Rozpatrzmy n-wrotnik. i jedne z jego wrót

Wielkość: px
Rozpocząć pokaz od strony:

Download "Rozpatrzmy n-wrotnik. i jedne z jego wrót"

Transkrypt

1

2 Rozpatrzmy n-wrotnik i jedne z jego wrót

3 Znormalizowane napięcie fali dobiegającej do k-tych wrót a k def U Z k 0k Znormalizowane napięcie fali wybiegającej z k-tych wrót b k def U Z k 0k Podobnie dla prądów (z prawa Ohma) a I Z0 b I Z k k k k k 0k Całkowite napięcie i prąd w linii Uk Uk Uk Ik I k Ik Całkowite znormalizowane napięcie w linii U Z k 0k a k b k Całkowity znormalizowany prąd w linii I Z I Z I Z k 0k k 0k k 0k Współczynnik odbicia we wrotach k k b a k k

4 Unormowana impedancja wejściowa we wrotach k z wek Z a b Z a b wek k k 0k k k Dla wielowrotnika liniowego napięcie (prąd) fali wybiegającej z wrót k jest superpozycją fal dobiegających do pozostałych wrót: b1 S11a1 S12a2... S1 kak... S1 nan b2 S21a1 S22a2... S2kak... S2na n bk Sk1a1 Sk 2a2... Skkak... Skna n bn Sn 1a1 Sn2a2... Snkak... Snnan lub krócej b Sa S jest tzw. Macierzą rozproszenia W przypadku ogólnym macierz rozproszenia S zawiera l w =n 2 niezależnych wyrazów zespolonych.

5 Jeśli na wrota 1 pada fala o amplitudzie a 1, zaś pozostałe obciążone są impedancjami dopasowanymi (brak fal dobiegających do pozostałych wrót) to ogólny układ równań przyjmie prostszą postać: b 1 S11 a1 b1 S11a1 bk bk Sk1a1 Sk1 a1 bn Sknan bn Sn 1 a 1 S ii = i S ij współczynnik odbicia od i-tych wrót współczynnik transmisji pomiędzy wrotami j-tymi a i-tymi

6 Szczególne przypadki Wielowrotniki odwracalne ij ji S n 2 S lw n1 Wielowrotniki symetryczne a) pełnosymetryczne S S S S nn ij i j const Wielowrotniki bezstratne b) niepełnosymetryczne n n Uk Uk Z 2 2 k1 ok k1 Z ok S S S ik ki ii S S S jk kj jj k i k j (równość sum mocy na wejściowych i wyjściowych)

7 Po rozpisaniu n U 2 n k 2 * * * * ak a1 a1 a2a2... anan aa Z k1 ok k1 T n U 2 n k 2 * * * * bk b 1b1 b2b2... bnbn bb Z k1 ok k1 T Warunek bezstratności aa bb ass a * T * T * T * T który spełniony jest dla S S * T 1 (dla wielowrotnika bezstratnego macierz S jest unitarna) Wielowrotniki bezstratne i odwracalne n k 1 S S * ki kl 1 0 dla i dla i l l

8 Z 0 / 2 Przykłady idealny dzielnik Wilkinsona 1 Z 0 2 Z 0 Z 0 2Z 0 2 S j j j j Z Z 0 idealny sprzęgacz gałęziowy 1 2 Z 0 Z 0 ( 2 + 1)Z 0 Z / 2 0 Z / 2 0 Z 0/ 2 Z 0/ 2 ( 2 + 1)Z 0 Z 0 Z S j 0 0 j 1 1 j 0 0 j 1 0 0

9 Przykład dla sprzęgacza pierścieniowego Założenie: układ jest bezstratny i dopasowany od strony wszystkich wrót 2 3 Z 0 Z 0 S11 S22 S33 S44 0 Moc doprowadzona do wrót 1 dzieli się po równo na sąsiednie wrota 2 i 4 (z fazami przeciwnymi), wrota 3 są izolowane 1 1 S12 S14 S Z 0 60 o 60 o Z o Z 0 4 Analogicznie dla mocy doprowadzonej do wrót 2 (tym razem fazy zgodne) 1 S S S oraz wrót 3 i 4 S32 S34 S S S S S ostatecznie macierz S uzyska postać

10 Macierz rozproszenia rzeczywistego wielowrotnika f arg S 11 S 11 arg S 21 S E E E E E E E E E E E E E E E E E E E E E E E E E E

11

12 FILTRY MIKROFALOWE straty wnoszone (in. wtrąceniowe ang. insertion loss) IL 2 P b L log 10log 10log S 2 21 [db] PSA a1 P SA moc dysponowana generatora P L moc czynna wydzielana na obciążeniu

13 straty odbiciowe (ang. return loss) RL PR WFS log 10log 10log [ db] P WFS 1 SA 2 P R moc odbita od wejścia filtru przesunięcie fazy (ang. phase shift) T arg S 21 opóźnienie grupowe (ang. group delay) D dt d 1 d 2 df T

14 Typowe charakterystyki (na przykładzie filtru dolnoprzepustowego) charakterystyka płaska IL [db] 3 pasmo pracy 1 IL 2n 10log(1 ' ) [ db] n - rząd filtru ω - pulsacja unormowana

15 charakterystyka równomiernie falista IL [db] A m pasmo pracy 1 dla ' 1 IL n A / log[1 (10 m 1) cos ( arccos ')] [db] dla ' 1 IL n A / log[1 (10 m 1) cosh ( arc cosh ')] [db]

16 Wyznaczanie elementów filtrów g 2 g 4 g n g 0 g 1 g 3 g 5 g n+1 jeśli n jest nieparzyste g 1 g 3 g 0 g 2 g 4 g n g n+1 Elementy g można obliczyć z następujących zależności: dla g 0 = 1 i ' = 1 (3 db pulsacja graniczna) charakterystyka płaska (2k 1) gk 2sin, k 1, 2,3... n 2n g n 1 1 dla wszystkich n

17 charakterystyka równomiernie falista g 1 2a 4a 1 a sinh 2n k1 k gk k 2,3... n bk 1gk1 A m ln ctgh 17,37 2k 1 ak sin, k 1,2... n 2 k n 2 2 bk sin, k 1, 2... n gn 1 tgh dla n parzystych g n1 1 dla n nieparzystych 4 Znajomość parametrów g n pozwala określić rzeczywiste wartości odpowiadających im reaktancji.

