Właściwości transportowe naszych struktur zostały określone na podstawie dwukontaktowych pomiarów zależności oporu kanału tranzystora od pola
|
|
- Sylwia Matuszewska
- 9 lat temu
- Przeglądów:
Transkrypt
1 Streszczenie Azotek galu (GaN) jest obecnie jednym z najważniejszych półprzewodników, zwłaszcza z punktu widzenia wysokotemperaturowych i wysokoczęstotliwościowych zastosowań w dziedzinach takich jak szybka elektronika, optoelektronika oraz optyka światła niebieskiego, fioletowego, a także ultrafioletu. Biorąc pod uwagę badania podstawowe, skoncentrowane na fundamentalnych zjawiskach, do jakich dostęp dają struktury półprzewodnikowe z rodziny III-V, wciąż pozostaje jednak w cieniu układów opartych na arsenku galu. Dotyczy to w szczególności kolektywnych wzbudzeń dwuwymiarowego gazu elektronowego (z ang. two-dimensional electron gas, 2DEG). Ważną klasą tych wzbudzeń są oscylacje gęstości ładunku, nazywane zwykle oscylacjami plazmowymi lub falami plazmowymi dla podkreślenia faktu, że ochłodzony do odpowiednio niskiej temperatury 2DEG o dużej gęstości zyskuje wszystkie cechy, jakie są uznawane za charakterystyczne dla plazmy - jednego z czterech podstawowych stanów skupienia materii. W obecności zewnętrznego pola magnetycznego (B), fale plazmowe stają się potężnym narzędziem w próbkowaniu nielokalnych właściwości 2DEG, które wedle wiedzy autora niniejszej pracy, nie były jeszcze systematycznie badane w układach opartych na GaN. Stąd też, podstawowym celem tej rozprawy było przynajmniej częściowe wypełnienie powyższej luki poprzez przeanalizowanie wpływu efektów nielokalnych na widmo wzbudzeń poddanej wpływowi pola magnetycznego dwuwymiarowej plazmy elektronowej w heterostrukturach GaN/AlGaN. Badane próbki miały postać tranzystorów polowych o dużej powierzchni (1,6 mm 1,6mm), wyposażonych w bramki o konstrukcji siatek dyfrakcyjnych o różnym okresie (L) i szerokości (W ) tworzących je pasków metalu. Rozważono cztery struktury o okresach z przedziału 2,0µm 4,0µm i odstępie pomiędzy sąsiadującymi ze sobą paskami siatki, S = L W, równym 0,35µm lub 0,85µm. Podstawową rolą siatek było zapewnienie sprzężenia optycznego pomiędzy wzbudzeniami magnetoplazmowymi w 2DEG a padającym na próbkę promieniowaniem elektromagnetycznym. Spolaryzowane elektrycznie, służyły one również do kontroli koncentracji 2DEG w kanale tranzystora. Poza strukturami ze sprzęgaczami siatkowymi mieliśmy także do dyspozycji próbkę referencyjną o dokładnie tych samych, co wyżej wymienione, wymiarach geometrycznych, ale nieposiadającą bramki. Wszystkie próbki zostały wytworzone na wysokiej jakości heterostrukturze GaN/AlGaN wyhodowanej stroną galową do góry na podłożu szafirowym za pomocą techniki MEMOCVD R (z ang. Migration-Enhanced Metal- Organic Chemical Vapor Deposition). Każda z nich zawierała kwazi-dwuwymiarowy gaz elektronowy o gęstości powierzchniowej N cm 2, pochodzący zarówno ze spontanicznej i piezoelektrycznej polaryzacji, jak i domieszkowania bariery AlGaNowej atomami krzemu (donorami) na poziomie cm 3. iii
2 Właściwości transportowe naszych struktur zostały określone na podstawie dwukontaktowych pomiarów zależności oporu kanału tranzystora od pola magnetycznego, R(B), przeprowadzonych w temperaturze 4,3 K 8 K dla zadanej polaryzacji elektrycznej bramki (V g 0) oraz pola B (do 10T) skierowanego prostopadle do płaszczyzny 2DEG. W celu prawidłowego wyznaczenia diagonalnych składowych tensora magnetooporności, podczas ich wykonywania, wzięto pod uwagę oba zwroty pseudowektora indukcji magnetycznej (równoległy i antyrównoległy do kierunku wzrostu heterostruktury). Analiza oscylacji Shubnikov a-de Haas a rozwijających się w wysokopolowej części krzywych R(B) umożliwiła nam określenie koncentracji 2DEG (N) jako funkcji V g jak również tak zwanego kwantowego czasu relaksacji, τ q, dla V g = 0. Zaobserwowaliśmy, że w próbkach charakteryzujących się większą szczeliną pomiędzy sąsiadującymi ze sobą paskami bramki, przyłożenie do sprzęgacza siatkowego napięcia V g < 0 skutkowało wytworzeniem przestrzennej modulacji N, podczas gdy w tych z węższymi szczelinami, każdy segment bramki kontrolował N na długości całego okresu struktury. Minimalna odległość wymagana do pojawienia się dwóch populacji nośników ładunku o wyraźnie różnych koncentracjach była dla nas początkowo zaskoczeniem, albowiem przekraczała prawie czterokrotnie typowy dystans, jaki wynika z dyfuzji i efektu wnikania pola elektrycznego do przestrzeni poza konturem bramki (z ang. electric-field-fringing effect). Posiłkując się wnioskami płynącymi z niezależnych eksperymentów przeprowadzonych przez innych badaczy, opartych na skaningowej mikroskopii pojemnościowej oraz pomiarach fotoprądu indukowanego promieniowaniem