxleya. Informacje o modelu można znaleźć w rozdziale drugim książki E. Izhikevich Dynamical Systems in Neuroscience, 2007 MIT Press. 9

Wstęp do sieci neuronowych laboratorium 01 Organizacja zajęć. Perceptron prosty

Wstęp do sieci neuronowych laboratorium 01 Organizacja zajęć. Perceptron prosty Wstęp do sieci neuronowych laboratorium 01 Organizacja zajęć. Perceptron prosty Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2012-10-03 Projekt pn. Wzmocnienie potencjału

Bardziej szczegółowo

Wprowadzenie do Sieci Neuronowych lista zadań 1

Wprowadzenie do Sieci Neuronowych lista zadań 1 Wprowadzenie do Sieci Neuronowych lista zadań 1 Maja Czoków, Jarosław Piersa 2010-10-04 1 Zasadyzaliczania 1.1 Oceny Zaliczenie laboratoriów na podstawie implementowania omawianych algorytmów. Każde zadanie

Bardziej szczegółowo

Wprowadzenie do Sieci Neuronowych Laboratorium 01 Organizacja zajęć. Perceptron.

Wprowadzenie do Sieci Neuronowych Laboratorium 01 Organizacja zajęć. Perceptron. Wprowadzenie do Sieci Neuronowych Laboratorium Organizacja zajęć. Perceptron. Jarosław Piersa --3 Organizacja zajęć. Co będzie Dużo programowania (pisanie programów), Trochę matematyki, Małe zadania do

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 01 Neuron biologiczny. Model perceptronu prostego.

Wstęp do sieci neuronowych, wykład 01 Neuron biologiczny. Model perceptronu prostego. Wstęp do sieci neuronowych, wykład 01. Model perceptronu prostego. M. Czoków, J. Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-10-04 In memoriam prof. dr hab. Tomasz Schreiber

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 01 Neuron biologiczny. Model perceptronu prostego.

Wstęp do sieci neuronowych, wykład 01 Neuron biologiczny. Model perceptronu prostego. Wstęp do sieci neuronowych, wykład 01. Model perceptronu prostego. M. Czoków, J. Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2012-10-03 Projekt pn. Wzmocnienie potencjału dydaktycznego

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2012-10-10 Projekt pn. Wzmocnienie

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-10-11 1 Modelowanie funkcji logicznych

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa, Andrzej Rutkowski Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2018-10-15 Projekt

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 01 Neuron biologiczny. Model perceptronu prostego.

Wstęp do sieci neuronowych, wykład 01 Neuron biologiczny. Model perceptronu prostego. Wstęp do sieci neuronowych, wykład 01 Neuron biologiczny. Model perceptronu prostego. M. Czoków, J. Piersa, A. Rutkowski Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2017-10-04 Projekt

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Wstęp do sieci neuronowych, wykład 2 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 213-1-15 Projekt pn. Wzmocnienie potencjału

Bardziej szczegółowo

Wprowadzenie do Sieci Neuronowych Laboratorium 02 Perceptron prosty cd

Wprowadzenie do Sieci Neuronowych Laboratorium 02 Perceptron prosty cd Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu w dziedzinach matematyczno-przyrodniczych realizowany w ramach Poddziałania 4.1.1 Programu Operacyjnego Kapitał Ludzki Wprowadzenie do Sieci

Bardziej szczegółowo

Uczenie sieci neuronowych i bayesowskich

Uczenie sieci neuronowych i bayesowskich Wstęp do metod sztucznej inteligencji www.mat.uni.torun.pl/~piersaj 2009-01-22 Co to jest neuron? Komputer, a mózg komputer mózg Jednostki obliczeniowe 1-4 CPU 10 11 neuronów Pojemność 10 9 b RAM, 10 10

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 04. Skierowane sieci neuronowe. Algorytmy konstrukcyjne dla sieci skierowanych

Wstęp do sieci neuronowych, wykład 04. Skierowane sieci neuronowe. Algorytmy konstrukcyjne dla sieci skierowanych Wstęp do sieci neuronowych, wykład 04. Skierowane sieci neuronowe. dla sieci skierowanych Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-10-25 1 Motywacja

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 03 Warstwy RBF, jednostka Adaline.

Wstęp do sieci neuronowych, wykład 03 Warstwy RBF, jednostka Adaline. Wstęp do sieci neuronowych, wykład 3 Warstwy, jednostka Adaline. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 211-1-18 1 Pomysł Przykłady Zastosowanie 2

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 6 Wsteczna propagacja błędu - cz. 3

Wstęp do sieci neuronowych, wykład 6 Wsteczna propagacja błędu - cz. 3 Wstęp do sieci neuronowych, wykład 6 Wsteczna propagacja błędu - cz. 3 Andrzej Rutkowski, Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2018-11-05 Projekt

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 8 Uczenie nienadzorowane.

