Szacowanie niepewności pomiaru przestrzennego błędu pozycjonowania maszyn technologicznych
|
|
- Dorota Szymańska
- 6 lat temu
- Przeglądów:
Transkrypt
1 1546 MECHANIK NR 11/2016 Szacowanie niepewności pomiaru przestrzennego błędu pozycjonowania maszyn technologicznych Estimation of uncertainty of a volumetric error measurement PAWEŁ MAJDA MIROSŁAW PAJOR * DOI: /mechanik Zaprezentowano wyniki wyznaczania niepewności dla błędu przestrzennego pozycjonowania elementów wykonawczych przenośnego portalu spawalniczego. Analizie poddano metodę pomiaru, która wykorzystuje laserowy system nadążny (tzw. tracer) oraz algorytm multilateracji do wyznaczania rozkładu wektorowego pola błędu pozycjonowania. W obliczeniach symulacyjnych metodą Monte Carlo oprócz niepewności systemu pomiarowego uwzględniono także składniki niepewności pomiaru temperatury, wyznaczania współczynnika rozszerzalności cieplnej oraz powtarzalności pozycjonowania badanych osi. Potwierdzono wysoką skuteczność zastosowanej metody. Zaprezentowano także przykład praktyczny i wizualizację rozkładu błędów przed kompensacją oraz po kompensacji błędów kinematycznych i wzajemnej prostopadłości osi w układzie sterowania numerycznego maszyny. SŁOWA KLUCZOWE: błąd przestrzennego pozycjonowania, multilateracja, niepewność pomiarów The article presents results of evaluation of uncertainty of volumetric error of a mobile welding portal. The analysis were made for a method of measurement, which uses laser tracer and a multilateration algorithm to determine the distribution of the vector field of positioning error. In the simulation calculations a Monte Carlo method was used. The simulation also included components of the measurement system uncertainty, the uncertainty of temperature, determination of a thermal expansion coefficient and positioning repeatability of a machine axis. High efficiency (impressive accuracy) of this method was confirmed. The article also presents a practical example and a visualization of volumetric error before and after the compensation of kinematic error and mutuality of axis squareness made in the numerical control system of a mobile welding portal. KEYWORDS: volumetric error, multilateration, uncertainty of measurement Jest wiele metod wyznaczania rozkładu wektorowego pola błędu przestrzennego pozycjonowania VE (volumetric error) maszyn sterowanych numerycznie (CNC) [1]. Najistotniejsze różnice pomiędzy tymi metodami to: dokładność uzyskiwanych wyników, zasada pomiaru oraz wymagany czas realizacji procedury pomiarowej. Dzięki rozwojowi sprzętu pomiarowego możliwe jest prowadzenie pomiarów bez konieczności czasochłonnego justowania systemu pomiarowego. Ze względu na krótszy czas pomiarów zainteresowaniem cieszą się zwłaszcza metody wyznaczania rozkładu błędu przestrzennego pozycjonowania z użyciem interferometrów śledzących. Wiadomo, że w porównaniu z innymi metodami pomiar przemieszczenia z użyciem interferometru laserowego zapewnia najlepszą dokładność pomiarów w warunkach * Dr hab. inż. Paweł Majda (pawel.majda@zut.edu.pl), dr hab. inż. Mirosław Pajor prof. ZUT (miroslaw.pajor@zut.edu.pl) Instytut Technologii Mechanicznej, Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Rys. 1. Interferometr śledzący (laser tracer) podczas wykonywania pomiaru przy portalu spawalniczym w jednym z pięciu ustawień przemysłowych. Właśnie dlatego ten sposób jest chętnie stosowany do pomiarów błędów współrzędnościowych maszyn pomiarowych (CMM) [2 4], a w ostatnich latach obserwuje się duże zainteresowanie różnych ośrodków badawczych zastosowaniem interferometrów śledzących do wykrywania błędów obrabiarek CNC [5]. Systemy śledzące można podzielić ze względu na możliwość względnego lub bezwzględnego pomiaru odległości. W pierwszym przypadku mierzony jest tylko przyrost drogi, a w drugim dodatkowo określana jest pozycja rozpatrywanego punktu względem punktu bazowego. Niestety w drugim przypadku osiągane dokładności są niewystarczające do bezpośredniego wyznaczenia błędu przestrzennego pozycjonowania obrabiarki, co wynika ze stosowania enkoderów obrotowych do pomiaru położenia kątowego elementów wykonawczych interferometru. Z tego względu w literaturze przedmiotu proponuje się metodę opartą na sekwencji pomiarów względnego przemieszczenia z różnych punktów bazowych. Nazwano ją metodą bazującą na algorytmie multilateracji [5, 6]. Taka idea jest analogiczna do wyznaczania pozycji w systemie nawigacji satelitarnej. W uproszczeniu: jeżeli na podstawie pomiaru dystansu z kilku satelitów do rozpatrywanego punktu można wyznaczyć jego pozycję na Ziemi, to możliwe jest także przeprowadzenie analogicznej procedury w mniejszej skali, tj. na obrabiarce. Sprowadza się to do wyznaczania pozycji punktu związanego z elementem wykonawczym maszyny (np. narzędziem) względem punktów bazowych (satelitów) związanych ze stołem obrabiarki. Względne przemieszczenie rozpatrywanych punktów mierzone jest z czterech lub większej liczby [7] pozycji bazowych interferometrem śledzącym. Szczegóły wykonywania pomiaru, algorytm multilateracji oraz procedurę wyznaczania błędów kinematycznych osi maszyn opisano w [8]. Na rys. 1 przedstawiono widok interferometru śledzącego podczas realizacji pomiaru dla przenośnego portalu spawalniczego w laboratorium Instytutu Technologii Mechanicznej (ITM) Zachodniopomorskiego Uniwersytetu Technologicznego (ZUT) w Szczecinie. Producenta tego portalu interesowało, czy układ nośny maszyny zachowuje błędy geometrii po przetransportowaniu tej maszyny do miejsca jej użytkowania. Wyniki pomiarów i analizę ich niepewności przedstawiono w dalszej części artykułu.