UV, przypisujemy obecnie to zjawisko ładowaniu stanów powierzchniowych w barierze AlGaN-owej (zidentyfikowanych jako stany typu akceptorowego), które może prowadzić do rozszerzenia fizycznych wymiarów źródła potencjału elektrostatycznego nawet o 0,5 µm. Jak pokazano, taki mechanizm powinien być szczególnie efektywny w przypadku urządzeń charakteryzujących się znaczącymi prądami upływności bramki, co bardzo dobrze odpowiada strukturom badanym w ramach niniejszej rozprawy. Nisko-polowa część wyników magnetotransportowych poddanych odpowiedniej symetryzacji pomogła nam w oszacowaniu zależącej od koncentracji ruchliwości elektronów oraz czasu relaksacji pędowej, τ t. Nieoczekiwanie wysoka wartość stosunku τ t /τ q dla V g = 0, wynosząca dla różnych próbek od 25 do prawie 40 i związana częściowo z niejednorodnością warstwy 2DEG, której trudno uniknąć w przypadku kryształów o dużej powierzchni, również wskazała na obecność stanów powierzchniowych obsadzonych elektronami i działających jako źródło daleko-zasięgowego potencjału rozpraszającego. W celu wyjaśnienia ogólnego kształtu krzywych R(B) otrzymanych na próbkach iv
3 ze sprzęgaczami siatkowymi proponujemy w niniejszej pracy model oparty na zjawisku spotęgowanego prądem upływności bramki geometrycznego magnetooporu, które wedle naszej wiedzy nie było do tej pory opublikowane. Jak pokazujemy, poddany skrupulatnej analizie bazującej na opisie zakrzywienia ścieżek prądowych metodą mapowania konforemnego, efekt ten może dać głęboki wgląd we właściwości badanego układu, umożliwiając na przykład wyznaczenie przestrzennego rozkładu gęstości prądu upływności bramki wzdłuż kanału tranzystora polowego. Określenie kształtu tego rozkładu okazało się być w naszym przypadku niezwykle ważne dla zrozumienia zadziwiająco słabej podatności modów magnetoplazmowych na napięcie przyłożone do bramki, jaką zaobserwowaliśmy na większości próbek będących przedmiotem badań tej rozprawy. Optyczna część naszych pomiarów była oparta na dwóch typach uzupełniających się eksperymentów magnetotransmisyjnych. W ramach pierwszego z nich, badania obejmujące zakres spektralny od 0,6 THz do 15 THz zostały przeprowadzone w temperaturze 1,8K z wykorzystaniem spektrometru Fourierowskiego sprzężonego z polem magnetycznym do 13 T. Dostarczyły one widm zarejestrowanych dla różnych wartości B i niespolaryzowanej intencjonalnie bramki. W przypadku drugiego eksperymentu, źródłem światła o częstotliwości 2,52 THz kierowanego na próbkę utrzymywaną w temperaturze 4,3 K 8 K był pompowany optycznie laser dalekiej podczerwieni. Ze względu na stałą energię pobudzenia, sygnał transmisyjny był mierzony albo w funkcji B do 10T przy zadanej wartości napięcia przyłożonego do bramki, albo też w zależności od V g do -5V dla B = const. Tak jak w trakcie wykonywania badań magnetotransportowych, w obu eksperymentach optycznych pole B było skierowane prostopadle do płaszczyzny 2DEG. Wyraźne ślady wzbudzeń magnetoplazmowych zostały zaobserwowane w widmach transmisyjnych wszystkich próbek, na których zostały przeprowadzone pomiary. Wysoka jakość danych doświadczalnych, uzyskana między innymi dzięki zastosowaniu transformacji numerycznej znanej jako auto-dekonwolucja Fourierowska (z ang. Fourier Self-Deconvolution), pozwoliła na skonstruowanie diagramów dyspersyjnych zarejestrowanych modów oscylacji magnetoplazmowych. Po przeprowadzonej z ich pomocą analizie, okazało się, że punkty eksperymentalne oznaczające lokalne minima odpowiednich krzywych transmisyjnych, reprezentują bądź tzw. górne mody hybrydowe (z ang. upper-hybrid modes, UHM) powstające z fal plazmowych istniejących również w granicy B 0, bądź też mody odkryte na gruncie teoretycznym przez I. B. Bernsteina, które pojawiają się wyłącznie w poddanej wpływowi pola magnetycznego plazmie o przewodności zależącej tak od częstotliwości, jak i od wektora falowego. Wedle naszej wiedzy, nikomu przed nami nie udało się zaobserwować modów Bernsteina (BM) w strukturach półprzewodnikowych opartych na GaN/AlGaN. v