Wstęp do sieci neuronowych, wykład 8 Uczenie nienadzorowane. Wstęp do sieci neuronowych, wykład 8. M. Czoków, J. Piersa, A. Rutkowski Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika w Toruniu 1-811-6 Projekt pn. Wzmocnienie potencjału dydaktycznego

Bardziej szczegółowo

Sztuczna Inteligencja Tematy projektów Sieci Neuronowe

Sztuczna Inteligencja Tematy projektów Sieci Neuronowe PB, 2009 2010 Sztuczna Inteligencja Tematy projektów Sieci Neuronowe Projekt 1 Stwórz projekt implementujący jednokierunkową sztuczną neuronową złożoną z neuronów typu sigmoidalnego z algorytmem uczenia

Bardziej szczegółowo

1. Historia 2. Podstawy neurobiologii 3. Definicje i inne kłamstwa 4. Sztuczny neuron i zasady działania SSN. Agenda

1. Historia 2. Podstawy neurobiologii 3. Definicje i inne kłamstwa 4. Sztuczny neuron i zasady działania SSN. Agenda Sieci neuropodobne 1. Historia 2. Podstawy neurobiologii 3. Definicje i inne kłamstwa 4. Sztuczny neuron i zasady działania SSN Agenda Trochę neurobiologii System nerwowy w organizmach żywych tworzą trzy

Bardziej szczegółowo

Wprowadzenie do Sieci Neuronowych Laboratorium 04 Algorytmy konstrukcyjne dla sieci skierowanych

Wprowadzenie do Sieci Neuronowych Laboratorium 04 Algorytmy konstrukcyjne dla sieci skierowanych Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu w dziedzinach matematyczno-przyrodniczych realizowany w ramach Poddziałania 4.1.1 Programu Operacyjnego Kapitał Ludzki Wprowadzenie do Sieci

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 03 Warstwy RBF, jednostka ADALINE.

Wstęp do sieci neuronowych, wykład 03 Warstwy RBF, jednostka ADALINE. Wstęp do sieci neuronowych, wykład 3 Warstwy, jednostka ADALINE. Maja Czoków, Jarosław Piersa, Andrzej Rutkowski Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 218-1-15/22 Projekt pn.

Bardziej szczegółowo

Uczenie się pojedynczego neuronu. Jeśli zastosowana zostanie funkcja bipolarna s y: y=-1 gdy z<0 y=1 gdy z>=0. Wówczas: W 1 x 1 + w 2 x 2 + = 0

Uczenie się pojedynczego neuronu. Jeśli zastosowana zostanie funkcja bipolarna s y: y=-1 gdy z<0 y=1 gdy z>=0. Wówczas: W 1 x 1 + w 2 x 2 + = 0 Uczenie się pojedynczego neuronu W0 X0=1 W1 x1 W2 s f y x2 Wp xp p x i w i=x w+wo i=0 Jeśli zastosowana zostanie funkcja bipolarna s y: y=-1 gdy z=0 Wówczas: W 1 x 1 + w 2 x 2 + = 0 Algorytm

Bardziej szczegółowo

Elektroniczne materiały dydaktyczne do przedmiotu Wstęp do Sieci Neuronowych

Elektroniczne materiały dydaktyczne do przedmiotu Wstęp do Sieci Neuronowych Elektroniczne materiały dydaktyczne do przedmiotu Wstęp do Sieci Neuronowych Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-12-21 Koncepcja kursu Koncepcja

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 03 Warstwy RBF, jednostka Adaline.

Wstęp do sieci neuronowych, wykład 03 Warstwy RBF, jednostka Adaline. Wstęp do sieci neuronowych, wykład 3 Warstwy, jednostka Adaline. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 13-1- Projekt pn. Wzmocnienie potencjału dydaktycznego

Bardziej szczegółowo

Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe.

Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe. Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe. zajecia.jakubw.pl/nai Literatura: S. Osowski, Sieci neuronowe w ujęciu algorytmicznym. WNT, Warszawa 997. PODSTAWOWE ZAGADNIENIA TECHNICZNE AI

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 10 Sieci rekurencyjne. Autoasocjator Hopfielda

Wstęp do sieci neuronowych, wykład 10 Sieci rekurencyjne. Autoasocjator Hopfielda Wstęp do sieci neuronowych, wykład 10. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2012-12-19 Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Laboratorium JAVA Zadanie nr 2 Rozpoznawanie liter autorzy: A. Gonczarek, J.M. Tomczak Cel zadania Celem zadania jest zapoznanie się z problemem klasyfikacji

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 12 Wykorzystanie sieci rekurencyjnych w optymalizacji grafowej

Wstęp do sieci neuronowych, wykład 12 Wykorzystanie sieci rekurencyjnych w optymalizacji grafowej Wstęp do sieci neuronowych, wykład 12 Wykorzystanie sieci rekurencyjnych w optymalizacji grafowej Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2013-01-09

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 07 Uczenie nienadzorowane.