18 Transformacja częstotliwości Dla filtrów dolnoprzepustowych ' Dla filtrów górnoprzepustowych ' D G gdzie G jest górną częstotliwością graniczną. gdzie D jest górną częstotliwością graniczną. Dla filtrów środkowoprzepustowych 0 0 ' D G 0 Szerokość pasma wynosi 0 D G D G ' Dla filtrów środkowozaporowych: Szerokość pasma wynosi 0 D G Skalowanie wartości elementów realizuje się poprzez R0 R / r krotną zmianę wartości parametrów obliczonych, r g 0, R jest rzeczywistą impedancją generatora.

19 Transformacja częstotliwości i skalowanie impedancji

20 INWERTERY IMMITANCJI K +90 o Z J +90 o Y Z = K 2 /Z Y = J 2 /Y K - współczynnik inwersji impedancji, J - współczynnik inwersji admitancji L sk INWERTER + + INWERTER C rk L sk INWERTER + C rk + INWERTER Dzięki inwerterom można realizować filtry z elementów reaktancyjnych tylko jednego rodzaju, co w praktyce daje możliwość konstruowania filtrów mikrofalowych o stałych rozłożonych.

21 Przykłady zastosowania inwerterów immitancji Z g /4 g /4 Y J 0 J 0 g /4 g /4 Z Y K 0 K 0

22 L 2 C 2 G S L 1 C 1 L 3 C 3 L N C N G L L a1 C a1 L a2 C a2 g /4 g /4 g /4 g /4 G S G L L 1 C 1 L 3 C 3 L N C N G S L 2 C 2 G L g /4 g /4 g /4 g /4 G S L a1 C a1 L a2 C a2 G L

23 PRZYKŁADY PRAKTYCZNYCH REALIZACJI FILTRÓW PASMOWYCH C 1 C 2 C N L 1 L 2 L N... Z 0 Z 0... L C L 1 L 3 C 2 C 1 C 3 L 2

24 Realizacje reaktancji w zakresie mikrofal /8 /8 L=Z 0 Z 0 L=1/Z 0 Z 0

25 Kondensatory planarne

26 Cewki planarne

27 Układy LC

28 REZONATORY MIKROFALOWE Rezonatorem jest każdy odcinek linii transmisyjnej zakończony z obydwu stron niedopasowaniem rez 2l p p jest liczbą połówek fali mieszczącą się w linii

29 Przykłady sprzęgania rezonatorów z zasilającymi je liniami transmisyjnymi

30 Rezonator wnękowy stała fazowa m n v a b c Współczynnik odbicia na wejściu do falowodu S 2 21 L we S 11 1 S 22 L Jeśli ścianki zamykające falowód są metalowe to można przyjąć we 1 L stąd S S11 1 S 22

31 Dla długości elektrycznej falowodu równej 2l c S 11 S22 0 j S12 S21 e zatem z zależności wiążącej współczynniki odbicia 1 S e 2 j2 12 Rozwiązaniem tego równania jest stąd c p 2l p p jest liczbą całkowitą z zależności na stałą fazową m n p 0 2a 2b 2l ostatecznie f rez TE TM mnp mnp v v m n p a b l

32 Podobne rozumowanie można przeprowadzić dla rezonatorów cylindrycznych f rez TE mnp 2 2 v qmn p 2 a l f rez TM mnp 2 2 v mn p 2 a l qmn mn m-te zero pochodnej funkcji Bessela n-tego rzędu oznacza m-te zero funkcji Bessela n-tego rzędu Najczęściej spotykane rodzaje pola symulacja TM 010 TE 011

33 Przykład Obliczyć najniższe częstotliwości rezonansowe puszki metalowej R L 0.16 c Dla TE111 ce 3.41R Dla TM011 cm 2.61R c 2 2 g 2 A1 2 2L 2 e 2 A1 Be m 2 A1 Bm e m c fe e c fm m ce cm fe fm

34 Dobroci rezonatorów mikrofalowych Po odłączeniu źródła zasilania energia zmagazynowana wewnątrz rezonatora i w jego obwodach zewnętrznych ulega dyssypacji zgodnie z zależnością: 0t W ( t) W0 exp Q W 0 energia początkowa 0 pulsacja rezonansowa Q dobroć Moc tracona w jednostce czasu P dw dt zatem W Q=0 P 0

35 amplituda maks. (początkowa) Dobroć j e 1 t 1 e 1 2, 7 ampl.maks. t d ½ maks. amplitudy B maks. amplitudy f B o Q f o t d B 1 t d f 0 f

36 Zależnie od tego, jaką część obwodu opisują powyższe wyrażenia można mówić o trzech rodzajach dobroci: wewnętrznej Q 0 związanej z mocą traconą wewnątrz rezonatora zewnętrznej Q Z związanej z mocą traconą w obwodach zewnętrznych całkowitej Q L związanej z sumą traconych ww. mocy W Q 0 = 0 P 0 R W Q Z = 0 P 0 Z W Q L = 0 PR P Q Z L Q0 QZ Definiuje się: - współczynnik sprzężenia Q 0 Q Z < 1 = 1 > 1 sprzężenie podkrytyczne sprzężenie krytyczne sprzężenie nadkrytyczne 0 - współczynnik rozstrojenia Q L 0 określające współdziałanie rezonatora z obwodami zewnętrznymi