4 W fizyce plazmy, mody te są uznawane za bezpośredni próbnik nielokalnych właściwości ośrodka, w którym propagują się z częstotliwościami bliskimi harmonicznym częstotliwościom rezonansu cyklotronowego. Ponieważ energia dowolnie wybranego BM rośnie z polem magnetycznym szybciej aniżeli energia UHM, dla pewnej wartości B mody te powinny stać się zdegenerowane. Taki scenariusz wykluczają jednak względy symetrii, za sprawą których, w rzeczywistości dochodzi między nimi do silnego oddziaływania, które na wspomnianych wyżej diagramach dyspersyjnych objawia się w postaci niedozwolonych przecięć (lub odpychania) pomiędzy krzywymi odpowiadającymi UHM i danemu BM. Poza obszarami oddziaływania, amplituda modów Bernsteina bardzo szybko osiąga na tyle małe wartości, że wyekstrahowanie ich z danych doświadczalnych staje się niezwykle trudnym zadaniem. Co więcej, mierzona w jednostkach energii odległość pomiędzy krzywymi dyspersyjnymi w granicach niedozwolonych przecięć maleje ze wzrostem rzędu BM. W konsekwencji, nie budzące żadnych wątpliwości dowody istnienia uzyskano do tej pory jedynie dla dwóch pierwszych modów Bernsteina zaobserwowanych na próbkach wykonanych z wysokiej jakości heterostruktur GaAs/AlGaAs (mamy w tym przypadku na myśli eksperymenty przeprowadzone w funkcji pola magnetycznego dla zadanej gęstości powierzchniowej 2DEG). Pomimo znacznie gorszych parametrów 2DEG, otrzymaliśmy dokładnie te same rezultaty na strukturach GaN/AlGaN, co wyraźnie pokazuje ich potencjał w konkurowaniu z układami opartymi na GaAs również w dziedzinie badań podstawowych materii skondensowanej. Warto zwrócić także uwagę na fakt, że dzięki bogatym widmom złożonym z wielu rezonansów magnetoplazmowych (o częstościach dochodzących włącznie do 10 harmonicznej fundamentalnej częstości plazmowej określonej przez najdłuższy wektor falowy odpowiadający okresowi sprzęgacza siatkowego) byliśmy w stanie dokonać weryfikacji istniejącej teorii półklasycznej, która opisuje wzbudzenie magnetoplazmowe, w stopniu, jaki nie był osiągalny we wcześniejszych badaniach podjętych z pomocą struktur GaAs/AlGaAs. Układ niniejszej rozprawy przedstawia się następująco. Jest ona złożona z dwóch części zatytułowanych Rozważania teoretyczne i Wyniki eksperymentalne. Każda z nich obejmuje dwa rozdziały. W rozdziale pierwszym, konstruujemy systematycznie opis oscylacji dwuwymiarowej plazmy poddanej wpływowi pola magnetycznego, poczynając od przypadku gazu swobodnych elektronów i przechodząc stopniowo do coraz bardziej złożonych struktur półprzewodnikowych. W rozdziale drugim, przypominamy krótko podstawy wybranych zjawisk magnetotransportowych występujących zarówno w niskich jak i wysokich polach magnetycznych. Naszym głównym celem jest w tym przypadku zebranie wszystkich wyrażeń, jakie są potrzebne do zrozumienia szczegółów opracowania i interpretacji danych eksperymentalnych zaprezentowanych w drugiej części pracy. Rozdział trzeci zawiera dyskusję na temat ogólnych vi
5 właściwości sprzęgaczy siatkowych, jak również dostarcza wyczerpujących informacji odnośnie badanych próbek GaN/AlGaN. W rozdziale czwartym opisujemy szeroko zarówno techniki doświadczalne jak i wyniki pomiarów magnetotransportowych i magnetooptycznych, które są następnie poddane interpretacji z wykorzystaniem modeli teoretycznych rozwiniętych w rozdziałach pierwszym i drugim. Pracę zamyka krótkie podsumowanie wszystkich najważniejszych rezultatów, które zostały w niej ogłoszone. vii
Zgodnie ze teorią Dyakonova-Shura, tranzystor polowy może być detektorem i źródłem promieniowania THz. Jednak zaobserwowana do tej pory emisja
Streszczenie W ramach badań, opisanych w niniejszej pracy doktorskiej, zajmowałem się charakteryzacją wzbudzeń dwuwymiarowego gazu elektronowego (2DEG) w polu magnetycznym pod wpływem promieniowania terahercowego
I. PROMIENIOWANIE CIEPLNE
I. PROMIENIOWANIE CIEPLNE - lata '90 XIX wieku WSTĘP Widmo promieniowania elektromagnetycznego zakres "pokrycia" różnymi rodzajami fal elektromagnetycznych promieniowania zawartego w danej wiązce. rys.i.1.
2013 02 27 2 1. Jakie warstwy zostały wyhodowane w celu uzyskania 2DEG? (szkic?) 2. Gdzie było domieszkowanie? Dlaczego jako domieszek użyto w próbce atomy krzemu? 3. Jaki kształt miała próbka? 4. W jaki
Rezonatory ze zwierciadłem Bragga
Rezonatory ze zwierciadłem Bragga Siatki dyfrakcyjne stanowiące zwierciadła laserowe (zwierciadła Bragga) są powszechnie stosowane w laserach VCSEL, ale i w laserach z rezonatorem prostopadłym do płaszczyzny
Teoria pasmowa ciał stałych
Teoria pasmowa ciał stałych Poziomy elektronowe atomów w cząsteczkach ulegają rozszczepieniu. W kryształach zjawisko to prowadzi do wytworzenia się pasm. Klasyfikacja ciał stałych na podstawie struktury
Feynmana wykłady z fizyki. [T.] 1.2, Optyka, termodynamika, fale / R. P. Feynman, R. B. Leighton, M. Sands. wyd. 7. Warszawa, 2014.
Feynmana wykłady z fizyki. [T.] 1.2, Optyka, termodynamika, fale / R. P. Feynman, R. B. Leighton, M. Sands. wyd. 7. Warszawa, 2014 Spis treści Spis rzeczy części 1 tomu I X 26 Optyka: zasada najkrótszego
Ciała stałe. Literatura: Halliday, Resnick, Walker, t. 5, rozdz. 42 Orear, t. 2, rozdz. 28 Young, Friedman, rozdz
Ciała stałe Podstawowe własności ciał stałych Struktura ciał stałych Przewodnictwo elektryczne teoria Drudego Poziomy energetyczne w krysztale: struktura pasmowa Metale: poziom Fermiego, potencjał kontaktowy
!!!DEL są źródłami światła niespójnego.