Wstęp do sieci neuronowych, wykład 07 Uczenie nienadzorowane. Wstęp do sieci neuronowych, wykład 7. M. Czoków, J. Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika w Toruniu 212-11-28 Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu

Bardziej szczegółowo

Elementy inteligencji obliczeniowej

Elementy inteligencji obliczeniowej Elementy inteligencji obliczeniowej Paweł Liskowski Institute of Computing Science, Poznań University of Technology 9 October 2018 1 / 19 Perceptron Perceptron (Rosenblatt, 1957) to najprostsza forma sztucznego

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 07 Uczenie nienadzorowane.

Wstęp do sieci neuronowych, wykład 07 Uczenie nienadzorowane. Wstęp do sieci neuronowych, wykład 7. M. Czoków, J. Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika w Toruniu 213-11-19 Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 07 Uczenie nienadzorowane cd.

Wstęp do sieci neuronowych, wykład 07 Uczenie nienadzorowane cd. Wstęp do sieci neuronowych, wykład 07 Uczenie nienadzorowane cd. M. Czoków, J. Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika w Toruniu 2013-11-26 Projekt pn. Wzmocnienie potencjału

Bardziej szczegółowo

8. Neuron z ciągłą funkcją aktywacji.

8. Neuron z ciągłą funkcją aktywacji. 8. Neuron z ciągłą funkcją aktywacji. W tym ćwiczeniu zapoznamy się z modelem sztucznego neuronu oraz przykładem jego wykorzystania do rozwiązywanie prostego zadania klasyfikacji. Neuron biologiczny i

Bardziej szczegółowo

Politechnika Warszawska

Politechnika Warszawska Politechnika Warszawska Programowa realizacja sieci neuronowych Zbigniew Szymański, Stanisław Jankowski grudzień 03 Instytut Informatyki Nowowiejska 5 / 9, 00-665 Warszawa Programowa realizacja sieci neuronowych

Bardziej szczegółowo

Oprogramowanie Systemów Obrazowania SIECI NEURONOWE

Oprogramowanie Systemów Obrazowania SIECI NEURONOWE SIECI NEURONOWE Przedmiotem laboratorium jest stworzenie algorytmu rozpoznawania zwierząt z zastosowaniem sieci neuronowych w oparciu o 5 kryteriów: ile zwierzę ma nóg, czy żyje w wodzie, czy umie latać,

Bardziej szczegółowo

IMPLEMENTACJA SIECI NEURONOWYCH MLP Z WALIDACJĄ KRZYŻOWĄ

IMPLEMENTACJA SIECI NEURONOWYCH MLP Z WALIDACJĄ KRZYŻOWĄ IMPLEMENTACJA SIECI NEURONOWYCH MLP Z WALIDACJĄ KRZYŻOWĄ Celem ćwiczenia jest zapoznanie się ze sposobem działania sieci neuronowych typu MLP (multi-layer perceptron) uczonych nadzorowaną (z nauczycielem,

Bardziej szczegółowo

sieci jednowarstwowe w MATLABie LABORKA Piotr Ciskowski

sieci jednowarstwowe w MATLABie LABORKA Piotr Ciskowski sieci jednowarstwowe w ATLABie LABORKA Piotr Ciskowski trzy funkcje do obsługi sieci jednowarstwowej : init1.m - tworzy sieć, inicjuje wagi (losowo) dzialaj1.m symuluje działanie sieci (na pojedynczym

Bardziej szczegółowo

KARTA MODUŁU KSZTAŁCENIA

KARTA MODUŁU KSZTAŁCENIA KARTA MODUŁU KSZTAŁCENIA I. Informacje ogólne 1 Nazwa modułu kształcenia Sztuczna inteligencja 2 Nazwa jednostki prowadzącej moduł Instytut Informatyki, Zakład Informatyki Stosowanej 3 Kod modułu (wypełnia

Bardziej szczegółowo

Optymalizacja systemów

Optymalizacja systemów Optymalizacja systemów Laboratorium - problem detekcji twarzy autorzy: A. Gonczarek, J.M. Tomczak, S. Zaręba, P. Klukowski Cel zadania Celem zadania jest zapoznanie się z gradientowymi algorytmami optymalizacji

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 11 Łańcuchy Markova

Wstęp do sieci neuronowych, wykład 11 Łańcuchy Markova Wstęp do sieci neuronowych, wykład 11 Łańcuchy Markova M. Czoków, J. Piersa 2010-12-21 1 Definicja Własności Losowanie z rozkładu dyskretnego 2 3 Łańcuch Markova Definicja Własności Losowanie z rozkładu

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa

Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa M. Czoków, J. Piersa 2012-01-10 1 Łańcucha Markowa 2 Istnienie Szukanie stanu stacjonarnego 3 1 Łańcucha Markowa 2 Istnienie Szukanie stanu stacjonarnego

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 10 Sieci rekurencyjne. Autoasocjator Hopfielda