2 MECHANIK NR 11/ Wyznaczanie charakterystyk błędów kinematycznych Badanie błędów maszyny z użyciem interferometru śledzącego rozpoczyna się od zdefiniowania przestrzeni pomiarowej. Pomiary wykonuje się sekwencyjnie, z przestawianiem interferometru w co najmniej cztery różne położenia. Co istotne, pomiarowi podlega tylko względne przemieszczenie dla różnych położeń reflektora interferometru. Położenia reflektora programuje się w układzie sterowania badanej maszyny. Na rys. 2 przedstawiono przestrzeń i ścieżki błędów kinematycznych przenośnego portalu spawalniczego prezentowanego w tej pracy. Na rys. 3 pokazano konwencję oznaczania błędów maszyn według normy ISO 230 [9]. Badanie wymaga przyjęcia modelu wektorowego pola błędu VE, najczęściej przy założeniu kinematyki bryły sztywnej. Postać wyprowadzonych równań zależy od struktury geometryczno-ruchowej badanej maszyny. Należy zwrócić uwagę, że podczas wyprowadzania równań na składowe błędu VE można pominąć składowe w potędze wyższej niż dwa oraz dodatkowe parametry, takie jak współczynniki wag czy stałe konstrukcyjne (np. wysięgi). Gwarantuje to otrzymanie równań na składowe VE o minimalnej wariancji, a więc również o minimalnej niepewności ich wyznaczania. Błąd, μm Pozycja zadana w osi X, mm Rys. 4. Charakterystyki błędu pozycjonowania oraz błędów prostoliniowości osi X Błąd, μrad Pozycja zadana w osi X, mm Rys. 5. Charakterystyki błędów kątowych (EAX roll, EBX pitch, ECX yaw) osi X Prezentowana w tym artykule maszyna ma typową strukturę portalową OXYZ, dla której równania na składowe VE są następujące: VE X = EXX + EXY + EXZ + z (EBX EBY + BOZ) y ECX (1) VE Y = EYY + EYX + EYZ z (EAX + EAY + AOZ) + x COY (2) Rys. 2. Przestrzeń oraz ścieżki charakterystyk błędów kinematycznych badanych osi Rys. 3. Oznaczanie błędów kinematycznych osi maszyny według [9] VE Z = EZZ + EZX + EZY + y EAX (3) gdzie: EXX, EYY, EZZ charakterystyki błędów pozycjonowania osi; EYX, EZX, EXY, EZY, EXZ, EYZ charakterystyki błędów prostoliniowości; EAX, EBX, ECX, EAY, EBY charakterystyki błędów rotacji (pitch, yaw, roll); AOZ, BOZ, COY błędy wzajemnej prostopadłości osi (skalary). Korzystając z algorytmu multilateracji, równań modelu przestrzeni wektorowej błędu VE (1) (3) oraz wyników pomiarów odległości interferometrem śledzącym, wyznacza się błędy kinematyczne badanej maszyny [8]. Przykładowe charakterystyki błędów wraz z niepewnością ich wyznaczenia dla osi X przedstawiono na rys. 4 i 5. Widoczne charakterystyki błędów kinematycznych wyznaczono dla ścieżki równoległej do osi X i w układzie współrzędnych pokazanym na rys. 2. Komplet tych charakterystyk określa współrzędne uogólnione ruchu portalu spawalniczego w osi X. Błąd pozycjonowania EXX jest rozumiany zgodnie z definicją normy ISO jako średnia dwukierunkowa odchyłka pozycjonowania w rozpatrywanym położeniu. Błędy EYX oraz EZX interpretuje się jako charakterystyki prostoliniowości, dla których element zastępczy wyznaczono metodą punktów skrajnych.
3 1548 MECHANIK NR 11/2016 Wartości EXX, EYX i EZX można uznać za wartości błędu VE na trzech wzajemnie prostopadłych kierunkach osi badanej maszyny w rozpatrywanym położeniu na ścieżce osi X. Dodatkowo z rys. 5 odczytuje się trzy kąty obrotu, tj. EAX, EBX i ECX, jakie towarzyszą przemieszczaniu portalu w osi X. Te kąty przekładają się na dodatkowe składowe błędu VE. Ich wpływ jest tym intensywniejszy, im większa jest odległość rozpatrywanego położenia końcówki narzędzia od ścieżki pomiarowej osi X. Z kształtu charakterystyk błędów kinematycznych można wnioskować, że konstrukcja ulega maksymalnemu ugięciu w płaszczyźnie pionowej EZX, gdy portal znajduje się w środkowym położeniu osi X. Jest to efektem oddziaływania siły grawitacji. Kompensacja błędów maszyny w jej układzie sterowania numerycznego Charakterystyki błędów kinematycznych, stałe wartości błędów wzajemnej prostopadłości osi i równania (1) (3) pozwalają na obliczenie składowych błędu VE w każdym punkcie przestrzeni roboczej badanej maszyny. Na rys. 6 przedstawiono wizualizację rozkładu wektorowego pola błędu VE przenośnego portalu spawalniczego. Celem badań było wyznaczenie charakterystyk błędów i ich użycie w układzie sterowania CNC do programowej kompensacji błędów maszyny w celu poprawy dokładności pozycjonowania ruchów roboczych. Efekt tego zabiegu dla przenośnego portalu spawalniczego przedstawiono na rys. 7. Rys. 6. Wizualizacja rozkładu wektorowego pola błędu VE przed kompensacją błędów kinematycznych osi w układzie sterowania maszyny skala 50:1 Rys. 7. Wizualizacja rozkładu wektorowego pola błędu VE po kompensacji błędów kinematycznych osi w układzie sterowania maszyny skala 200:1 Błąd, μm Błąd, μrad Przed kompensacją Po kompensacji EXX EYY EZZ EYX EZX EXY EZY EXZ EYZ Rys. 8. Odchyłki błędów translacyjnych otrzymane przed kompensacją i po kompensacji w układzie sterowania numerycznego maszyny Przed kompensacją Po kompensacji EAX EBX ECX EAY EBY COY AOZ BOZ Rys. 9. Odchyłki błędów rotacyjnych otrzymane przed kompensacją i po kompensacji w układzie sterowania numerycznego maszyny Stożki widoczne w obszarze wykresów na rys. 6 i 7 symbolizują wypadkowy wektor błędu VE. Interpretując uzyskane wyniki, trzeba mieć na uwadze, że skala stożków na rys. 7 (200:1) jest znacznie większa niż na rys. 6 (50:1). Wyraźnie widać, że po kompensacji błędów w układzie sterowania w całej przestrzeni roboczej maszyny uzyskano poprawę dokładności pozycjonowania jej elementów wykonawczych. Przed kompensacją błędów w najgorszym wypadku uzyskiwano maksymalnie 1,9 mm, a po kompensacji poniżej 0,5 mm wypadkowego błędu VE. W ITM ZUT w Szczecinie prowadzono prace badawcze dla polskiego producenta maszyn Promotech. Efektem tych prac jest m.in. opracowanie i implementacja algorytmów korekcji błędu VE dla układów sterowania CNC firmy Bernecker&Rainer. Prezentowany na rys. 7 rozkład błędu otrzymano po zastosowaniu takiego algorytmu w układzie sterowania przenośnego portalu spawalniczego. Na rys. 8 i 9 przedstawiono wyniki zestawienia porównawczego odchyłek błędów kinematycznych i wzajemnej prostopadłości osi, otrzymanych przed kompensacją i po kompensacji błędów w układzie sterowania CNC. Analiza niepewności wyznaczania błędów kinematycznych osi przenośnego portalu spawalniczego Z uwagi na złożoność modelu pomiaru analizę niepewności szacowania błędów maszyny przeprowadzono metodą Monte Carlo [6]. W pętli obliczeniowej (200 powtórzeń) randomizacji podlegała odchyłka odległości mierzonej interferometrem śledzącym. W celu uzyskania informacji o wpływie najważniejszych składowych niepewności na wyznaczone charakterystyki błędów kinematycznych analizowano trzy różne warianty:
4 MECHANIK NR 11/ wariant 1 zawierający tylko składową niepewności systemu pomiarowego, wariant 2 zawierający składową niepewności systemu pomiarowego, pomiaru temperatury oraz wyznaczania współczynnika rozszerzalności cieplnej obiektu badanego, wariant 3 zawierający dodatkowo (oprócz wymienionych powyżej składowych) składową wynikającą z powtarzalności pozycjonowania osi. Składową niepewności systemu pomiarowego szacowano na podstawie danych określonych przez producenta interferometru śledzącego. Według nich pomiar odległości zawiera ±1 μm (k = 2) tzw. niepewności statycznej, ±0,2 μm/m (k = 2) składowej systematycznej zależnej od mierzonej odległości oraz ±0,2 μm/m (k = 2) składowej losowej zależnej także od mierzonej odległości. Każdą z tych trzech składowych w pętli randomizacyjnej losowano przy założeniu, że podlega ona rozkładowi prostokątnemu. Należy zauważyć, że wynikowy rozkład tych trzech składowych nie jest już prostokątny, ponieważ jego kształt wynika ze splotu trzech rozkładów prostokątnych. TABLICA I. Odchyłki błędów kinematycznych osi i ich niepewność (k = 2) odpowiednio w μm lub μrad Błąd Wariant 1 Wariant 2 Wariant 3 EXX EYY 426 1, , ,0 EZZ 193 3, , EYX 47 4,8 47 6, EZX EXY 176 1, , EZY 51 2,2 51 2, EXZ 692 0, , ,6 EYZ 115 0, , ,3 EAX 464 5, , EBX ECX EAY 670 4, , EBY 265 6, , COY AOZ 886 3, , BOZ Niepewność pomiaru temperatury przyjęto w granicach zmienności ±0,1 C, przy założeniu, że podlega ona rozkładowi prostokątnemu. Wartość ta odpowiada niepewności pomiaru temperatury termometrów oporowych PT100, jakie zastosowano w badaniach doświadczalnych. Pomiary wykonano w temperaturze bliskiej 24 C, a uzyskane wyniki normowano do 20 C według ISO 1. Niepewność oszacowania współczynnika liniowej rozszerzalności cieplnej przyjęto jako ±1 μm/m/ C, przy założeniu, że podlega rozkładowi prostokątnemu. Z kolei wartość 11 μm/m/ C przyjęto ze względu na rodzaj materiału (stal) zastosowanego w układzie nośnym badanej maszyny. Uwzględnienie wkładu, jaki badany obiekt wnosi w bilans niepewności, przeprowadzono, obarczając mierzoną odległość składową wynikającą z powtarzalności pozycjonowania osi rozumianą w sensie normy ISO Badana maszyna była wyposażona w napędy posuwu z listwą zębatą i pomiarem położenia z użyciem enkodera obrotowego mocowanego na wale silnika. Na podstawie przeprowadzonych wcześniej badań z użyciem interferometru laserowego XL80 przyjęto, że powtarzalność pozycjonowania osi wynosi 30 μm według ISO W związku z tym w symulacji Monte Carlo składnik niepewności wynikający z przedmiotowego źródła wynosił ±15 μm (k = 2), przy założeniu, że podlega rozkładowi normalnemu. Warto nadmienić, że procedura pomiaru odległości z użyciem interferometru śledzącego w zadanym punkcie pomiarowym została przeprowadzona z tzw. eliminacją wpływu osiowej wartości zwrotnej (backlash). To oznacza, że pomiar w punkcie odbywał się z najazdem na zadaną pozycję z przeciwległych stron. Wynikiem pomiaru jest średnia arytmetyczna tych dwóch wskazań. Z uwagi na to składnik niepewności, wynikający z powtarzalności pozycjonowania osi maszyny, w danym punkcie jest uwzględniany dwukrotnie. Wyniki symulacji Monte Carlo zestawiono w tabl. I. Składowe błędu VE w danym punkcie przestrzeni roboczej maszyny są obliczane jako wynik sumowania wielu odchyłek błędów kinematycznych (patrz równania (1) (3)), więc ich niepewność powinna stanowić wynik odpowiedniego sumowania niepewności składników tworzących tę sumę i jak się wydaje być znacznie większa niż niepewność odchyłek błędów kinematycznych. Aby zbadać relację ilościową pomiędzy przedziałami niepewności błędu VE i błędów kinematycznych przeprowadzono TABLICA II. Wyniki szacowania niepewności pomiaru błędu VE wariant 3 Lp Współrzędne pozycji nominalnej, mm Składowe błędu VE, μm Wypadkowy błąd, μm Niepewność błędu VE, μm (k = 2) Współczynnik korelacji wektorów błędu VE x y z VEx VEy VEz VE U(VEx) U(VEy) U(VEz) U(VE) r(xy) 0,24 0,45 0,85 0,3 0,47 0,77 0,02 0,16 0,06 r(yz) 0,06 0,06 0,12 0,01 0,01 0,11 0,05 0,02 0,01 r(zx) 0,23 0,58 0,13 0,25 0,67 0,35 0,09 0,36 0,31
5 1550 MECHANIK NR 11/2016 dodatkowe obliczenia. Wyniki uzyskane dla przypadku bez kompensacji w układzie sterowania maszyny przedstawiono w tabl. II. W symulacji przyjęto założenia jak dla wariantu 3. Podsumowanie Zaprezentowane wyniki symulacji obliczeniowej niepewności pomiaru błędów kinematycznych oraz rozkładu błędu przestrzennego pozycjonowania VE dowodzą, że zastosowana metoda charakteryzuje się bardzo dobrą dokładnością. Osiągnięto małe wartości niepewności w stosunku do wymagań stawianych maszynom technologicznym. Potwierdzono i zweryfikowano doświadczalnie, że kompensacja błędów maszyny w jej układzie sterowania numerycznego CNC znacznie polepsza dokładność pozycjonowania programowanej ścieżki narzędzia. W przytoczonym przykładzie dominujący wkład do niepewności wnoszą właściwości badanego obiektu. Uwzględnienie w analizie rozrzutu wynikającego z powtarzalności pozycjonowania osi (i tym samym rozrzutu odległości mierzonej przez laserowy system śledzący) znacznie zwiększyło niepewność pomiaru w porównaniu z wynikami uzyskanymi jedynie z uwzględnieniem niepewności systemu pomiarowego. Obserwowano 5 8-krotny wzrost wartości. Udział niepewności wyznaczania poprawek temperaturowych obiektu badanego nie był tak wyraźny. Badania błędów przenośnego portalu spawalniczego wykonano także po jego przetransportowaniu do miejsca użytkowania i ponownym posadowieniu (wyników tych pomiarów nie prezentowano w niniejszym artykule) wyznaczone charakterystyki błędów kinematycznych różniły się nie więcej niż o 15%. W perspektywie rozpatruje się opracowanie szybkiej metody identyfikacji błędów przenośnych maszyn w warunkach produkcyjnych, zwłaszcza że zaprezentowana w tym artykule metoda wyznaczania VE (podobnie jak inne znane metody) nie nadaje się do stosowania w takich warunkach ze względu na zbyt skomplikowaną procedurę przygotowania pomiarów. Badania były realizowane w ramach projektu finansowanego przez Narodowe Centrum Badań i Rozwoju nr INNOTECH-K3/IN3/25/ /NCBR/14, Inteligentny przenośny system do wycinania otworów i wspawywania elementów w konstrukcjach stalowych przestrzennych. LITERATURA 1. Majda P. Modelowanie i eksperymentalna ocena dokładności przestrzennego pozycjonowania zespołów posuwowych obrabiarek sterowanych numerycznie. ISBN Szczecin: Wydawnictwo ZAPOL, Hughes E.B., Wilson A., Peggs G.N. Design of a high-accuracy CMM based on multi-lateration techniques. CIRP Annals Manufacturing Technology. No. 49 (2008): pp Schwenke H., Frank M., Hannaford J. Error mapping of CMMs and machine tools by a single tracking interferometer. CIRP Annals Manufacturing Technology. No. 54 (2008): pp Schwenke H. et al. On-the-fly calibration of linear and rotary axes of machine tools and CMMs using a tracking interferometer. CIRP Annals Manufacturing Technology. No. 58 (2008): pp Jindong W., Junjie G., Guoxiong Z., Bao an G., Hongjian W. The technical method of geometric error measurement for multi-axis NC machine tool by laser tracker. Measurement Science and Technology. DOI: / /23/4/ No. 23 (2012): p Sładek J. Dokładność pomiarów współrzędnościowych. ISBN: Kraków: Wydawnictwo Politechniki Krakowskiej, Zhang G.X., Lin Y.B., Li X.H., Li Z. Four-beam laser tracking interferometer system for threedimensional coordinate measurement. Acta Optica Sinica. No. 23 (2009): pp Majda P., Dolata M., Nowak M. Determination of machine tool errors using tracking interferometer. Archives of Mechanical Technology and Automation. Vol. 34, No. 3 (2014): pp ISO 230-1:2012. Test code for machine tools Part 1: Geometric accuracy of machines operating under no-load or quasi-static conditions.