Dioda elektroluminescencyjna DEL Element czynny DEL to złącze p-n. Gdy zostanie ono spolaryzowane w kierunku przewodzenia, to w obszarze typu p, w warstwie o grubości rzędu 1µm, wytwarza się stan inwersji
Optyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017
Optyka Wykład V Krzysztof Golec-Biernat Fale elektromagnetyczne Uniwersytet Rzeszowski, 8 listopada 2017 Wykład V Krzysztof Golec-Biernat Optyka 1 / 17 Plan Swobodne równania Maxwella Fale elektromagnetyczne
Repeta z wykładu nr 5. Detekcja światła. Plan na dzisiaj. Złącze p-n. złącze p-n
Repeta z wykładu nr 5 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje:
i elementy z półprzewodników homogenicznych część II
Półprzewodniki i elementy z półprzewodników homogenicznych część II Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego
LABORATORIUM ELEKTRONIKI ĆWICZENIE 4 POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH
LABORATORIUM ELEKTRONIKI ĆWICZENIE 4 Parametry statyczne tranzystorów polowych złączowych Cel ćwiczenia Podstawowym celem ćwiczenia jest poznanie statycznych charakterystyk tranzystorów polowych złączowych
Mody sprzężone plazmon-fonon w silnych polach magnetycznych
Mody sprzężone plazmon-fonon w silnych polach magnetycznych Mody sprzężone w półprzewodnikach polarnych + E E pl η = st α = E E pl ξ = p B.B. Varga,, Phys. Rev. 137,, A1896 (1965) A. Mooradian and B. Wright,
UMO-2011/01/B/ST7/06234
Załącznik nr 7 do sprawozdania merytorycznego z realizacji projektu badawczego Szybka nieliniowość fotorefrakcyjna w światłowodach półprzewodnikowych do zastosowań w elementach optoelektroniki zintegrowanej
Sprzęganie światłowodu z półprzewodnikowymi źródłami światła (stanowisko nr 5)
Wojciech Niwiński 30.03.2004 Bartosz Lassak Wojciech Zatorski gr.7lab Sprzęganie światłowodu z półprzewodnikowymi źródłami światła (stanowisko nr 5) Zadanie laboratoryjne miało na celu zaobserwowanie różnic
Spektroskopia modulacyjna
Spektroskopia modulacyjna pozwala na otrzymanie energii przejść optycznych w strukturze z bardzo dużą dokładnością. Charakteryzuje się również wysoką czułością, co pozwala na obserwację słabych przejść,
Elektryczne własności ciał stałych
Elektryczne własności ciał stałych Do sklasyfikowania różnych materiałów ze względu na ich własności elektryczne trzeba zdefiniować kilka wielkości Oporność właściwa (albo przewodność) ładunek [C] = 1/
Widmo fal elektromagnetycznych
Czym są fale elektromagnetyczne? Widmo fal elektromagnetycznych dr inż. Romuald Kędzierski Podstawowe pojęcia związane z falami - przypomnienie pole falowe część przestrzeni objęta w danej chwili falą
Rekapitulacja. Detekcja światła. Rekapitulacja. Rekapitulacja
Rekapitulacja Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje: czwartek
S. Baran - Podstawy fizyki materii skondensowanej Półprzewodniki. Półprzewodniki
Półprzewodniki Definicja i własności Półprzewodnik materiał, którego przewodnictwo rośnie z temperaturą (opór maleje) i w temperaturze pokojowej wykazuje wartości pośrednie między przewodnictwem metali,
Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska
Podstawy fizyki Wykład 11 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska D. Halliday, R. Resnick, J.Walker: Podstawy Fizyki, tom 3, Wydawnictwa Naukowe PWN, Warszawa 2003. K.Sierański, K.Jezierski,
Zjawisko Halla Referujący: Tomasz Winiarski
Plan referatu Zjawisko Halla Referujący: Tomasz Winiarski 1. Podstawowe definicje ffl wektory: E, B, ffl nośniki ładunku: elektrony i dziury, ffl podział ciał stałych ze względu na własności elektryczne:
TEORIA PASMOWA CIAŁ STAŁYCH
TEORIA PASMOWA CIAŁ STAŁYCH Skolektywizowane elektrony w metalu Weźmy pod uwagę pewną ilość atomów jakiegoś metalu, np. sodu. Pojedynczy atom sodu zawiera 11 elektronów o konfiguracji 1s 2 2s 2 2p 6 3s
Mody sprzęŝone plazmon-fonon w silnych polach magnetycznych
Mody sprzęŝone plazmon-fonon w silnych polach magnetycznych Mody sprzęŝone w półprzewodnikach polarnych + E E pl η = st α = E E pl ξ = p B.B. Varga, Phys. Rev. 137,, A1896 (1965) A. Mooradian and B. Wright,
dr inż. Beata Brożek-Pluska SERS La boratorium La serowej
dr inż. Beata Brożek-Pluska La boratorium La serowej Spektroskopii Molekularnej PŁ Powierzchniowo wzmocniona sp ektroskopia Ramana (Surface Enhanced Raman Spectroscopy) Cząsteczki zaadsorbowane na chropowatych
Przewodność elektryczna ciał stałych. Elektryczne własności ciał stałych Izolatory, metale i półprzewodniki
Przewodność elektryczna ciał stałych Elektryczne własności ciał stałych Izolatory, metale i półprzewodniki Elektryczne własności ciał stałych Do sklasyfikowania różnych materiałów ze względu na ich własności
Plan Zajęć. Ćwiczenia rachunkowe