Wstęp do sieci neuronowych, wykład 10 Sieci rekurencyjne. Autoasocjator Hopfielda Wstęp do sieci neuronowych, wykład 10. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-12-13 1 Modele sieci rekurencyjnej Energia sieci 2 3 Modele sieci

Bardziej szczegółowo

Wstęp do sztucznych sieci neuronowych

Wstęp do sztucznych sieci neuronowych Wstęp do sztucznych sieci neuronowych Michał Garbowski Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Wydział Informatyki 15 grudnia 2011 Plan wykładu I 1 Wprowadzenie Inspiracja biologiczna

Bardziej szczegółowo

Systemy uczące się Lab 4

Systemy uczące się Lab 4 Systemy uczące się Lab 4 dr Przemysław Juszczuk Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny 26 X 2018 Projekt zaliczeniowy Podstawą zaliczenia ćwiczeń jest indywidualne wykonanie projektu uwzględniającego

Bardziej szczegółowo

Zapisywanie algorytmów w języku programowania

Zapisywanie algorytmów w języku programowania Temat C5 Zapisywanie algorytmów w języku programowania Cele edukacyjne Zrozumienie, na czym polega programowanie. Poznanie sposobu zapisu algorytmu w postaci programu komputerowego. Zrozumienie, na czym

Bardziej szczegółowo

Wprowadzenie do Sieci Neuronowych Laboratorium 05 Algorytm wstecznej propagacji błędu

Wprowadzenie do Sieci Neuronowych Laboratorium 05 Algorytm wstecznej propagacji błędu Wprowadzenie do Sieci Neuronowych Laboratorium Algorytm wstecznej propagacji błędu Maja Czoków, Jarosław Piersa --7. Powtórzenie Perceptron sigmoidalny Funkcja sigmoidalna: σ(x) = + exp( c (x p)) () Parametr

Bardziej szczegółowo

Programowanie i techniki algorytmiczne

Programowanie i techniki algorytmiczne Temat 2. Programowanie i techniki algorytmiczne Realizacja podstawy programowej 1) wyjaśnia pojęcie algorytmu, podaje odpowiednie przykłady algorytmów rozwiązywania różnych 2) formułuje ścisły opis prostej

Bardziej szczegółowo

Metody Sztucznej Inteligencji II

Metody Sztucznej Inteligencji II 17 marca 2013 Neuron biologiczny Neuron Jest podstawowym budulcem układu nerwowego. Jest komórką, która jest w stanie odbierać i przekazywać sygnały elektryczne. Neuron działanie Jeżeli wartość sygnału

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 9 Sieci rekurencyjne. Autoasocjator Hopfielda

Wstęp do sieci neuronowych, wykład 9 Sieci rekurencyjne. Autoasocjator Hopfielda Wstęp do sieci neuronowych, wykład 9. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2018-12-10 Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu

Bardziej szczegółowo

Instytut Fizyki Politechniki Łódzkiej Laboratorium Metod Analizy Danych Doświadczalnych Ćwiczenie 3 Generator liczb losowych o rozkładzie Rayleigha.

Instytut Fizyki Politechniki Łódzkiej Laboratorium Metod Analizy Danych Doświadczalnych Ćwiczenie 3 Generator liczb losowych o rozkładzie Rayleigha. Instytut Fizyki Politechniki Łódzkiej Laboratorium Metod Analizy Danych Doświadczalnych Generator liczb losowych o rozkładzie Rayleigha. Generator liczb losowych o rozkładzie Rayleigha. 1. Cel ćwiczenia

Bardziej szczegółowo

synaptycznych wszystko to waży 1.5 kg i zajmuje objętość około 1.5 litra. A zużywa mniej energii niż lampka nocna.

synaptycznych wszystko to waży 1.5 kg i zajmuje objętość około 1.5 litra. A zużywa mniej energii niż lampka nocna. Sieci neuronowe model konekcjonistyczny Plan wykładu Mózg ludzki a komputer Modele konekcjonistycze Perceptron Sieć neuronowa Uczenie sieci Sieci Hopfielda Mózg ludzki a komputer Twój mózg to 00 000 000

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Laboratorium MATLAB Zadanie nr 2 Detekcja twarzy autorzy: A. Gonczarek, J.M. Tomczak Cel zadania Celem zadania jest zapoznanie się algorytmem gradientu prostego

Bardziej szczegółowo

Zastosowania sieci neuronowych

Zastosowania sieci neuronowych Zastosowania sieci neuronowych klasyfikacja LABORKA Piotr Ciskowski zadanie 1. klasyfikacja zwierząt sieć jednowarstwowa żródło: Tadeusiewicz. Odkrywanie własności sieci neuronowych, str. 159 Przykład