37 Trzy rodzaje sprzężeń odbiciowe WFS A Y 0 G L C f 0 f 0C Q Z = Y 0 Q L = 0C Y G 0 0 j 1 j Y 0 G

38 transmisyjne A B T 2 1 T 2 0 Y 0 G L C Y 0 T f f Q 0 C 0 G C Q 0 0 Q 0 L G2Y0 12 j 1 j T T j T 2 T 1 S 2 T

39 reakcyjne T 2 Y 0 A L G C B Y T T 2 0 f f C 0 0 Q0 QL G C Q0 GY0 / 2 1 Y0 2G 0 j 1 j R R 1 R RT 1

40 Rezonatory strojone z wkładkami ferrytowymi z waraktorem z waraktorem z kryształem granatu

41

42 Ferryt międzywęzłowy roztwór stały węgla w żelazie o odmianie alotropowej α (α-fe) Najczęściej jest to spiek tlenku żelaza Fe 2 O 3 z tlenkami Zn, Ni, Mn, Mg lub metali ziem rzadkich. Zawartość węgla w roztworze waha się od 0,008 w temp. pokojowej do ok. 0,02 w temperaturze 723 C, w której przechodzi on w paramagnetyczny austenit. Ferryty są tzw. ferromagnetykami i charakteryzują się strukturą domenową z lokalnie uporządkowanymi dipolami magnetycznymi, które dość łatwo można uporządkować globalnie za pomocą zewnętrznego pola magnetycznego

43 Historia magnesowania = histereza Remanencja (pozostałość magnetyczna) wielkość namagnesowania po zaniku pola magnesującego Koercja wartość pola magnetycznego potrzebna do całkowitego zaniku namagnesowania Temperatura Curie wartość temperatury, powyżej której zanikają własności ferromagnetyczne

44 Precesja Larmora rezonansowe pochłanianie energii fr H 0 Rezonans zachodzi tylko dla jednego kierunku wirowania pola czyli tylko w jednym kierunku propagacji fali elektromagnetycznej

45 Rotacja Faradaya Każda fala em fizycznie złożona jest z dwóch przeciwnie wirujących składowych. Ponieważ przenikalności magnetyczne ferrytu dla różnych kierunków wirowania są różne, to również prędkości tych składowych będą różne. W efekcie fala em propagująca się przez ośrodek ferrytowy będzie zmieniać płaszczyznę swej polaryzacji. V - stała Verdeta l - dystans θ VlH 0 Kąt skręcenia nie zależy od kierunku propagacji

46 Idealny izolator ferrytowy jest obustronnie dopasowany i pozwala na transmisję fali em Tylko w jednym kierunku 0 0 [ S] 1 0 Rzeczywisty izolator ferrytowy wykazuje Niewielkie tłumienie przepustowe p 21 Duże tłumienie zaporowe z 12 Obustronny WFS < 1,3 A A 20 log S 0,3...1 [db] 20 log S [db]

47 Izolatory rezonansowe Izolator z przemieszczeniem pola

48 Izolator z efektem rotacji Faradaya

49 Ferrytowe przesuwniki fazy Cyrkulatory ferrytowe

50

51 Cyrkulator z efektem rotacji Faradaya

52 W idealnym cyrkulatorze W rzeczywistym cyrkulatorze I T [ S] T I I T Duża izolacja A 20 log I 20 [db] Małe tłumienie przepustowe A 20 log T 0,5 [db] WFS < 1,2 I T Przykład zastosowania

53

54

55 1 wrota wejściowe 2 wrota wyjściowe (linia główna) 3 wrota izolowane 4 wrota sprzężone (linia sprzężona) sprzężenie kierunkowość izolacja P1 C 10 log P4 P4 D 10 log P I 10 log P1 P 3 3 sprzęgacz na linii koncentrycznej sprzęgacz jednootworowy typu Bethe D = f()

56

57 Sprzęgacze na NLP Sprzęgacze Lange a

58 Sprzęgacze 3 db

59 Symulacje

60 Sprzęgacze 3 db w technice NLP Pierścień hybrydowy

61 Dzielnik Wilkinsona S11 S22 S33 0 S S23 0 S 1 2 Moc doprowadzona do P2 wypłynie w połowie w P1, a w połowie wydzieli się na rezystancji 2Z 0, analogicznie dla mocy doprowadzonej do P3

62

63

64 Zasada pomiaru

65

66 Kalibracja

67 Zwarcie

68 Dopasowanie

69 m m 1 A B A B A B A B m m C D C D C D C D 1 m m 1 A B A B A B A B I m m C D C D C D C D 1 m m A B A B A B A B I m m C D C D C D C D 1 m m A B A B A B A B m m C D C D C D C D

70

71

72 Skupione elementy elektroniczne w technice mikrofal Rezystory SMD

73 Budowa typowego rezystora SMD = 24 kw 0603 = 0,06" 0,03" lub mils lub 1,6 0,8mm 0805 = 0,08" 0,05" lub mils lub 2,0 1,25mm 1206 = 0,12" 0,06" lub mils lub 3,2 1,6mm 1 mm 39,370 mils 1 mils 0,0254 mm A = 3,2 1,6 1,6 dł/szer/wys B = 3,5 2,8 1,9 C = 6,0 3,2 2,5

74 Kondensatory

75 obudowa dł x szer x wys (mm) A 3,2 1,6 1,6 B 3,5 2,8 1,9 C 6,0 3,2 2,5 D 7,3 4,3 2,8 E 7,3 6,0 3,6 1, 2 tantalowe; 3, 4 elektrolityczne; 5, 6, 7 - ceramiczne (rozm. Jak dla rezystorów); 8 - porcelanowy RF (wysokie Q) RF; 9 trymer; (rezystor 0,125 W dla porównania rozmiarów)