Plan Zajęć 1. Termodynamika, 2. Grawitacja, Kolokwium I 3. Elektrostatyka + prąd 4. Pole Elektro-Magnetyczne Kolokwium II 5. Zjawiska falowe 6. Fizyka Jądrowa + niepewność pomiaru Kolokwium III Egzamin
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 6 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15
Fala elektromagnetyczna o określonej częstotliwości ma inną długość fali w ośrodku niż w próżni. Jako przykłady policzmy:
Rozważania rozpoczniemy od ośrodków jednorodnych. W takich ośrodkach zależność między indukcją pola elektrycznego a natężeniem pola oraz między indukcją pola magnetycznego a natężeniem pola opisana jest
Fizyka elektryczność i magnetyzm
Fizyka elektryczność i magnetyzm W5 5. Wybrane zagadnienia z optyki 5.1. Światło jako część widma fal elektromagnetycznych. Fale elektromagnetyczne, które współczesny człowiek potrafi wytwarzać, i wykorzystywać
KOOF Szczecin: www.of.szc.pl
Źródło: LI OLIMPIADA FIZYCZNA (1/2). Stopień III, zadanie doświadczalne - D Nazwa zadania: Działy: Słowa kluczowe: Komitet Główny Olimpiady Fizycznej; Andrzej Wysmołek, kierownik ds. zadań dośw. plik;
LASERY I ICH ZASTOSOWANIE
LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 3 Temat: Efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą modulowania zmiany polaryzacji światła oraz
Czym jest prąd elektryczny
Prąd elektryczny Ruch elektronów w przewodniku Wektor gęstości prądu Przewodność elektryczna Prawo Ohma Klasyczny model przewodnictwa w metalach Zależność przewodności/oporności od temperatury dla metali,
SPIS TREŚCI ««*» ( # * *»»
««*» ( # * *»» CZĘŚĆ I. POJĘCIA PODSTAWOWE 1. Co to jest fizyka? 11 2. Wielkości fizyczne 11 3. Prawa fizyki 17 4. Teorie fizyki 19 5. Układ jednostek SI 20 6. Stałe fizyczne 20 CZĘŚĆ II. MECHANIKA 7.
Laboratorium techniki laserowej. Ćwiczenie 5. Modulator PLZT
Laboratorium techniki laserowej Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 006 1.Wstęp Rozwój techniki optoelektronicznej spowodował poszukiwania nowych materiałów
Wzrost pseudomorficzny. Optyka nanostruktur. Mody wzrostu. Ekscyton. Sebastian Maćkowski
Wzrost pseudomorficzny Optyka nanostruktur Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 naprężenie
Pole elektromagnetyczne. Równania Maxwella
Pole elektromagnetyczne (na podstawie Wikipedii) Pole elektromagnetyczne - pole fizyczne, za pośrednictwem którego następuje wzajemne oddziaływanie obiektów fizycznych o właściwościach elektrycznych i
Rozważania rozpoczniemy od fal elektromagnetycznych w próżni. Dla próżni równania Maxwella w tzw. postaci różniczkowej są następujące:
Rozważania rozpoczniemy od fal elektromagnetycznych w próżni Dla próżni równania Maxwella w tzw postaci różniczkowej są następujące:, gdzie E oznacza pole elektryczne, B indukcję pola magnetycznego a i
Repeta z wykładu nr 3. Detekcja światła. Struktura krystaliczna. Plan na dzisiaj
Repeta z wykładu nr 3 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje:
Część 2. Przewodzenie silnych prądów i blokowanie wysokich napięć przy pomocy przyrządów półprzewodnikowych
Część 2 Przewodzenie silnych prądów i blokowanie wysokich napięć przy pomocy przyrządów półprzewodnikowych Łukasz Starzak, Przyrządy i układy mocy, studia niestacjonarne, lato 2018/19 23 Półprzewodniki
IX. DIODY PÓŁPRZEWODNIKOWE Janusz Adamowski
IX. DIODY PÓŁPRZEWODNIKOWE Janusz Adamowski 1 1 Dioda na złączu p n Zgodnie z wynikami, otrzymanymi na poprzednim wykładzie, natężenie prądu I przepływającego przez złącze p n opisane jest wzorem Shockleya
Przejścia promieniste
Przejście promieniste proces rekombinacji elektronu i dziury (przejście ze stanu o większej energii do stanu o energii mniejszej), w wyniku którego następuje emisja promieniowania. E Długość wyemitowanej
Funkcja rozkładu Fermiego-Diraca w różnych temperaturach
Funkcja rozkładu Fermiego-Diraca w różnych temperaturach 1 f FD ( E) = E E F exp + 1 kbt Styczna do krzywej w punkcie f FD (E F )=0,5 przecina oś energii i prostą f FD (E)=1 w punktach odległych o k B
Spektrometria w bliskiej podczerwieni - zastosowanie w cukrownictwie. Radosław Gruska Politechnika Łódzka Wydział Biotechnologii i Nauk o Żywności
Spektrometria w bliskiej podczerwieni - zastosowanie w cukrownictwie Radosław Gruska Politechnika Łódzka Wydział Biotechnologii i Nauk o Żywności Spektroskopia, a spektrometria Spektroskopia nauka o powstawaniu
Spin jądra atomowego. Podstawy fizyki jądrowej - B.Kamys 1
Spin jądra atomowego Nukleony mają spin ½: Całkowity kręt nukleonu to: Spin jądra to suma krętów nukleonów: Dla jąder parzysto parzystych, tj. Z i N parzyste ( ee = even-even ) I=0 Dla jąder nieparzystych,
Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne.
Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne. DUALIZM ŚWIATŁA fala interferencja, dyfrakcja, polaryzacja,... kwant, foton promieniowanie ciała doskonale
Tak określił mechanikę kwantową laureat nagrody Nobla Ryszard Feynman ( ) mechanika kwantowa opisuje naturę w sposób prawdziwy, jako absurd.
Tak określił mechanikę kwantową laureat nagrody Nobla Ryszard Feynman (1918-1988) mechanika kwantowa opisuje naturę w sposób prawdziwy, jako absurd. Równocześnie Feynman podkreślił, że obliczenia mechaniki
LABORATORIUM POMIARY W AKUSTYCE. ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej
LABORATORIUM POMIARY W AKUSTYCE ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej 1. Cel ćwiczenia Celem ćwiczenia jest poznanie metody
Badanie charakterystyki diody
Badanie charakterystyki diody Cel ćwiczenia Celem ćwiczenia jest poznanie charakterystyk prądowo napięciowych różnych diod półprzewodnikowych. Wstęp Dioda jest jednym z podstawowych elementów elektronicznych,
Podstawy fizyki ciała stałego półprzewodniki domieszkowane
Podstawy fizyki ciała stałego półprzewodniki domieszkowane Półprzewodnik typu n IV-Ge V-As Jeżeli pięciowartościowy atom V-As zastąpi w sieci atom IV-Ge to cztery elektrony biorą udział w wiązaniu kowalentnym,
II.6 Atomy w zewnętrznym polu magnetycznym
II.6 Atomy w zewnętrznym polu magnetycznym 1. Kwantowanie przestrzenne w zewnętrznym polu magnetycznym. Model wektorowy raz jeszcze 2. Zjawisko Zeemana Normalne zjawisko Zeemana i jego wyjaśnienie w modelu
Kwantowa natura promieniowania
Kwantowa natura promieniowania Promieniowanie ciała doskonale czarnego Ciało doskonale czarne ciało, które absorbuje całe padające na nie promieniowanie bez względu na częstotliwość. Promieniowanie ciała
Absorpcja związana z defektami kryształu
W rzeczywistych materiałach sieć krystaliczna nie jest idealna występują różnego rodzaju defekty. Podział najważniejszych defektów ze względu na właściwości optyczne: - inny atom w węźle sieci: C A atom
WYZNACZANIE STAŁEJ PLANCKA Z POMIARU CHARAKTERYSTYK PRĄDOWO-NAPIĘCIOWYCH DIOD ELEKTROLUMINESCENCYJNYCH. Irena Jankowska-Sumara, Magdalena Krupska
1 II PRACOWNIA FIZYCZNA: FIZYKA ATOMOWA Z POMIARU CHARAKTERYSTYK PRĄDOWO-NAPIĘCIOWYCH DIOD ELEKTROLUMINESCENCYJNYCH Irena Jankowska-Sumara, Magdalena Krupska Cel ćwiczenia Celem ćwiczenia jest wyznaczenie
NMR (MAGNETYCZNY REZONANS JĄDROWY) dr Marcin Lipowczan
NMR (MAGNETYCZNY REZONANS JĄDROWY) dr Marcin Lipowczan Spis zagadnień Fizyczne podstawy zjawiska NMR Parametry widma NMR Procesy relaksacji jądrowej Metody obrazowania Fizyczne podstawy NMR Proton, neutron,
3.4 Badanie charakterystyk tranzystora(e17)
152 Elektryczność 3.4 Badanie charakterystyk tranzystora(e17) Celem ćwiczenia jest wyznaczenie charakterystyk tranzystora npn w układzie ze wspólnym emiterem W E. Zagadnienia do przygotowania: półprzewodniki,
W5. Komputer kwantowy
W5. Komputer kwantowy Komputer klasyczny: Informacja zapisana w postaci bitów (binary digit) (sygnał jest albo go nie ma) W klasycznych komputerach wartość bitu jest określona przez stan pewnego elementu
Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków).
Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków). 1925r. postulat Pauliego: Na jednej orbicie może znajdować się nie więcej
Mody sprzęŝone plazmon-fonon w silnych polach magnetycznych
Mody sprzęŝone plazmon-fonon w silnych polach magnetycznych Klasyczny przykład pośredniego oddziaływania pola magnetycznego na wzbudzenia fononowe Schemat: pole magnetyczne (siła Lorentza) nośniki (oddziaływanie
IV. TRANZYSTOR POLOWY
1 IV. TRANZYSTOR POLOWY Cel ćwiczenia: Wyznaczenie charakterystyk statycznych tranzystora polowego złączowego. Zagadnienia: zasada działania tranzystora FET 1. Wprowadzenie Nazwa tranzystor pochodzi z
Światło fala, czy strumień cząstek?
1 Światło fala, czy strumień cząstek? Teoria falowa wyjaśnia: Odbicie Załamanie Interferencję Dyfrakcję Polaryzację Efekt fotoelektryczny Efekt Comptona Teoria korpuskularna wyjaśnia: Odbicie Załamanie
Szczegółowy rozkład materiału z fizyki dla klasy III gimnazjum zgodny z nową podstawą programową.
Szczegółowy rozkład materiału z fizyki dla klasy III gimnazjum zgodny z nową podstawą programową. Lekcja organizacyjna. Omówienie programu nauczania i przypomnienie wymagań przedmiotowych Tytuł rozdziału
Tranzystory polowe FET(JFET), MOSFET
Tranzystory polowe FET(JFET), MOSFET Ryszard J. Barczyński, 2012 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Publikacja współfinansowana
Badanie uporządkowania magnetycznego w ultracienkich warstwach kobaltu w pobliżu reorientacji spinowej.