Bardziej szczegółowo

Zastosowania sieci neuronowych

Zastosowania sieci neuronowych Zastosowania sieci neuronowych aproksymacja LABORKA Piotr Ciskowski zadanie 1. aproksymacja funkcji odległość punktów źródło: Żurada i in. Sztuczne sieci neuronowe, przykład 4.4, str. 137 Naucz sieć taką

Bardziej szczegółowo

Temat: Sztuczne Sieci Neuronowe. Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE

Temat: Sztuczne Sieci Neuronowe. Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Temat: Sztuczne Sieci Neuronowe Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Dr inż. Barbara Mrzygłód KISiM, WIMiIP, AGH mrzyglod@ agh.edu.pl 1 Wprowadzenie Sztuczne sieci neuronowe

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 9 Sieci rekurencyjne. Autoasocjator Hopfielda

Wstęp do sieci neuronowych, wykład 9 Sieci rekurencyjne. Autoasocjator Hopfielda Wstęp do sieci neuronowych, wykład 9. M. Czoków, J. Piersa 2010-12-07 1 Sieci skierowane 2 Modele sieci rekurencyjnej Energia sieci 3 Sieci skierowane Sieci skierowane Sieci skierowane graf połączeń synaptycznych

Bardziej szczegółowo

Podstawy Sztucznej Inteligencji (PSZT)

Podstawy Sztucznej Inteligencji (PSZT) Podstawy Sztucznej Inteligencji (PSZT) Paweł Wawrzyński Uczenie maszynowe Sztuczne sieci neuronowe Plan na dziś Uczenie maszynowe Problem aproksymacji funkcji Sieci neuronowe PSZT, zima 2013, wykład 12

Bardziej szczegółowo

Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe

Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe Trening jednokierunkowych sieci neuronowych wykład 2. dr inż. PawełŻwan Katedra Systemów Multimedialnych Politechnika Gdańska

Bardziej szczegółowo

Wstęp do teorii sztucznej inteligencji Wykład III. Modele sieci neuronowych.

Wstęp do teorii sztucznej inteligencji Wykład III. Modele sieci neuronowych. Wstęp do teorii sztucznej inteligencji Wykład III Modele sieci neuronowych. 1 Perceptron model najprostzszy przypomnienie Schemat neuronu opracowany przez McCullocha i Pittsa w 1943 roku. Przykład funkcji

Bardziej szczegółowo

Algorytmy decyzyjne będące alternatywą dla sieci neuronowych

Algorytmy decyzyjne będące alternatywą dla sieci neuronowych Algorytmy decyzyjne będące alternatywą dla sieci neuronowych Piotr Dalka Przykładowe algorytmy decyzyjne Sztuczne sieci neuronowe Algorytm k najbliższych sąsiadów Kaskada klasyfikatorów AdaBoost Naiwny

Bardziej szczegółowo

Uczenie sieci typu MLP

Uczenie sieci typu MLP Uczenie sieci typu MLP Przypomnienie budowa sieci typu MLP Przypomnienie budowy neuronu Neuron ze skokową funkcją aktywacji jest zły!!! Powszechnie stosuje -> modele z sigmoidalną funkcją aktywacji - współczynnik

Bardziej szczegółowo

Zadania z rysowania i dopasowania funkcji

Zadania z rysowania i dopasowania funkcji Spis treści 1 Zadania z rysowania i dopasowania funkcji 1.1 Znajdowanie miejsca zerowego funkcji 1.2 Wczytywanie danych i wykres 1.3 Dopasowywanie krzywej do danych i wykres 1.3.1 Wskazówki Zadania z rysowania

Bardziej szczegółowo

1. Logika, funkcje logiczne, preceptron.

1. Logika, funkcje logiczne, preceptron. Sieci neuronowe 1. Logika, funkcje logiczne, preceptron. 1. (Logika) Udowodnij prawa de Morgana, prawo pochłaniania p (p q), prawo wyłączonego środka p p oraz prawo sprzeczności (p p). 2. Wyraź funkcję

Bardziej szczegółowo

Wprowadzenie do Sieci Neuronowych Laboratorium 06 Algorytm wstecznej propagacji błędu

Wprowadzenie do Sieci Neuronowych Laboratorium 06 Algorytm wstecznej propagacji błędu Wprowadzenie do Sieci Neuronowych Laboratorium 6 Algorytm wstecznej propagacji błędu Maja Czoków, Jarosław Piersa 3--6 Powtórzenie. Perceptron sigmoidalny Funkcja sigmoidalna: σ(x) = + exp( c (x p)) ()

Bardziej szczegółowo

Podstawy i języki programowania

Podstawy i języki programowania Podstawy i języki programowania Laboratorium 1 - wprowadzenie do przedmiotu mgr inż. Krzysztof Szwarc krzysztof@szwarc.net.pl Sosnowiec, 16 października 2017 1 / 25 mgr inż. Krzysztof Szwarc Podstawy i