76 Kondensatory przelotowe (feed-thru capacitors)

77 Rolę elementów biernych mogą pełnić nieciągłości Nieciągłości materiałowe geometryczne Każda nieciągłość reprezentuje pewną reaktancję

78 Nieciągłości o charakterze indukcyjnym

79 Nieciągłości o charakterze pojemnościowym Nieciągłości o charakterze rezonansu szeregowego

80 Nieciągłości o charakterze rezonansu równoległego

81 Nieciągłości o charakterze filtrów

82 Bezreaktancyjne zaginanie linii transmisyjnych

83 Przesuwniki fazy Przesuwnik z 90 o sprzęgaczem kierunkowym

84 Zwieracze nastawne

85 Przejścia z linii koncentrycznej na falowód

86

87

88 Złącza mikrofalowe

89 Przełączniki mikrofalowe

90 Złącza obrotowe na linii paskowej falowodowe

91

92 Co to za element?

93

94 Ulokowane różnych elementów mikrofalowych w torze radaru

95 Dziękuję za uwagę

05/04/2012. Rozpatrzmy n-wrotnik. i jedne z jego wrót

05/04/2012. Rozpatrzmy n-wrotnik. i jedne z jego wrót Rozpatrzmy n-wrotnik i jedne z jego wrót Znormalizowane napięcie fali dobiegającej do k-tych wrót Znormalizowane napięcie fali wybiegającej z k-tych wrót b a k k def = def = U U + k Z k Z k k + Podobnie

Bardziej szczegółowo

Falowodowe magiczne T Gałęziowy sprzęgacz hybrydowy przedstawiony na rys jest jedną z najprostszych form rozgałęzienia hybrydowego 90.

Falowodowe magiczne T Gałęziowy sprzęgacz hybrydowy przedstawiony na rys jest jedną z najprostszych form rozgałęzienia hybrydowego 90. 11. Rozgałęzienia i sprzęgacze w technice linii paskowych i mikropaskowych: rozgałęzienie pierścieniowe (sprzęęgacz 3 db/0 i 180 ), sprzęgacze kierunkowe 3 db/90 gałęziowy i o liniach sprzężonych, dzielnik/sumator

Bardziej szczegółowo

GRUPA A. 1. Klistron dwuwnękowy jest lampą elektronową wzmacniającą czy generującą? Wzmacniającą (pomogł dla dobekfooto)

GRUPA A. 1. Klistron dwuwnękowy jest lampą elektronową wzmacniającą czy generującą? Wzmacniającą (pomogł dla dobekfooto) GRUPA A 1. Klistron dwuwnękowy jest lampą elektronową wzmacniającą czy generującą? Wzmacniającą (pomogł dla dobekfooto) 2. Narysuj charakterystyki klistronu refleksowego częstotliwość i moc wyjściowa w

Bardziej szczegółowo

WSTĘP DO ELEKTRONIKI

WSTĘP DO ELEKTRONIKI WSTĘP DO ELEKTRONIKI Część IV Czwórniki Linia długa Janusz Brzychczyk IF UJ Czwórniki Czwórnik (dwuwrotnik) posiada cztery zaciski elektryczne. Dwa z tych zacisków uważamy za wejście czwórnika, a pozostałe

Bardziej szczegółowo

BADANIE FILTRÓW. Instytut Fizyki Akademia Pomorska w Słupsku

BADANIE FILTRÓW. Instytut Fizyki Akademia Pomorska w Słupsku BADANIE FILTRÓW Cel ćwiczenia. Celem ćwiczenia jest zapoznanie się z właściwościami filtrów. Zagadnienia teoretyczne. Filtry częstotliwościowe Filtrem nazywamy układ o strukturze czwórnika, który przepuszcza

Bardziej szczegółowo

Teoria obwodów / Stanisław Osowski, Krzysztof Siwek, Michał Śmiałek. wyd. 2. Warszawa, Spis treści

Teoria obwodów / Stanisław Osowski, Krzysztof Siwek, Michał Śmiałek. wyd. 2. Warszawa, Spis treści Teoria obwodów / Stanisław Osowski, Krzysztof Siwek, Michał Śmiałek. wyd. 2. Warszawa, 2013 Spis treści Słowo wstępne 8 Wymagania egzaminacyjne 9 Wykaz symboli graficznych 10 Lekcja 1. Podstawowe prawa

Bardziej szczegółowo

rezonansu rezonansem napięć rezonansem szeregowym rezonansem prądów rezonansem równoległym

rezonansu rezonansem napięć rezonansem szeregowym rezonansem prądów rezonansem równoległym Lekcja szósta poświęcona będzie analizie zjawisk rezonansowych w obwodzie RLC. Zjawiskiem rezonansu nazywamy taki stan obwodu RLC przy którym prąd i napięcie są ze sobą w fazie. W stanie rezonansu przesunięcie

Bardziej szczegółowo

Wzmacniacz jako generator. Warunki generacji

Wzmacniacz jako generator. Warunki generacji Generatory napięcia sinusoidalnego Drgania sinusoidalne można uzyskać Poprzez utworzenie wzmacniacza, który dla jednej częstotliwości miałby wzmocnienie równe nieskończoności. Poprzez odtłumienie rzeczywistego

Bardziej szczegółowo

POMIARY CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWEJ IMPEDANCJI ELEMENTÓW R L C

POMIARY CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWEJ IMPEDANCJI ELEMENTÓW R L C ĆWICZENIE 4EMC POMIARY CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWEJ IMPEDANCJI ELEMENTÓW R L C Cel ćwiczenia Pomiar parametrów elementów R, L i C stosowanych w urządzeniach elektronicznych w obwodach prądu zmiennego.