Tel.: +48-85 7457229, Fax: +48-85 7457223 Zakład Fizyki Magnetyków Uniwersytet w Białymstoku Ul.Lipowa 41, 15-424 Białystok E-mail: vstef@uwb.edu.pl http://physics.uwb.edu.pl/zfm Praca magisterska Badanie
Zjawiska zachodzące w półprzewodnikach Przewodniki samoistne i niesamoistne
Zjawiska zachodzące w półprzewodnikach Przewodniki samoistne i niesamoistne Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego. Zadania elektroniki: Urządzenia elektroniczne
Ćwiczenie 4. Parametry statyczne tranzystorów polowych JFET i MOSFET
Ćwiczenie 4 Parametry statyczne tranzystorów polowych JFET i MOSFET Cel ćwiczenia Podstawowym celem ćwiczenia jest poznanie charakterystyk statycznych tranzystorów polowych złączowych oraz z izolowaną
Spektroskopia magnetycznego rezonansu jądrowego - wprowadzenie
Spektroskopia magnetycznego rezonansu jądrowego - wprowadzenie Streszczenie Spektroskopia magnetycznego rezonansu jądrowego jest jedną z technik spektroskopii absorpcyjnej mającej zastosowanie w chemii,
Radioodbiornik i odbiornik telewizyjny RADIOODBIORNIK
Radioodbiornik i odbiornik telewizyjny RADIOODBIORNIK ODKRYWCA FAL RADIOWYCH Fale radiowe zostały doświadczalnie odkryte przez HEINRICHA HERTZA. Zalicza się do nich: fale radiowe krótkie, średnie i długie,
Tranzystory polowe FET(JFET), MOSFET
Tranzystory polowe FET(JFET), MOSFET Ryszard J. Barczyński, 2009 2015 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Tranzystor polowy złączowy
2. Metody, których podstawą są widma atomowe 32
Spis treści 5 Spis treści Przedmowa do wydania czwartego 11 Przedmowa do wydania trzeciego 13 1. Wiadomości ogólne z metod spektroskopowych 15 1.1. Podstawowe wielkości metod spektroskopowych 15 1.2. Rola
Wykład 17: Optyka falowa cz.2.
Wykład 17: Optyka falowa cz.2. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Interferencja w cienkich warstwach Załamanie
Menu. Badające rozproszenie światła,
Menu Badające rozproszenie światła, Instrumenty badające pole magnetyczne Ziemi Pole magnetyczne Ziemi mierzy się za pomocą magnetometrów. Instrumenty badające pole magnetyczne Ziemi Rodzaje magnetometrów:»
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 6 wykład: Piotr Fita pokazy: Jacek Szczytko ćwiczenia: Aneta Drabińska, Paweł Kowalczyk, Barbara Piętka, Michał Karpiński Wydział
promotor prof. dr hab. inż. Jan Szmidt z Politechniki Warszawskiej
Politechnika Warszawska Wydział Elektroniki i Technik Informacyjnych Warszawa, 13 marca 2018 r. D z i e k a n a t Uprzejmie informuję, że na Wydziale Elektroniki i Technik Informacyjnych Politechniki Warszawskiej
Wzajemne relacje pomiędzy promieniowaniem a materią wynikają ze zjawisk związanych z oddziaływaniem promieniowania z materią. Do podstawowych zjawisk
Wzajemne relacje pomiędzy promieniowaniem a materią wynikają ze zjawisk związanych z oddziaływaniem promieniowania z materią. Do podstawowych zjawisk fizycznych tego rodzaju należą zjawiska odbicia i załamania
Prawa ruchu: dynamika
Prawa ruchu: dynamika Fizyka I (B+C) Wykład IX: Więzy Rozwiazywanie równań ruchu oscylator harminiczny, wahadło ruch w jednorodnym polu elektrycznym i magnetycznym spektroskop III zasada dynamiki Siły
Własności światła laserowego
Własności światła laserowego Cechy światła laserowego: rozbieżność (równoległość) wiązki, pasmo spektralne, gęstość mocy oraz spójność (koherencja). Równoległość wiązki Dyfrakcyjną rozbieżność kątową awkącie
Technika wysokich napięć : podstawy teoretyczne i laboratorium / Barbara Florkowska, Jakub Furgał. Kraków, Spis treści.
Technika wysokich napięć : podstawy teoretyczne i laboratorium / Barbara Florkowska, Jakub Furgał. Kraków, 2017 Spis treści Wstęp 13 ROZDZIAŁ 1 Laboratorium Wysokich Napięć. Organizacja i zasady bezpiecznej
Tranzystory polowe JFET, MOSFET
Tranzystory polowe JFET, MOSFET Zbigniew Usarek, 2018 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Tranzystor polowy złączowy JFET Zasada
Spektroskop, rurki Plückera, cewka Ruhmkorffa, aparat fotogtaficzny, źródło prądu
Imię i nazwisko ucznia Nazwa i adres szkoły Imię i nazwisko nauczyciela Tytuł eksperymentu Dział fizyki Potrzebne materiały do doświadczeń Kamil Jańczyk i Mateusz Kowalkowski I Liceum Ogólnokształcące
Grafen materiał XXI wieku!?
Grafen materiał XXI wieku!? Badania grafenu w aspekcie jego zastosowań w sensoryce i metrologii Tadeusz Pustelny Plan prezentacji: 1. Wybrane właściwości fizyczne grafenu 2. Grafen materiał 21-go wieku?