Bardziej szczegółowo

Programowanie w języku Python. Grażyna Koba

Programowanie w języku Python. Grażyna Koba Programowanie w języku Python Grażyna Koba Kilka definicji Program komputerowy to ciąg instrukcji języka programowania, realizujący dany algorytm. Język programowania to zbiór określonych instrukcji i

Bardziej szczegółowo

Temat: Sieci neuronowe oraz technologia CUDA

Temat: Sieci neuronowe oraz technologia CUDA Elbląg, 27.03.2010 Temat: Sieci neuronowe oraz technologia CUDA Przygotował: Mateusz Górny VIII semestr ASiSK Wstęp Sieci neuronowe są to specyficzne struktury danych odzwierciedlające sieć neuronów w

Bardziej szczegółowo

Sieć Hopfielda. Sieci rekurencyjne. Ewa Adamus. ZUT Wydział Informatyki Instytut Sztucznej Inteligencji i Metod Matematycznych.

Sieć Hopfielda. Sieci rekurencyjne. Ewa Adamus. ZUT Wydział Informatyki Instytut Sztucznej Inteligencji i Metod Matematycznych. Sieci rekurencyjne Ewa Adamus ZUT Wydział Informatyki Instytut Sztucznej Inteligencji i Metod Matematycznych 7 maja 2012 Jednowarstwowa sieć Hopfielda, z n neuronami Bipolarna funkcja przejścia W wariancie

Bardziej szczegółowo

Sieci neuronowe i ich ciekawe zastosowania. Autor: Wojciech Jamrozy III rok SMP / Informatyka

Sieci neuronowe i ich ciekawe zastosowania. Autor: Wojciech Jamrozy III rok SMP / Informatyka Sieci neuronowe i ich ciekawe zastosowania Autor: Wojciech Jamrozy III rok SMP / Informatyka Klasyczna algorytmika Sortowanie ciągu liczb Czy i ile razy dane słowo wystąpiło w tekście Najkrótsza droga

Bardziej szczegółowo

Najprostsze modele sieci z rekurencją. sieci Hopfielda; sieci uczone regułą Hebba; sieć Hamminga;

Najprostsze modele sieci z rekurencją. sieci Hopfielda; sieci uczone regułą Hebba; sieć Hamminga; Sieci Hopfielda Najprostsze modele sieci z rekurencją sieci Hopfielda; sieci uczone regułą Hebba; sieć Hamminga; Modele bardziej złoŝone: RTRN (Real Time Recurrent Network), przetwarzająca sygnały w czasie

Bardziej szczegółowo

Funkcje i instrukcje języka JavaScript

Funkcje i instrukcje języka JavaScript Funkcje i instrukcje języka JavaScript 1. Cele lekcji a) Wiadomości Uczeń : zna operatory i typy danych języka JavaScript, zna konstrukcję definicji funkcji, zna pętlę If i For, Do i While oraz podaje

Bardziej szczegółowo

Laboratorium nr 1. i 2.

Laboratorium nr 1. i 2. Laboratorium nr 1. i 2. Celem laboratorium jest zapoznanie się ze zintegrowanym środowiskiem programistycznym, na przykładzie podstawowych aplikacji z obsługą standardowego wejścia wyjścia, podstawowych

Bardziej szczegółowo

Rozdział 1 Sztuczne sieci neuronowe. Materiały do zajęć dydaktycznych - na podstawie dokumentacji programu Matlab opracował Dariusz Grzesiak

Rozdział 1 Sztuczne sieci neuronowe. Materiały do zajęć dydaktycznych - na podstawie dokumentacji programu Matlab opracował Dariusz Grzesiak 2 Rozdział 1 Sztuczne sieci neuronowe. 3 Sztuczna sieć neuronowa jest zbiorem prostych elementów pracujących równolegle, których zasada działania inspirowana jest biologicznym systemem nerwowym. Sztuczną

Bardziej szczegółowo

2. Graficzna prezentacja algorytmów

2. Graficzna prezentacja algorytmów 1. Uczeń: Uczeń: 2. Graficzna prezentacja algorytmów a. 1. Cele lekcji i. a) Wiadomości zna sposoby graficznego przedstawiania algorytmów, wie w jaki sposób skonstruować schemat blokowy w taki sposób aby

Bardziej szczegółowo

Wstęp do Sieci Neuronowych

Wstęp do Sieci Neuronowych Wstęp do Sieci Neuronowych T. Schreiber, M. Czoków, J. Piersa 9 listopada 1 Streszczenie Dokument poniższy nie jest skryptem do wykładu w roku akademickim 1/11. Co najwyżej podsumowanim najważniejszych

Bardziej szczegółowo

Algorytmy sztucznej inteligencji

Algorytmy sztucznej inteligencji Algorytmy sztucznej inteligencji Dynamiczne sieci neuronowe 1 Zapis macierzowy sieci neuronowych Poniżej omówione zostaną części składowe sieci neuronowych i metoda ich zapisu za pomocą macierzy. Obliczenia