Bardziej szczegółowo

Wykład Drgania elektromagnetyczne Wstęp Przypomnienie: masa M na sprężynie, bez oporów. Równanie ruchu

Wykład Drgania elektromagnetyczne Wstęp Przypomnienie: masa M na sprężynie, bez oporów. Równanie ruchu Wykład 7 7. Drgania elektromagnetyczne Wstęp Przypomnienie: masa M na sprężynie, bez oporów. Równanie ruchu M d x kx Rozwiązania x = Acost v = dx/ =-Asint a = d x/ = A cost przy warunku = (k/m) 1/. Obwód

Bardziej szczegółowo

ELEKTRONIKA W EKSPERYMENCIE FIZYCZNYM

ELEKTRONIKA W EKSPERYMENCIE FIZYCZNYM ELEKTRONIKA W EKSPERYMENCIE FIZYCZNYM D. B. Tefelski Zakład VI Badań Wysokociśnieniowych Wydział Fizyki Politechnika Warszawska, Koszykowa 75, 00-662 Warszawa, PL 21 marca 2011 Falowody: rodzaje fal, dopasowanie,

Bardziej szczegółowo

CZWÓRNIKI KLASYFIKACJA CZWÓRNIKÓW.

CZWÓRNIKI KLASYFIKACJA CZWÓRNIKÓW. CZWÓRNK jest to obwód elektryczny o dowolnej wewnętrznej strukturze połączeń elementów, mający wyprowadzone na zewnątrz cztery zaciski uporządkowane w dwie pary, zwane bramami : wejściową i wyjściową,

Bardziej szczegółowo

POLITECHNIKA POZNAŃSKA

POLITECHNIKA POZNAŃSKA POLITECHNIKA POZNAŃSKA INSTYTUT ELEKTROTECHNIKI I ELEKTRONIKI PRZEMYSŁOWEJ Zakład Elektrotechniki Teoretycznej i Stosowanej Laboratorium Podstaw Telekomunikacji Ćwiczenie nr 6 Temat: Sprzęgacz kierunkowy.

Bardziej szczegółowo

Polaryzacja anteny. Polaryzacja pionowa V - linie sił pola. pionowe czyli prostopadłe do powierzchni ziemi.

Polaryzacja anteny. Polaryzacja pionowa V - linie sił pola. pionowe czyli prostopadłe do powierzchni ziemi. Parametry anten Polaryzacja anteny W polu dalekim jest przyjęte, że fala ma charakter fali płaskiej. Podstawową właściwością tego rodzaju fali jest to, że wektory natężenia pola elektrycznego i magnetycznego

Bardziej szczegółowo

REZONANS SZEREGOWY I RÓWNOLEGŁY. I. Rezonans napięć

REZONANS SZEREGOWY I RÓWNOLEGŁY. I. Rezonans napięć REZONANS SZEREGOWY I RÓWNOLEGŁY I. Rezonans napięć Zjawisko rezonansu napięć występuje w gałęzi szeregowej RLC i polega na tym, Ŝe przy określonej częstotliwości sygnałów w obwodzie, zwanej częstotliwością

Bardziej szczegółowo

INDEKS ALFABETYCZNY CEI:2002

INDEKS ALFABETYCZNY CEI:2002 185 60050-131 CEI:2002 INDEKS ALFABETYCZNY A admitancja admitancja... 131-12-51 admitancja obciążenia... 131-14-06 admitancja pozorna... 131-12-52 admitancja robocza... 131-14-03 admitancja wejściowa...

Bardziej szczegółowo

PODSTAWY ELEKTRONIKI I TECHNIKI CYFROWEJ

PODSTAWY ELEKTRONIKI I TECHNIKI CYFROWEJ 1 z 9 2012-10-25 11:55 PODSTAWY ELEKTRONIKI I TECHNIKI CYFROWEJ opracowanie zagadnieo dwiczenie 1 Badanie wzmacniacza ze wspólnym emiterem POLITECHNIKA KRAKOWSKA Wydział Inżynierii Elektrycznej i Komputerowej

Bardziej szczegółowo

Program wykładu Technika Mikrofalowa

Program wykładu Technika Mikrofalowa Program wykładu Technika Mikrofalowa Przeznaczony dla studentów elektroniki 3.roku, którzy pomyślnie zaliczyli zajęcia (wykład i ćwiczenia audytoryjne) z Elektrodynamiki Falowej podczas 2. roku studiów.

Bardziej szczegółowo

TECHNIKA WIELKICH CZĘSTOTLIWOŚCI. Przyrządy ferrytowe. Plan wykładu. Karol Aniserowicz. Magnetyczne właściwości materii

TECHNIKA WIELKICH CZĘSTOTLIWOŚCI. Przyrządy ferrytowe. Plan wykładu. Karol Aniserowicz. Magnetyczne właściwości materii TECHNIKA WIELKICH CZĘSTOTLIWOŚCI Przyrządy ferrytowe Karol Aniserowicz Plan wykładu Wiadomości wstępne magnetyczne właściwości materii Właściwości fizyczne ferrytów PRZYRZĄDY FERRYTO Izolatory ferrytowe

Bardziej szczegółowo

2.Rezonans w obwodach elektrycznych

2.Rezonans w obwodach elektrycznych 2.Rezonans w obwodach elektrycznych Celem ćwiczenia jest doświadczalne sprawdzenie podstawowych właściwości szeregowych i równoległych rezonansowych obwodów elektrycznych. 2.1. Wiadomości ogólne 2.1.1

Bardziej szczegółowo

Ćwiczenie: "Obwody prądu sinusoidalnego jednofazowego"