KOMPENSACJA CYKLICZNEGO BŁĘDU ŚRUBY POCIĄGOWEJ W OBRABIARKACH STEROWANYCH NUMERYCZNIE
MODELOWANIE INŻYNIERSKIE ISSN 1896-771X 41, s. 243-250, Gliwice 2011 KOMPENSACJA CYKLICZNEGO BŁĘDU ŚRUBY POCIĄGOWEJ W OBRABIARKACH STEROWANYCH NUMERYCZNIE PAWEŁ MAJDA, ARKADIUSZ PARUS Instytut Technologii
WYBÓR PUNKTÓW POMIAROWYCH
Scientific Bulletin of Che lm Section of Technical Sciences No. 1/2008 WYBÓR PUNKTÓW POMIAROWYCH WE WSPÓŁRZĘDNOŚCIOWEJ TECHNICE POMIAROWEJ MAREK MAGDZIAK Katedra Technik Wytwarzania i Automatyzacji, Politechnika
POMIARY ODCHYLEŃ KĄTOWYCH STOŁU PIONOWEGO CENTRUM FREZARSKIEGO AVIA VMC 800. Streszczenie
DOI: 10.17814/mechanik.2015.8-9.471 Mgr inż. Piotr MAJ; dr hab. inż. Edward MIKO, prof. PŚk (Politechnika Świętokrzyska): POMIARY ODCHYLEŃ KĄTOWYCH STOŁU PIONOWEGO CENTRUM FREZARSKIEGO AVIA VMC 800 Streszczenie
BADANIE DOKŁADNOŚCI POZYCJONOWANIA CENTRUM FREZARSKIEGO DMG DMU 50. Streszczenie RESEARCH OF POSITIONING ACCURACY OF THE DMG DMU50 MILLING CENTER
DOI: 10.17814/mechanik.2015.8-9.456 Dr hab. inż. Edward MIKO, prof. PŚk; mgr inż. Piotr KUPIŃSKI (Politechnika Świętokrzyska): BADANIE DOKŁADNOŚCI POZYCJONOWANIA CENTRUM FREZARSKIEGO DMG DMU 50 Streszczenie
Wektory, układ współrzędnych
Wektory, układ współrzędnych Wielkości występujące w przyrodzie możemy podzielić na: Skalarne, to jest takie wielkości, które potrafimy opisać przy pomocy jednej liczby (skalara), np. masa, czy temperatura.
Politechnika Poznańska Instytut Technologii Mechanicznej. Laboratorium MASZYN I URZĄDZEŃ TECHNOLOGICZNYCH. Nr 2
Politechnika Poznańska Instytut Technologii Mechanicznej Laboratorium MASZYN I URZĄDZEŃ TECHNOLOGICZNYCH Nr 2 POMIAR I KASOWANIE LUZU W STOLE OBROTOWYM NC Poznań 2008 1. CEL ĆWICZENIA Celem ćwiczenia jest
WPŁYW METODY DOPASOWANIA NA WYNIKI POMIARÓW PIÓRA ŁOPATKI INFLUENCE OF BEST-FIT METHOD ON RESULTS OF COORDINATE MEASUREMENTS OF TURBINE BLADE
Dr hab. inż. Andrzej Kawalec, e-mail: ak@prz.edu.pl Dr inż. Marek Magdziak, e-mail: marekm@prz.edu.pl Politechnika Rzeszowska Wydział Budowy Maszyn i Lotnictwa Katedra Technik Wytwarzania i Automatyzacji
Maszyny technologiczne. dr inż. Michał Dolata
Maszyny technologiczne 2019 dr inż. Michał Dolata www.mdolata.zut.edu.pl Układ konstrukcyjny obrabiarki 2 Układ konstrukcyjny tworzą podstawowe wzajemnie współdziałające podzespoły maszyny rozmieszczone
Ćw. nr 31. Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2
1 z 6 Zespół Dydaktyki Fizyki ITiE Politechniki Koszalińskiej Ćw. nr 3 Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2 Cel ćwiczenia Pomiar okresu wahań wahadła z wykorzystaniem bramki optycznej
Analiza niepewności pomiarów Przykłady
Teoria pomiarów Analiza niepewności pomiarów Przykłady Dr hab. inż. Paweł Majda www.pmajda.zut.edu.pl Przykład szacowania niepewności pomiaru Przykład ten obrazuje szacowanie niepewności dla przypadku
BŁĘDY W POMIARACH BEZPOŚREDNICH
Podstawy Metrologii i Technik Eksperymentu Laboratorium BŁĘDY W POMIARACH BEZPOŚREDNICH Instrukcja do ćwiczenia nr 2 Zakład Miernictwa i Ochrony Atmosfery Wrocław, listopad 2010 r. Podstawy Metrologii
METODYKA BADAŃ DOKŁADNOŚCI I POWTARZALNOŚCI ODWZOROWANIA TRAJEKTORII ROBOTA PRZEMYSŁOWEGO FANUC M-16iB
METODYKA BADAŃ DOKŁADNOŚCI I POWTARZALNOŚCI ODWZOROWANIA TRAJEKTORII ROBOTA PRZEMYSŁOWEGO FANUC M-16iB Marcin WIŚNIEWSKI Jan ŻUREK Olaf CISZAK Streszczenie W pracy omówiono szczegółowo metodykę pomiaru
144 MECHANIK NR 3/2015
144 MECHANIK NR 3/2015 5 osiowa obrabiarka CNC, systemy diagnostyczne, kalibracja, AxiSet Check-Up, kalibrator osi obrotowych XR-20, LaserTRACER, LaserTRACER-MT, błędy obrabiarki CNC, współrzędne osi obrotowych,
Sprawdzenie narzędzi pomiarowych i wyznaczenie niepewności rozszerzonej typu A w pomiarach pośrednich
Podstawy Metrologii i Technik Eksperymentu Laboratorium Sprawdzenie narzędzi pomiarowych i wyznaczenie niepewności rozszerzonej typu A w pomiarach pośrednich Instrukcja do ćwiczenia nr 4 Zakład Miernictwa
PL B1. POLITECHNIKA WARSZAWSKA, Warszawa, PL INSTYTUT TECHNOLOGII EKSPLOATACJI. PAŃSTWOWY INSTYTUT BADAWCZY, Radom, PL
RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 207917 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 380341 (22) Data zgłoszenia: 31.07.2006 (51) Int.Cl. G01B 21/04 (2006.01)
Laboratorium metrologii
Wydział Inżynierii Mechanicznej i Mechatroniki Instytut Technologii Mechanicznej Laboratorium metrologii Instrukcja do ćwiczeń laboratoryjnych Temat ćwiczenia: Pomiary wymiarów zewnętrznych Opracował:
ANALIZA OBCIĄŻEŃ JEDNOSTEK NAPĘDOWYCH DLA PRZESTRZENNYCH RUCHÓW AGROROBOTA
Inżynieria Rolnicza 7(105)/2008 ANALIZA OBCIĄŻEŃ JEDNOSTEK NAPĘDOWYCH DLA PRZESTRZENNYCH RUCHÓW AGROROBOTA Katedra Podstaw Techniki, Uniwersytet Przyrodniczy w Lublinie Streszczenie. W pracy przedstawiono
Use of the ball-bar measuring system to investigate the properties of parallel kinematics mechanism
Artykuł Autorski z VIII Forum Inżynierskiego ProCAx, Siewierz, 19-22 XI 2009 (MECHANIK nr 2/2010) Dr inż. Krzysztof Chrapek, dr inż. Piotr Górski, dr inż. Stanisław Iżykowski, mgr inż. Paweł Maślak Politechnika
LABORATORIUM. Temat 11: Dokładność ustalania przesuwnych zespołów maszyn
LABORATORIUM Temat 11: Dokładność ustalania przesuwnych zespołów maszyn 1. Wprowadzenie Szybki wzrost liczby maszyn sterowanych numerycznie oraz robotów przemysłowych zmusił producentów i uŝytkowników
O 2 O 1. Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego
msg M 7-1 - Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Zagadnienia: prawa dynamiki Newtona, moment sił, moment bezwładności, dynamiczne równania ruchu wahadła fizycznego,
DIGITALIZACJA GEOMETRII WKŁADEK OSTRZOWYCH NA POTRZEBY SYMULACJI MES PROCESU OBRÓBKI SKRAWANIEM