Bardziej szczegółowo

Pzetestuj działanie pętli while i do...while na poniższym przykładzie:

Pzetestuj działanie pętli while i do...while na poniższym przykładzie: Pzetestuj działanie pętli while i do...while na poniższym przykładzie: Zadania pętla while i do...while: 1. Napisz program, który wczytuje od użytkownika liczbę całkowitą, dopóki podana liczba jest mniejsza

Bardziej szczegółowo

Programowanie w języku C++ Grażyna Koba

Programowanie w języku C++ Grażyna Koba Programowanie w języku C++ Grażyna Koba Kilka definicji: Program komputerowy to ciąg instrukcji języka programowania, realizujący dany algorytm. Język programowania to zbiór określonych instrukcji i zasad

Bardziej szczegółowo

Sieci neuronowe i algorytmy uczenia Czyli co i jak andrzej.rusiecki.staff.iiar.pwr.wroc.pl s.

Sieci neuronowe i algorytmy uczenia Czyli co i jak andrzej.rusiecki.staff.iiar.pwr.wroc.pl s. Sieci neuronowe i algorytmy uczenia Czyli co i jak 2016 andrzej.rusiecki@pwr.edu.pl andrzej.rusiecki.staff.iiar.pwr.wroc.pl s. 230/C-3 O co chodzi? Celem przedmiotu jest ogólne zapoznanie się z podstawowymi

Bardziej szczegółowo

EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015

EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015 EGZAMIN MATURALNY W ROKU SZKOLNYM 0/0 FORMUŁA OD 0 ( NOWA MATURA ) MATEMATYKA POZIOM PODSTAWOWY ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MMA-P CZERWIEC 0 Egzamin maturalny z matematyki nowa formuła Klucz

Bardziej szczegółowo

WYKORZYSTANIE SIECI NEURONOWEJ DO BADANIA WPŁYWU WYDOBYCIA NA SEJSMICZNOŚĆ W KOPALNIACH WĘGLA KAMIENNEGO. Stanisław Kowalik (Poland, Gliwice)

WYKORZYSTANIE SIECI NEURONOWEJ DO BADANIA WPŁYWU WYDOBYCIA NA SEJSMICZNOŚĆ W KOPALNIACH WĘGLA KAMIENNEGO. Stanisław Kowalik (Poland, Gliwice) WYKORZYSTANIE SIECI NEURONOWEJ DO BADANIA WPŁYWU WYDOBYCIA NA SEJSMICZNOŚĆ W KOPALNIACH WĘGLA KAMIENNEGO Stanisław Kowalik (Poland, Gliwice) 1. Wprowadzenie Wstrząsy podziemne i tąpania występujące w kopalniach

Bardziej szczegółowo

wiedzy Sieci neuronowe

wiedzy Sieci neuronowe Metody detekcji uszkodzeń oparte na wiedzy Sieci neuronowe Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 7 Wprowadzenie Okres kształtowania się teorii sztucznych sieci

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Mechatronika Rodzaj przedmiotu: obowiązkowy Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1. Zapoznanie studentów z inteligentnymi

Bardziej szczegółowo

ID1SII4. Informatyka I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) stacjonarne (stacjonarne / niestacjonarne)

ID1SII4. Informatyka I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) stacjonarne (stacjonarne / niestacjonarne) Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu ID1SII4 Nazwa modułu Systemy inteligentne 1 Nazwa modułu w języku angielskim Intelligent

Bardziej szczegółowo

AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT. Instrukcja do zajęc laboratoryjnych nr 3 AUTOMATYKA

AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT. Instrukcja do zajęc laboratoryjnych nr 3 AUTOMATYKA AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT Instrukcja do zajęc laboratoryjnych nr 3 AUTOMATYKA II rok Kierunek Transport Temat: Minimalizacja funkcji logicznych. Projektowanie układów logicznych. Opracował

Bardziej szczegółowo

Algorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta

Algorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta Algorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta www.michalbereta.pl Sieci radialne zawsze posiadają jedną warstwę ukrytą, która składa się z neuronów radialnych. Warstwa wyjściowa składa

Bardziej szczegółowo

Podstawy Informatyki. Algorytmy i ich poprawność

Podstawy Informatyki. Algorytmy i ich poprawność Podstawy Informatyki Algorytmy i ich poprawność Błędy Błędy: językowe logiczne Błędy językowe Związane ze składnią języka Wykrywane automatycznie przez kompilator lub interpreter Prosty sposób usuwania

Bardziej szczegółowo

Złożoność obliczeniowa zadania, zestaw 2

Złożoność obliczeniowa zadania, zestaw 2 Złożoność obliczeniowa zadania, zestaw 2 Określanie złożoności obliczeniowej algorytmów, obliczanie pesymistycznej i oczekiwanej złożoności obliczeniowej 1. Dana jest tablica jednowymiarowa A o rozmiarze

Bardziej szczegółowo

ALGORYTMY SZTUCZNEJ INTELIGENCJI

ALGORYTMY SZTUCZNEJ INTELIGENCJI ALGORYTMY SZTUCZNEJ INTELIGENCJI Sieci neuronowe 06.12.2014 Krzysztof Salamon 1 Wstęp Sprawozdanie to dotyczy ćwiczeń z zakresu sieci neuronowych realizowanym na przedmiocie: Algorytmy Sztucznej Inteligencji.