Ćwiczenie: Obwody prądu sinusoidalnego jednofazowego Ćwiczenie: "Obwody prądu sinusoidalnego jednofazowego" Opracowane w ramach projektu: "Informatyka mój sposób na poznanie i opisanie świata realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres

Bardziej szczegółowo

II. Elementy systemów energoelektronicznych

II. Elementy systemów energoelektronicznych II. Elementy systemów energoelektronicznych II.1. Wstęp. Główne grupy elementów w układach impulsowego przetwarzania mocy: elementy bierne bezstratne (kondensatory, cewki, transformatory) elementy przełącznikowe

Bardziej szczegółowo

WSTĘP DO ELEKTRONIKI

WSTĘP DO ELEKTRONIKI WSTĘP DO ELEKTRONIKI Część VI Sprzężenie zwrotne Wzmacniacz operacyjny Wzmacniacz operacyjny w układach z ujemnym i dodatnim sprzężeniem zwrotnym Janusz Brzychczyk IF UJ Sprzężenie zwrotne Sprzężeniem

Bardziej szczegółowo

Wielkości opisujące sygnały okresowe. Sygnał sinusoidalny. Metoda symboliczna (dla obwodów AC) - wprowadzenie. prąd elektryczny

Wielkości opisujące sygnały okresowe. Sygnał sinusoidalny. Metoda symboliczna (dla obwodów AC) - wprowadzenie. prąd elektryczny prąd stały (DC) prąd elektryczny zmienny okresowo prąd zmienny (AC) zmienny bezokresowo Wielkości opisujące sygnały okresowe Wartość chwilowa wartość, jaką sygnał przyjmuje w danej chwili: x x(t) Wartość

Bardziej szczegółowo

- Strumień mocy, który wpływa do obszaru ograniczonego powierzchnią A ( z minusem wpływa z plusem wypływa)

- Strumień mocy, który wpływa do obszaru ograniczonego powierzchnią A ( z minusem wpływa z plusem wypływa) 37. Straty na histerezę. Sens fizyczny. Energia dostarczona do cewki ferromagnetykiem jest znacznie większa od energii otrzymanej. Energia ta jest tworzona w ferromagnetyku opisanym pętlą histerezy, stąd

Bardziej szczegółowo

Ćwiczenie 3 BADANIE OBWODÓW PRĄDU SINUSOIDALNEGO Z ELEMENTAMI RLC

Ćwiczenie 3 BADANIE OBWODÓW PRĄDU SINUSOIDALNEGO Z ELEMENTAMI RLC Ćwiczenie 3 3.1. Cel ćwiczenia BADANE OBWODÓW PRĄD SNSODANEGO Z EEMENTAM RC Zapoznanie się z własnościami prostych obwodów prądu sinusoidalnego utworzonych z elementów RC. Poznanie zasad rysowania wykresów

Bardziej szczegółowo

Przedmowa do wydania drugiego Konwencje i ważniejsze oznaczenia... 13

Przedmowa do wydania drugiego Konwencje i ważniejsze oznaczenia... 13 Przedmowa do wydania drugiego... 11 Konwencje i ważniejsze oznaczenia... 13 1. Rachunek i analiza wektorowa... 17 1.1. Wielkości skalarne i wektorowe... 17 1.2. Układy współrzędnych... 20 1.2.1. Układ

Bardziej szczegółowo

E107. Bezpromieniste sprzężenie obwodów RLC

E107. Bezpromieniste sprzężenie obwodów RLC E7. Bezpromieniste sprzężenie obwodów RLC Cel doświadczenia: Pomiar amplitudy sygnału w rezonatorze w zależności od wzajemnej odległości d cewek generatora i rezonatora. Badanie wpływu oporu na tłumienie

Bardziej szczegółowo

Podstawy fizyki sezon 2 7. Układy elektryczne RLC

Podstawy fizyki sezon 2 7. Układy elektryczne RLC Podstawy fizyki sezon 2 7. Układy elektryczne RLC Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Układ RC

Bardziej szczegółowo

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH POMIARY WIELKOŚCI NIEELEKTRYCZNYCH Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EMST Semestr letni Wykład nr 3 Prawo autorskie Niniejsze

Bardziej szczegółowo

u(t)=u R (t)+u L (t)+u C (t)

u(t)=u R (t)+u L (t)+u C (t) Szeregowy obwód Źródło napięciowe u( o zmiennej sile elektromotorycznej E(e [u(] Z drugiego prawa Kirchhoffa: u(u (u (u ( ównanie ruchu ładunku elektrycznego: Prąd płynący w obwodzie: di( i t dt u t i

Bardziej szczegółowo

Laboratorium Półprzewodniki Dielektryki Magnetyki Ćwiczenie nr 8

Laboratorium Półprzewodniki Dielektryki Magnetyki Ćwiczenie nr 8 Laboratorium Półprzewodniki Dielektryki Magnetyki Ćwiczenie nr 8 Analiza właściwości zmiennoprądowych materiałów i elementów elektronicznych I. Zagadnienia do przygotowania:. Wykonanie i przedstawienie

Bardziej szczegółowo

Temat: Wzmacniacze selektywne

Temat: Wzmacniacze selektywne Temat: Wzmacniacze selektywne. Wzmacniacz selektywny to układy, których zadaniem jest wzmacnianie sygnałów o częstotliwości zawartej w wąskim paśmie wokół pewnej częstotliwości środkowej f. Sygnały o częstotliwości

Bardziej szczegółowo

LABORATORIUM POMIARY W AKUSTYCE. ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej

LABORATORIUM POMIARY W AKUSTYCE. ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej LABORATORIUM POMIARY W AKUSTYCE ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej 1. Cel ćwiczenia Celem ćwiczenia jest poznanie metody

Bardziej szczegółowo

Ćwiczenie F1. Filtry Pasywne

Ćwiczenie F1. Filtry Pasywne Laboratorium Podstaw Elektroniki Instytutu Fizyki PŁ Ćwiczenie F Filtry Pasywne Przed zapoznaniem się z instrukcją i przystąpieniem do wykonywania ćwiczenia naleŝy opanować następujący materiał teoretyczny:.