Dr inż. Witold HABRAT, e-mail: witekhab@prz.edu.pl Politechnika Rzeszowska, Wydział Budowy Maszyn i Lotnictwa Dr hab. inż. Piotr NIESŁONY, prof. PO, e-mail: p.nieslony@po.opole.pl Politechnika Opolska,
OBLICZANIE NADDATKÓW NA OBRÓBKĘ SKRAWANIEM na podstawie; J.Tymowski Technologia budowy maszyn. mgr inż. Marta Bogdan-Chudy
OBLICZANIE NADDATKÓW NA OBRÓBKĘ SKRAWANIEM na podstawie; J.Tymowski Technologia budowy maszyn mgr inż. Marta Bogdan-Chudy 1 NADDATKI NA OBRÓBKĘ b a Naddatek na obróbkę jest warstwą materiału usuwaną z
Projekt współfinansowany ze środków Europejskiego Funduszu Rozwoju Regionalnego w ramach Programu Operacyjnego Innowacyjna Gospodarka
Projekt współfinansowany ze środków Europejskiego Funduszu Rozwoju Regionalnego w ramach Programu Operacyjnego Innowacyjna Gospodarka Poznań, 16.05.2012r. Raport z promocji projektu Nowa generacja energooszczędnych
Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16
Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego
POLITECHNIKA OPOLSKA WYDZIAŁ MECHANICZNY Katedra Technologii Maszyn i Automatyzacji Produkcji POMIARY KĄTÓW I STOŻKÓW
POLITECHNIKA OPOLSKA WYDZIAŁ MECHANICZNY Katedra Technologii Maszyn i Automatyzacji Produkcji TEMAT: Ćwiczenie nr 4 POMIARY KĄTÓW I STOŻKÓW ZADANIA DO WYKONANIA:. zmierzyć 3 wskazane kąty zadanego przedmiotu
WYZNACZANIE NIEPEWNOŚCI POMIARU METODAMI SYMULACYJNYMI
WYZNACZANIE NIEPEWNOŚCI POMIARU METODAMI SYMULACYJNYMI Stefan WÓJTOWICZ, Katarzyna BIERNAT ZAKŁAD METROLOGII I BADAŃ NIENISZCZĄCYCH INSTYTUT ELEKTROTECHNIKI ul. Pożaryskiego 8, 04-703 Warszawa tel. (0)
PL B1. Sposób prostopadłego ustawienia osi wrzeciona do kierunku ruchu posuwowego podczas frezowania. POLITECHNIKA POZNAŃSKA, Poznań, PL
PL 222915 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 222915 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 401901 (22) Data zgłoszenia: 05.12.2012 (51) Int.Cl.
Wyznaczanie sił w przegubach maszyny o kinematyce równoległej w trakcie pracy, z wykorzystaniem metod numerycznych
kinematyka równoległa, symulacja, model numeryczny, sterowanie mgr inż. Paweł Maślak, dr inż. Piotr Górski, dr inż. Stanisław Iżykowski, dr inż. Krzysztof Chrapek Wyznaczanie sił w przegubach maszyny o
Politechnika Poznańska Instytut Technologii Mechanicznej. Laboratorium Badania Maszyn CNC. Nr 1
Politechnika Poznańska Instytut Technologii Mechanicznej Laboratorium Badania Maszyn CNC Nr 1 Pomiary dokładności pozycjonowania laserowym systemem pomiarowym ML-10 Opracował: Dr inż. Wojciech Ptaszyński
Metoda określania pozycji wodnicy statków na podstawie pomiarów odległości statku od głowic laserowych
inż. Marek Duczkowski Metoda określania pozycji wodnicy statków na podstawie pomiarów odległości statku od głowic laserowych słowa kluczowe: algorytm gradientowy, optymalizacja, określanie wodnicy W artykule
RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA
Dr inż. Andrzej Polka Katedra Dynamiki Maszyn Politechnika Łódzka RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA Streszczenie: W pracy opisano wzajemne położenie płaszczyzny parasola
IDENTYFIKACJA BŁĘDÓW PIONOWEGO CENTRUM FREZARSKIEGO ZA POMOCĄ SYSTEMU BALL - BAR ORAZ ICH KOREKCJA POPRZEZ POZIOMOWANIE OBRABIARKI.
DOI: 10.17814/mechanik.2015.8-9.459 Dr inż. Jan KACZMAREK (COMMON S.A.), mgr inż. Sebastian LANGE (COMMON S.A.), dr inż. Robert ŚWIĘCIK (Politechnika Łódzka), mgr inż. Artur ŻURAWSKI (COMMON S.A.): IDENTYFIKACJA
BADANIA SYMULACYJNE PROCESU HAMOWANIA SAMOCHODU OSOBOWEGO W PROGRAMIE PC-CRASH
BADANIA SYMULACYJNE PROCESU HAMOWANIA SAMOCHODU OSOBOWEGO W PROGRAMIE PC-CRASH Dr inż. Artur JAWORSKI, Dr inż. Hubert KUSZEWSKI, Dr inż. Adam USTRZYCKI W artykule przedstawiono wyniki analizy symulacyjnej
Obrabiarki CNC. Nr 10
Politechnika Poznańska Instytut Technologii Mechanicznej Laboratorium Obrabiarki CNC Nr 10 Obróbka na tokarce CNC CT210 ze sterowaniem Sinumerik 840D Opracował: Dr inż. Wojciech Ptaszyński Poznań, 17 maja,
MODELOWANIE ROZKŁADU TEMPERATUR W PRZEGRODACH ZEWNĘTRZNYCH WYKONANYCH Z UŻYCIEM LEKKICH KONSTRUKCJI SZKIELETOWYCH
Budownictwo o Zoptymalizowanym Potencjale Energetycznym 2(18) 2016, s. 55-60 DOI: 10.17512/bozpe.2016.2.08 Maciej MAJOR, Mariusz KOSIŃ Politechnika Częstochowska MODELOWANIE ROZKŁADU TEMPERATUR W PRZEGRODACH
POLITECHNIKA ŁÓDZKA INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN. Ćwiczenie D - 4. Zastosowanie teoretycznej analizy modalnej w dynamice maszyn
POLITECHNIKA ŁÓDZKA INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN Ćwiczenie D - 4 Temat: Zastosowanie teoretycznej analizy modalnej w dynamice maszyn Opracowanie: mgr inż. Sebastian Bojanowski Zatwierdził:
Projekt nr POIG /09. Tytuł: Rozbudowa przedsiębiorstwa w oparciu o innowacyjne technologie produkcji konstrukcji przemysłowych
Projekt nr POIG.04.04.00-24-013/09 Tytuł: Rozbudowa przedsiębiorstwa w oparciu o innowacyjne technologie produkcji konstrukcji przemysłowych Projekt współfinansowany przez Unię Europejską z Europejskiego
Rozkład materiału nauczania
Dział/l.p. Ilość godz. Typ szkoły: TECHNIKUM Zawód: TECHNIK USŁUG FRYZJERSKICH Rok szkolny 2017/2018 Przedmiot: MATEMATYKA Klasa: III 60 godzin numer programu T5/O/5/12 Rozkład materiału nauczania Temat
PROBLEMY NIEKONWENCJONALNYCH UKŁADÓW ŁOŻYSKOWYCH Łódź maja 1995 roku ROZDZIAŁ PARAMETRÓW KONSTRUKCYJNYCH ZESPOŁU WRZECIONOWEGO OBRABIARKI
PROBLEMY NIEKONWENCJONALNYCH UKŁADÓW ŁOŻYSKOWYCH Łódź 09-10 maja 1995 roku Ryszard Wolny (Politechnika Częstochowska) ROZDZIAŁ PARAMETRÓW KONSTRUKCYJNYCH ZESPOŁU WRZECIONOWEGO OBRABIARKI SŁOWA KLUCZOWE
Ćwiczenie 3 Temat: Oznaczenia mierników, sposób podłączania i obliczanie błędów Cel ćwiczenia