Bardziej szczegółowo

Nowoczesne metody nauczania przedmiotów ścisłych

Nowoczesne metody nauczania przedmiotów ścisłych Nowoczesne metody nauczania przedmiotów ścisłych Bartosz Ziemkiewicz Wydział Matematyki i Informatyki UMK, Toruń 14 VI 2012 Bartosz Ziemkiewicz Nowoczesne metody nauczania... 1/14 Zdalne nauczanie na UMK

Bardziej szczegółowo

ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY W SZCZECINIE

ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY W SZCZECINIE ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY W SZCZECINIE INSTYTUT TECHNOLOGII MECHANICZNEJ Metody Sztucznej Inteligencji Sztuczne Sieci Neuronowe Wstęp Sieci neuronowe są sztucznymi strukturami, których

Bardziej szczegółowo

Temat 20. Techniki algorytmiczne

Temat 20. Techniki algorytmiczne Realizacja podstawy programowej 5. 1) wyjaśnia pojęcie algorytmu, podaje odpowiednie przykłady algorytmów rozwiązywania różnych problemów; 2) formułuje ścisły opis prostej sytuacji problemowej, analizuje

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: obowiązkowy w ramach treści kierunkowych, moduł kierunkowy oólny Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK

Bardziej szczegółowo

Programowanie - wykład 4

Programowanie - wykład 4 Programowanie - wykład 4 Filip Sośnicki Wydział Fizyki Uniwersytet Warszawski 20.03.2019 Przypomnienie Prosty program liczący i wyświeltający wartość silni dla wprowadzonej z klawiatury liczby: 1 # include

Bardziej szczegółowo

Temat: ANFIS + TS w zadaniach. Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE

Temat: ANFIS + TS w zadaniach. Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Temat: ANFIS + TS w zadaniach Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Dr inż. Barbara Mrzygłód KISiM, WIMiIP, AGH mrzyglod@ agh.edu.pl 1. Systemy neuronowo - rozmyte Systemy

Bardziej szczegółowo

Algorytm. a programowanie -

Algorytm. a programowanie - Algorytm a programowanie - Program komputerowy: Program komputerowy można rozumieć jako: kod źródłowy - program komputerowy zapisany w pewnym języku programowania, zestaw poszczególnych instrukcji, plik

Bardziej szczegółowo

KARTA KURSU. Kod Punktacja ECTS* 1

KARTA KURSU. Kod Punktacja ECTS* 1 KARTA KURSU Nazwa Nazwa w j. ang. Wprowadzenie do statystyki Introduction to statistics Kod Punktacja ECTS* 1 Koordynator Prof. dr hab. Jerzy Wołek Zespół dydaktyczny Prof. dr hab. Jerzy Wołek doktoranci

Bardziej szczegółowo

Spacery losowe generowanie realizacji procesu losowego

Spacery losowe generowanie realizacji procesu losowego Spacery losowe generowanie realizacji procesu losowego Michał Krzemiński Streszczenie Omówimy metodę generowania trajektorii spacerów losowych (błądzenia losowego), tj. szczególnych procesów Markowa z

Bardziej szczegółowo

Sztuczne sieci neuronowe (SNN)

Sztuczne sieci neuronowe (SNN) Sztuczne sieci neuronowe (SNN) Pozyskanie informacji (danych) Wstępne przetwarzanie danych przygotowanie ich do dalszej analizy Selekcja informacji Ostateczny model decyzyjny SSN - podstawy Sieci neuronowe

Bardziej szczegółowo

Literatura. Sztuczne sieci neuronowe. Przepływ informacji w systemie nerwowym. Budowa i działanie mózgu

Literatura. Sztuczne sieci neuronowe. Przepływ informacji w systemie nerwowym. Budowa i działanie mózgu Literatura Wykład : Wprowadzenie do sztucznych sieci neuronowych Małgorzata Krętowska Wydział Informatyki Politechnika Białostocka Tadeusiewicz R: Sieci neuronowe, Akademicka Oficyna Wydawnicza RM, Warszawa

Bardziej szczegółowo

Metody numeryczne w przykładach

Metody numeryczne w przykładach Metody numeryczne w przykładach Bartosz Ziemkiewicz Wydział Matematyki i Informatyki UMK, Toruń Regionalne Koło Matematyczne 8 kwietnia 2010 r. Bartosz Ziemkiewicz (WMiI UMK) Metody numeryczne w przykładach

Bardziej szczegółowo