Bardziej szczegółowo

Laboratorium Wirtualne Obwodów w Stanach Ustalonych i Nieustalonych

Laboratorium Wirtualne Obwodów w Stanach Ustalonych i Nieustalonych ĆWICZENIE 1 Badanie obwodów jednofazowych rozgałęzionych przy wymuszeniu sinusoidalnym Cel ćwiczenia Celem ćwiczenia jest Poznanie podstawowych elementów pasywnych R, L, C, wyznaczenie ich wartości na

Bardziej szczegółowo

Tranzystorowe wzmacniacze OE OB OC. na tranzystorach bipolarnych

Tranzystorowe wzmacniacze OE OB OC. na tranzystorach bipolarnych Tranzystorowe wzmacniacze OE OB OC na tranzystorach bipolarnych Wzmacniacz jest to urządzenie elektroniczne, którego zadaniem jest : proporcjonalne zwiększenie amplitudy wszystkich składowych widma sygnału

Bardziej szczegółowo

29 PRĄD PRZEMIENNY. CZĘŚĆ 2

29 PRĄD PRZEMIENNY. CZĘŚĆ 2 Włodzimierz Wolczyński 29 PRĄD PRZEMIENNY. CZĘŚĆ 2 Opory bierne Indukcyjny L - indukcyjność = Szeregowy obwód RLC Pojemnościowy C pojemność = = ( + ) = = = = Z X L Impedancja (zawada) = + ( ) φ R X C =

Bardziej szczegółowo

I. Cel ćwiczenia: Poznanie własności obwodu szeregowego zawierającego elementy R, L, C.

I. Cel ćwiczenia: Poznanie własności obwodu szeregowego zawierającego elementy R, L, C. espół Szkół Technicznych w Skarżysku-Kamiennej Sprawozdanie PAOWNA EEKTYNA EEKTONNA imię i nazwisko z ćwiczenia nr Temat ćwiczenia: BADANE SEEGOWEGO OBWOD rok szkolny klasa grupa data wykonania. el ćwiczenia:

Bardziej szczegółowo

Wartość średnia półokresowa prądu sinusoidalnego I śr : Analogicznie określa się wartość skuteczną i średnią napięcia sinusoidalnego:

Wartość średnia półokresowa prądu sinusoidalnego I śr : Analogicznie określa się wartość skuteczną i średnią napięcia sinusoidalnego: Ćwiczenie 27 Temat: Prąd przemienny jednofazowy Cel ćwiczenia: Rozróżnić parametry charakteryzujące przebieg prądu przemiennego, oszacować oraz obliczyć wartości wielkości elektrycznych w obwodach prądu

Bardziej szczegółowo

Teoria obwodów elektrycznych / Stanisław Bolkowski. wyd dodruk (PWN). Warszawa, Spis treści

Teoria obwodów elektrycznych / Stanisław Bolkowski. wyd dodruk (PWN). Warszawa, Spis treści Teoria obwodów elektrycznych / Stanisław Bolkowski. wyd. 10-1 dodruk (PWN). Warszawa, 2017 Spis treści Przedmowa 13 1. Wiadomości wstępne 15 1.1. Wielkości i jednostki używane w elektrotechnice 15 1.2.

Bardziej szczegółowo

Elektrotechnika teoretyczna

Elektrotechnika teoretyczna Zachodniopomorski Uniwersytet Technologiczny w Szczecinie RYSZARD SIKORA TOMASZ CHADY PRZEMYSŁAW ŁOPATO GRZEGORZ PSUJ Elektrotechnika teoretyczna Szczecin 2016 Spis treści Spis najważniejszych oznaczeń...

Bardziej szczegółowo

Filtry typu k Ogniwa podstawowe Γ i Γ odwrócone

Filtry typu k Ogniwa podstawowe Γ i Γ odwrócone Filtry typu k Ogniwa podstawowe Γ i Γ odwrócone Filtry bierne typu k i m... Z A Z + Z 4Z A Z Z + 4 Z Z Z Z Z ZT ZZ + Z + 4Z Filtry spełniające warunek filtrów typu k: 4 Z Z Z T Z Z Z k Można wykazać, że

Bardziej szczegółowo

2.3. Praca samotna. Rys Uproszczony schemat zastępczy turbogeneratora

2.3. Praca samotna. Rys Uproszczony schemat zastępczy turbogeneratora E Rys. 2.11. Uproszczony schemat zastępczy turbogeneratora 2.3. Praca samotna Maszyny synchroniczne może pracować jako pojedynczy generator zasilający grupę odbiorników o wypadkowej impedancji Z. Uproszczony

Bardziej szczegółowo

II prawo Kirchhoffa Obwód RC Obwód RC Obwód RC

II prawo Kirchhoffa Obwód RC Obwód RC Obwód RC II prawo Kirchhoffa algebraiczna suma zmian potencjału napotykanych przy pełnym obejściu dowolnego oczka jest równa zeru klucz zwarty w punkcie a - ładowanie kondensatora równanie ładowania Fizyka ogólna

Bardziej szczegółowo

Liniowe układy scalone. Filtry aktywne w oparciu o wzmacniacze operacyjne

Liniowe układy scalone. Filtry aktywne w oparciu o wzmacniacze operacyjne Liniowe układy scalone Filtry aktywne w oparciu o wzmacniacze operacyjne Wiadomości ogólne (1) Zadanie filtrów aktywnych przepuszczanie sygnałów znajdujących się w pewnym zakresie częstotliwości pasmo

Bardziej szczegółowo

Zjawiska w niej występujące, jeśli jest ona linią długą: Definicje współczynników odbicia na początku i końcu linii długiej.