Repeta z wykładu nr 6. Detekcja światła. Plan na dzisiaj. Metal-półprzewodnik
Repeta z wykładu nr 6 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 - kontakt omowy
Oglądanie świata w nanoskali mikroskop STM
FOTON 112, Wiosna 2011 23 Oglądanie świata w nanoskali mikroskop STM Szymon Godlewski Instytut Fizyki UJ Od zarania dziejów człowiek przejawiał wielką ciekawość otaczającego go świata. Prowadził obserwacje
Ekscyton w morzu dziur
Ekscyton w morzu dziur P. Kossacki, P. Płochocka, W. Maślana, A. Golnik, C. Radzewicz and J.A. Gaj Institute of Experimental Physics, Warsaw University S. Tatarenko, J. Cibert Laboratoire de Spectrométrie
PDF stworzony przez wersję demonstracyjną pdffactory
Promieniowanie elektromagnetyczne (fala elektromagnetyczna) rozchodzące się w przestrzeni zaburzenie pola elektromagnetycznego. Zaburzenie to ma charakter fali poprzecznej, w której składowa elektryczna
ANALITYKA W KONTROLI JAKOŚCI
ANALITYKA W KONTROLI JAKOŚCI ANALIZA ŚLADÓW METODA ICP-OES Optyczna spektroskopia emisyjna ze wzbudzeniem w indukcyjnie sprzężonej plazmie WYKŁAD 4 Rodzaje widm i mechanizm ich powstania PODSTAWY SPEKTROSKOPII
Rozszczepienie poziomów atomowych
Rozszczepienie poziomów atomowych Poziomy energetyczne w pojedynczym atomie Gdy zbliżamy atomy chmury elektronowe nachodzą na siebie (inaczej: funkcje falowe elektronów zaczynają się przekrywać) Na skutek
Fale elektromagnetyczne
Fale elektromagnetyczne dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2012/13 Plan wykładu Spis treści 1. Analiza pola 2 1.1. Rozkład pola...............................................
E107. Bezpromieniste sprzężenie obwodów RLC
E7. Bezpromieniste sprzężenie obwodów RLC Cel doświadczenia: Pomiar amplitudy sygnału w rezonatorze w zależności od wzajemnej odległości d cewek generatora i rezonatora. Badanie wpływu oporu na tłumienie
BADANIE WYMUSZONEJ AKTYWNOŚCI OPTYCZNEJ
ĆWICZENIE 89 BADANIE WYMUSZONEJ AKTYWNOŚCI OPTYCZNEJ Cel ćwiczenia: Zapoznanie się ze zjawiskiem Faradaya. Wyznaczenie stałej Verdeta dla danej próbki. Wyznaczenie wartości ładunku właściwego elektronu
Podstawy elektrodynamiki / David J. Griffiths. - wyd. 2, dodr. 3. Warszawa, 2011 Spis treści. Przedmowa 11
Podstawy elektrodynamiki / David J. Griffiths. - wyd. 2, dodr. 3. Warszawa, 2011 Spis treści Przedmowa 11 Wstęp: Czym jest elektrodynamika i jakie jest jej miejsce w fizyce? 13 1. Analiza wektorowa 19
Klasyczny efekt Halla
Klasyczny efekt Halla Rysunek pochodzi z artykułu pt. W dwuwymiarowym świecie elektronów, autor: Tadeusz Figielski, Wiedza i Życie, nr 4, 1999 r. Pełny tekst artykułu dostępny na stronie http://archiwum.wiz.pl/1999/99044800.asp
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Równania optyki półklasycznej Posłużymy się teraz równaniem (2.4), i Ψ t = ĤΨ ażeby wyprowadzić
Przejścia optyczne w strukturach niskowymiarowych
Współczynnik absorpcji w układzie dwuwymiarowym można opisać wyrażeniem: E E gdzie i oraz f są energiami stanu początkowego i końcowego elektronu, zapełnienie tych stanów opisane jest funkcją rozkładu
IA. Fotodioda. Cel ćwiczenia: Pomiar charakterystyk prądowo - napięciowych fotodiody.
1 A. Fotodioda Cel ćwiczenia: Pomiar charakterystyk prądowo - napięciowych fotodiody. Zagadnienia: Efekt fotowoltaiczny, złącze p-n Wprowadzenie Fotodioda jest urządzeniem półprzewodnikowym w którym zachodzi
Optyka. Optyka geometryczna Optyka falowa (fizyczna) Interferencja i dyfrakcja Koherencja światła Optyka nieliniowa
Optyka Optyka geometryczna Optyka falowa (fizyczna) Interferencja i dyfrakcja Koherencja światła Optyka nieliniowa 1 Optyka falowa Opis i zastosowania fal elektromagnetycznych w zakresie widzialnym i bliskim
V OGÓLNOPOLSKI KONKURS Z FIZYKI Fizyka się liczy Eliminacje TEST 27 lutego 2013r.
V OGÓLNOPOLSKI KONKURS Z FIZYKI Fizyka się liczy Eliminacje TEST 27 lutego 2013r. 1. Po wirującej płycie gramofonowej idzie wzdłuż promienia mrówka ze stałą prędkością względem płyty. Torem ruchu mrówki
Pole elektrostatyczne
Termodynamika 1. Układ termodynamiczny 5 2. Proces termodynamiczny 5 3. Bilans cieplny 5 4. Pierwsza zasada termodynamiki 7 4.1 Pierwsza zasada termodynamiki w postaci różniczkowej 7 5. Praca w procesie