Ćwiczenie 3 Temat: Oznaczenia mierników, sposób podłączania i obliczanie błędów Cel ćwiczenia Zaznajomienie się z oznaczeniami umieszczonymi na przyrządach i obliczaniem błędów pomiarowych. Obsługa przyrządów
FIZYKA klasa 1 Liceum Ogólnokształcącego (4 letniego)
2019-09-01 FIZYKA klasa 1 Liceum Ogólnokształcącego (4 letniego) Treści z podstawy programowej przedmiotu POZIOM ROZSZERZONY (PR) SZKOŁY BENEDYKTA Podstawa programowa FIZYKA KLASA 1 LO (4-letnie po szkole
Z a p r o s z e n i e n a W a r s z t a t y
Carl Zeiss Sp. z o.o. Metrologia Przemysłowa Z a p r o s z e n i e n a W a r s z t a t y 09-1 3. 0 5. 2 0 1 6 - M i k o ł ó w 16-2 0. 0 5. 2 0 1 6 - W a r s z a w a Temat: AUKOM Level 1 Zapraszamy wszystkich
METODA POMIARU DOKŁADNOŚCI KINEMATYCZNEJ PRZEKŁADNI ŚLIMAKOWYCH
METODA POMIARU DOKŁADNOŚCI KINEMATYCZNEJ PRZEKŁADNI ŚLIMAKOWYCH Dariusz OSTROWSKI 1, Tadeusz MARCINIAK 1 1. WSTĘP Dokładność przeniesienia ruchu obrotowego w precyzyjnych przekładaniach ślimakowych zwanych
KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury
KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury Funkcje wektorowe Jeśli wektor a jest określony dla parametru t (t należy do przedziału t (, t k )
LABORATORIUM Z FIZYKI
LABORATORIUM Z FIZYKI LABORATORIUM Z FIZYKI I PRACOWNIA FIZYCZNA C w Gliwicach Gliwice, ul. Konarskiego 22, pokoje 52-54 Regulamin pracowni i organizacja zajęć Sprawozdanie (strona tytułowa, karta pomiarowa)
Charakterystyka mierników do badania oświetlenia Obiektywne badania warunków oświetlenia opierają się na wynikach pomiarów parametrów świetlnych. Podobnie jak każdy pomiar, również te pomiary, obarczone
ZESTAW BEZPRZEWODOWYCH CZUJNIKÓW MAGNETYCZNYCH DO DETEKCJI I IDENTYFIKACJI POJAZDÓW FERROMAGNETYCZNYCH
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 73 Electrical Engineering 2013 Kazimierz JAKUBIUK* Mirosław WOŁOSZYN* ZESTAW BEZPRZEWODOWYCH CZUJNIKÓW MAGNETYCZNYCH DO DETEKCJI I IDENTYFIKACJI
Obliczanie niepewności rozszerzonej metodą analityczną opartą na splocie rozkładów wielkości wejściowych
Obliczanie niepewności rozszerzonej metodą analityczną opartą na splocie rozkładów wejściowych Paweł Fotowicz * Przedstawiono ścisłą metodę obliczania niepewności rozszerzonej, polegającą na wyznaczeniu
WSKAZÓWKI DO WYKONANIA SPRAWOZDANIA Z WYRÓWNAWCZYCH ZAJĘĆ LABORATORYJNYCH
WSKAZÓWKI DO WYKONANIA SPRAWOZDANIA Z WYRÓWNAWCZYCH ZAJĘĆ LABORATORYJNYCH Dobrze przygotowane sprawozdanie powinno zawierać następujące elementy: 1. Krótki wstęp - maksymalnie pół strony. W krótki i zwięzły
Materiałowe i technologiczne uwarunkowania stanu naprężeń własnych i anizotropii wtórnej powłok cylindrycznych wytłaczanych z polietylenu
POLITECHNIKA ŚLĄSKA ZESZYTY NAUKOWE NR 1676 SUB Gottingen 7 217 872 077 Andrzej PUSZ 2005 A 12174 Materiałowe i technologiczne uwarunkowania stanu naprężeń własnych i anizotropii wtórnej powłok cylindrycznych
Niepewności pomiarów
Niepewności pomiarów Międzynarodowa Organizacja Normalizacyjna (ISO) w roku 1995 opublikowała normy dotyczące terminologii i sposobu określania niepewności pomiarów [1]. W roku 1999 normy zostały opublikowane
Ćw. 18: Pomiary wielkości nieelektrycznych II
Wydział: EAIiE Kierunek: Imię i nazwisko (e mail): Rok:. (2010/2011) Grupa: Zespół: Data wykonania: Zaliczenie: Podpis prowadzącego: Uwagi: LABORATORIUM METROLOGII Ćw. 18: Pomiary wielkości nieelektrycznych
NOWA KONCEPCJA SPRAWDZANIA DOKŁADNOŚCI MASZYN NC
Prof. dr Maciej Szafarczyk Mgr inż. Jarosław Chrzanowski Rafał Wypysiński Instytut Technologii Maszyn Politechniki Warszawskiej NOWA KONCEPCJA SPRAWDZANIA DOKŁADNOŚCI MASZYN NC W maszynach sterowanych
Tabela 1. Odchyłki graniczne wymiarów liniowych, z wyjątkiem wymiarów krawędzi załamanych wg ISO 2768-1
1. Informacje ogólne Tworzywa konstrukcyjne w istotny sposób różnią się od metali. Przede wszystkim cechują się 8-10 krotnie większą rozszerzalnością cieplną. Niektóre gatunki tworzyw są mało stabilne
ĆWICZENIE NR.6. Temat : Wyznaczanie drgań mechanicznych przekładni zębatych podczas badań odbiorczych
ĆWICZENIE NR.6 Temat : Wyznaczanie drgań mechanicznych przekładni zębatych podczas badań odbiorczych 1. Wstęp W nowoczesnych przekładniach zębatych dąży się do uzyskania małych gabarytów w stosunku do
Metrologia wymiarowa dużych odległości oraz dla potrzeb mikro- i nanotechnologii
Metrologia wymiarowa dużych odległości oraz dla potrzeb mikro- i nanotechnologii Grażyna Rudnicka Mariusz Wiśniewski, Dariusz Czułek, Robert Szumski, Piotr Sosinowski Główny Urząd Miar Mapy drogowe EURAMET
Odchudzamy serię danych, czyli jak wykryć i usunąć wyniki obarczone błędami grubymi
Odchudzamy serię danych, czyli jak wykryć i usunąć wyniki obarczone błędami grubymi Piotr Konieczka Katedra Chemii Analitycznej Wydział Chemiczny Politechnika Gdańska D syst D śr m 1 3 5 2 4 6 śr j D 1
DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu
Ćwiczenie 7 DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Cel ćwiczenia Doświadczalne wyznaczenie częstości drgań własnych układu o dwóch stopniach swobody, pokazanie postaci drgań odpowiadających
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw udowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ Teoria maszyn i podstawy automatyki semestr zimowy 2016/2017
Przygotowanie do pracy frezarki CNC
Wydział Budowy Maszyn i Zarządzania Instytut Technologii Mechanicznej Maszyny i urządzenia technologiczne laboratorium Przygotowanie do pracy frezarki CNC Cykl I Ćwiczenie 2 Opracował: dr inż. Krzysztof
Aplikacje Systemów. Nawigacja inercyjna. Gdańsk, 2016
Aplikacje Systemów Wbudowanych Nawigacja inercyjna Gdańsk, 2016 Klasyfikacja systemów inercyjnych 2 Nawigacja inercyjna Podstawowymi blokami, wchodzącymi w skład systemów nawigacji inercyjnej (INS ang.
OCENA ODWZOROWANIA KSZTAŁTU ZA POMOCĄ WSPÓŁRZĘDNOŚCIOWEGO RAMIENIA POMIAROWEGO WYPOSAŻONEGO W GŁOWICĘ OPTYCZNĄ
Adam Gąska, Magdalena Olszewska 1) OCENA ODWZOROWANIA KSZTAŁTU ZA POMOCĄ WSPÓŁRZĘDNOŚCIOWEGO RAMIENIA POMIAROWEGO WYPOSAŻONEGO W GŁOWICĘ OPTYCZNĄ Streszczenie: Realizacja pomiarów może być dokonywana z
Spis treści. Wstęp Część I STATYKA
Spis treści Wstęp... 15 Część I STATYKA 1. WEKTORY. PODSTAWOWE DZIAŁANIA NA WEKTORACH... 17 1.1. Pojęcie wektora. Rodzaje wektorów... 19 1.2. Rzut wektora na oś. Współrzędne i składowe wektora... 22 1.3.
Sympozjum Trwałość Budowli
Sympozjum Trwałość Budowli Andrzej ownuk ROJEKTOWANIE UKŁADÓW Z NIEEWNYMI ARAMETRAMI Zakład Mechaniki Teoretycznej olitechnika Śląska pownuk@zeus.polsl.gliwice.pl URL: http://zeus.polsl.gliwice.pl/~pownuk
WYTWARZANIE MECHANIZMÓW METODĄ FDM
Mgr inż. Bartosz BLICHARZ Mgr inż. Maciej CADER Przemysłowy Instytut Automatyki i Pomiarów PIAP Piotr HERMANOWICZ Politechnika Warszawska DOI: 10.17814/mechanik.2015.7.211 WYTWARZANIE MECHANIZMÓW METODĄ
STATYCZNA PRÓBA ROZCIĄGANIA
Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: STATYCZNA PRÓBA ROZCIĄGANIA oprac. dr inż. Jarosław Filipiak Cel ćwiczenia 1. Zapoznanie się ze sposobem przeprowadzania statycznej
Problem testowania/wzorcowania instrumentów geodezyjnych
Problem testowania/wzorcowania instrumentów geodezyjnych Realizacja Osnów Geodezyjnych a Problemy Geodynamiki Grybów, 25-27 września 2014 Ryszard Szpunar, Dominik Próchniewicz, Janusz Walo Politechnika
XLVII OLIMPIADA FIZYCZNA ETAP I Zadanie doświadczalne
XLVII OLIMPIADA FIZYCZNA ETAP I Zadanie doświadczalne ZADANIE D2 Zakładając, że zależność mocy P pobieranej przez żarówkę od temperatury bezwzględnej jej włókna T ma postać: 4 P = A + BT + CT wyznacz wartości
ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY
ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY Numer lekcji 1 2 Nazwa działu Lekcja organizacyjna. Zapoznanie z programem nauczania i kryteriami wymagań Zbiór liczb rzeczywistych i jego 3 Zbiór
Ćwiczenie 5 POMIARY TWARDOŚCI. 1. Cel ćwiczenia. 2. Wprowadzenie
Ćwiczenie 5 POMIARY TWARDOŚCI 1. Cel ćwiczenia Celem ćwiczenia jest zaznajomienie studentów ze metodami pomiarów twardości metali, zakresem ich stosowania, zasadami i warunkami wykonywania pomiarów oraz
Spis treści Wstęp Rozdział 1. Metrologia przedmiot i zadania
Spis treści Wstęp Rozdział 1. Metrologia przedmiot i zadania 1.1. Przedmiot metrologii 1.2. Rola i zadania metrologii współczesnej w procesach produkcyjnych 1.3. Główny Urząd Miar i inne instytucje ważne
PROGRAM NAUCZANIA. Obejmującego 120 godzin zajęć realizowanych w formie wykładowo ćwiczeniowej i zajęć praktycznych
PROGRAM NAUCZANIA Kursu Operator obrabiarek sterowanych numerycznie Obejmującego 120 godzin zajęć realizowanych w formie wykładowo ćwiczeniowej i zajęć praktycznych I. Wymagania wstępne dla uczestników
1. Kinematyka 8 godzin
Plan wynikowy (propozycja) część 1 1. Kinematyka 8 godzin Wymagania Treści nauczania (tematy lekcji) Cele operacyjne podstawowe ponadpodstawowe Uczeń: konieczne podstawowe rozszerzające dopełniające Jak
BADANIE DRGAŃ TŁUMIONYCH WAHADŁA FIZYCZNEGO
ĆWICZENIE 36 BADANIE DRGAŃ TŁUMIONYCH WAHADŁA FIZYCZNEGO Cel ćwiczenia: Wyznaczenie podstawowych parametrów drgań tłumionych: okresu (T), częstotliwości (f), częstotliwości kołowej (ω), współczynnika tłumienia
Przedmowa Wiadomości ogólne... 17
Spis treści Przedmowa... 13 1. Wiadomości ogólne... 17 1.1. Metrologia i jej podział... 17 1.2. Metrologia wielkości geometrycznych, jej przedmiot i zadania... 20 1.3. Jednostka miary długości... 21 1.4.
ZASTOSOWANIE METOD SZTUCZNEJ INTELIGENCJI DO KOMPENSACJI ODKSZTAŁCEŃ CIEPLNYCH ŚRUB POCIĄGOWYCH OBRABIAREK CNC
MODELOWANIE INŻYNIERSKIE nr 51, ISSN 1896-771X ZASTOSOWANIE METOD SZTUCZNEJ INTELIGENCJI DO KOMPENSACJI ODKSZTAŁCEŃ CIEPLNYCH ŚRUB POCIĄGOWYCH OBRABIAREK CNC Mirosław Pajor 1a, Jacek Zapłata 2b 1 Instyt
Kryteria oceniania z matematyki Klasa III poziom podstawowy
Kryteria oceniania z matematyki Klasa III poziom podstawowy Potęgi Zakres Dopuszczający Dostateczny Dobry Bardzo dobry oblicza potęgi o wykładnikach wymiernych; zna prawa działań na potęgach i potrafi
Ćw. 18: Pomiary wielkości nieelektrycznych II
Wydział: EAIiE Kierunek: Imię i nazwisko (e mail): Rok:. (../..) Grupa: Zespół: Data wykonania: Zaliczenie: Podpis prowadzącego: Uwagi: LABORATORIUM METROLOGII Ćw. 18: Pomiary wielkości nieelektrycznych
TEORETYCZNY MODEL PANEWKI POPRZECZNEGO ŁOśYSKA ŚLIZGOWEGO. CZĘŚĆ 3. WPŁYW ZUśYCIA PANEWKI NA ROZKŁAD CIŚNIENIA I GRUBOŚĆ FILMU OLEJOWEGO
Paweł PŁUCIENNIK, Andrzej MACIEJCZYK TEORETYCZNY MODEL PANEWKI POPRZECZNEGO ŁOśYSKA ŚLIZGOWEGO. CZĘŚĆ 3. WPŁYW ZUśYCIA PANEWKI NA ROZKŁAD CIŚNIENIA I GRUBOŚĆ FILMU OLEJOWEGO Streszczenie W artykule przedstawiono
Sposób sterowania ruchem głowic laserowego urządzenia do cięcia i znakowania/grawerowania materiałów oraz urządzenie do stosowania tego sposobu
PL 217478 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 217478 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 397035 (22) Data zgłoszenia: 18.11.2011 (51) Int.Cl.
(R) przy obciążaniu (etap I) Wyznaczanie przemieszczenia kątowego V 2
SPIS TREŚCI Przedmowa... 10 1. Tłumienie drgań w układach mechanicznych przez tłumiki tarciowe... 11 1.1. Wstęp... 11 1.2. Określenie modelu tłumika ciernego drgań skrętnych... 16 1.3. Wyznaczanie rozkładu
DOKUMENTACJA SYSTEMU ZARZĄDZANIA LABORATORIUM. Procedura szacowania niepewności
DOKUMENTACJA SYSTEMU ZARZĄDZANIA LABORATORIUM Procedura szacowania niepewności Szacowanie niepewności oznaczania / pomiaru zawartości... metodą... Data Imię i Nazwisko Podpis Opracował Sprawdził Zatwierdził
Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi)
Kinematyka Mechanika ogólna Wykład nr 7 Elementy kinematyki Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez wnikania w związek
RAPORT z diagnozy umiejętności matematycznych
RAPORT z diagnozy umiejętności matematycznych przeprowadzonej w klasach pierwszych szkół ponadgimnazjalnych 1 Analiza statystyczna Wskaźnik Liczba uczniów Liczba punktów Łatwość zestawu Wyjaśnienie Liczba
Pomiar ogniskowych soczewek metodą Bessela
Ćwiczenie O4 Pomiar ogniskowych soczewek metodą Bessela O4.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie ogniskowych soczewek skupiających oraz rozpraszających z zastosowaniem o metody Bessela. O4.2.
NIEPEWNOŚĆ W OKREŚLENIU PRĘDKOŚCI EES ZDERZENIA SAMOCHODÓW WYZNACZANEJ METODĄ EKSPERYMENTALNO-ANALITYCZNĄ
NIEPEWNOŚĆ W OKREŚLENIU PRĘDKOŚCI EES ZDERZENIA SAMOCHODÓW WYZNACZANEJ METODĄ EKSPERYMENTALNO-ANALITYCZNĄ Karol SZTWIERTNIA 1, Marek GUZEK, Janusz JANUŁA 3 Streszczenie Przedmiotem artykułu jest niepewność
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego
Nazwisko i imię: Zespół: Data: Cel ćwiczenia: Ćwiczenie nr 1: Wahadło fizyczne opis ruchu drgającego a w szczególności drgań wahadła fizycznego wyznaczenie momentów bezwładności brył sztywnych Literatura
NOWOCZESNE TECHNOLOGIE ENERGETYCZNE Rola modelowania fizycznego i numerycznego
Politechnika Częstochowska Katedra Inżynierii Energii NOWOCZESNE TECHNOLOGIE ENERGETYCZNE Rola modelowania fizycznego i numerycznego dr hab. inż. Zbigniew BIS, prof P.Cz. dr inż. Robert ZARZYCKI Wstęp
Dokładność pozycji. dr inż. Stefan Jankowski
Dokładność pozycji dr inż. Stefan Jankowski s.jankowski@am.szczecin.pl Nawigacja Nawigacja jest gałęzią nauki zajmującą się prowadzeniem statku bezpieczną i optymalną drogą. Znajomość nawigacji umożliwia
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY III
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY III Program nauczania matematyki w gimnazjum Matematyka dla przyszłości DKW 4014 162/99 Opracowała: mgr Mariola Bagińska 1. Liczby i działania Podaje rozwinięcia
Oprogramowanie FormControl
Pomiar przez kliknięcie myszą. Właśnie tak prosta jest inspekcja detalu w centrum obróbczym z pomocą oprogramowania pomiarowego FormControl. Nie ma znaczenia, czy obrabiany detal ma swobodny kształt powierzchni
Wyznaczanie modułu Younga metodą strzałki ugięcia
Ćwiczenie M12 Wyznaczanie modułu Younga metodą strzałki ugięcia M12.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie wartości modułu Younga różnych materiałów poprzez badanie strzałki ugięcia wykonanych
Projekt rejestratora obiektów trójwymiarowych na bazie frezarki CNC. The project of the scanner for three-dimensional objects based on the CNC
Dr inż. Henryk Bąkowski, e-mail: henryk.bakowski@polsl.pl Politechnika Śląska, Wydział Transportu Mateusz Kuś, e-mail: kus.mate@gmail.com Jakub Siuta, e-mail: siuta.jakub@gmail.com Andrzej Kubik, e-mail:
Pomiary otworów. Ismena Bobel
Pomiary otworów Ismena Bobel 1.Pomiar średnicy otworu suwmiarką. Pomiar został wykonany metodą pomiarową bezpośrednią. Metoda pomiarowa bezpośrednia, w której wynik pomiaru otrzymuje się przez odczytanie
Rozszerzony konspekt preskryptu do przedmiotu Teoria Maszyn i Mechanizmów
Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Rozszerzony konspekt preskryptu do przedmiotu Teoria Maszyn i Mechanizmów Prof. dr hab. inż. Janusz Frączek Instytut
Laboratorium techniki laserowej Ćwiczenie 2. Badanie profilu wiązki laserowej
Laboratorium techniki laserowej Ćwiczenie 2. Badanie profilu wiązki laserowej 1. Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 2006 1. Wstęp Pomiar profilu wiązki
MODELOWANIE NUMERYCZNE POLA PRZEPŁYWU WOKÓŁ BUDYNKÓW
1. WSTĘP MODELOWANIE NUMERYCZNE POLA PRZEPŁYWU WOKÓŁ BUDYNKÓW mgr inż. Michał FOLUSIAK Instytut Lotnictwa W artykule przedstawiono wyniki dwu- i trójwymiarowych symulacji numerycznych opływu budynków wykonanych
Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy)
Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy) klasa 3. PAZDRO Plan jest wykazem wiadomości i umiejętności, jakie powinien mieć uczeń ubiegający się o określone oceny na poszczególnych etapach edukacji
PL 214592 B1. POLITECHNIKA CZĘSTOCHOWSKA, Częstochowa, PL 14.03.2011 BUP 06/11
PL 214592 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 214592 (13) B1 (21) Numer zgłoszenia: 388915 (51) Int.Cl. G01B 5/28 (2006.01) G01C 7/04 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej
Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne
POLITECHNIKA POZNAŃSKA INSTYTUT INŻYNIERII ŚRODOWISKA PROWADZĄCY: mgr inż. Łukasz Amanowicz Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne 3 TEMAT ĆWICZENIA: Badanie składu pyłu za pomocą mikroskopu