Zjawiska w niej występujące, jeśli jest ona linią długą: Definicje współczynników odbicia na początku i końcu linii długiej. 1. Uproszczony schemat bezstratnej (R = 0) linii przesyłowej sygnałów cyfrowych. Zjawiska w niej występujące, jeśli jest ona linią długą: odbicie fali na końcu linii; tłumienie fali; zniekształcenie fali;

Bardziej szczegółowo

5 Filtry drugiego rzędu

5 Filtry drugiego rzędu 5 Filtry drugiego rzędu Cel ćwiczenia 1. Zrozumienie zasady działania i charakterystyk filtrów. 2. Poznanie zalet filtrów aktywnych. 3. Zastosowanie filtrów drugiego rzędu z układem całkującym Podstawy

Bardziej szczegółowo

Ćwiczenie 4 WYZNACZANIE INDUKCYJNOŚCI WŁASNEJ I WZAJEMNEJ

Ćwiczenie 4 WYZNACZANIE INDUKCYJNOŚCI WŁASNEJ I WZAJEMNEJ Ćwiczenie 4 WYZNCZNE NDUKCYJNOŚC WŁSNEJ WZJEMNEJ Celem ćwiczenia jest poznanie pośrednich metod wyznaczania indukcyjności własnej i wzajemnej na podstawie pomiarów parametrów elektrycznych obwodu. 4..

Bardziej szczegółowo

I. Cel ćwiczenia: Poznanie własności obwodu szeregowego, zawierającego elementy R, L, C.

I. Cel ćwiczenia: Poznanie własności obwodu szeregowego, zawierającego elementy R, L, C. espół Szkół Technicznych w Skarżysku-Kamiennej Sprawozdanie PAOWNA EEKTYNA EEKTONNA imię i nazwisko z ćwiczenia nr Temat ćwiczenia: BADANE SEEGOWEGO OBWOD rok szkolny klasa grupa data wykonania. el ćwiczenia:

Bardziej szczegółowo

LABORATORIUM ELEKTRONIKI OBWODY REZONANSOWE

LABORATORIUM ELEKTRONIKI OBWODY REZONANSOWE ZESPÓŁ ABORATORIÓW TEEMATYKI TRANSPORTU ZAKŁAD TEEKOMUNIKAJI W TRANSPORIE WYDZIAŁ TRANSPORTU POITEHNIKI WARSZAWSKIEJ ABORATORIUM EEKTRONIKI INSTRUKJA DO ĆWIZENIA NR OBWODY REZONANSOWE DO UŻYTKU WEWNĘTRZNEGO

Bardziej szczegółowo

Wykład VII ELEMENTY IDEALNE: OPORNIK, CEWKA I KONDENSATOR W OBWODZIE PRĄDU PRZEMIENNEGO

Wykład VII ELEMENTY IDEALNE: OPORNIK, CEWKA I KONDENSATOR W OBWODZIE PRĄDU PRZEMIENNEGO Wykład VII ELEMENTY IDEALNE: OPORNIK, CEWKA I KONDENSATOR W OBWODZIE PRĄDU PRZEMIENNEGO IDEALNA REZYSTANCJA W OBWODZIE PRĄDU PRZEMIENNEGO Symbol rezystora: Idealny rezystor w obwodzie prądu przemiennego:

Bardziej szczegółowo

z ćwiczenia nr Temat ćwiczenia: BADANIE RÓWNOLEGŁEGO OBWODU RLC (SYMULACJA)

z ćwiczenia nr Temat ćwiczenia: BADANIE RÓWNOLEGŁEGO OBWODU RLC (SYMULACJA) Zespół Szkół Technicznych w Skarżysku-Kamiennej Sprawozdanie PAOWNA EEKTYZNA EEKTONZNA imię i nazwisko z ćwiczenia nr Temat ćwiczenia: BADANE ÓWNOEGŁEGO OBWOD (SYMAJA) rok szkolny klasa grupa data wykonania.

Bardziej szczegółowo

PROTOKÓŁ POMIARY W OBWODACH PRĄDU PRZEMIENNEGO

PROTOKÓŁ POMIARY W OBWODACH PRĄDU PRZEMIENNEGO PROTOKÓŁ POMIAROWY LABORATORIUM OBWODÓW I SYGNAŁÓW ELEKTRYCZNYCH Grupa Podgrupa Numer ćwiczenia 4 Lp. Nazwisko i imię Data wykonania ćwiczenia Prowadzący ćwiczenie Podpis Data oddania sprawozdania Temat

Bardziej szczegółowo

Wykład 2 Silniki indukcyjne asynchroniczne

Wykład 2 Silniki indukcyjne asynchroniczne Wykład 2 Silniki indukcyjne asynchroniczne Katedra Sterowania i InŜynierii Systemów 1 Budowa silnika inukcyjnego Katedra Sterowania i InŜynierii Systemów 2 Budowa silnika inukcyjnego Tabliczka znamionowa

Bardziej szczegółowo

Wymagania edukacyjne: Elektrotechnika i elektronika. Klasa: 1Tc TECHNIK MECHATRONIK. Ilość godzin: 4. Wykonała: Beata Sedivy

Wymagania edukacyjne: Elektrotechnika i elektronika. Klasa: 1Tc TECHNIK MECHATRONIK. Ilość godzin: 4. Wykonała: Beata Sedivy Wymagania edukacyjne: Elektrotechnika i elektronika Klasa: 1Tc TECHNIK MECHATRONIK Ilość godzin: 4 Wykonała: Beata Sedivy Ocena Ocenę niedostateczną uczeń który Ocenę dopuszczającą Wymagania edukacyjne

Bardziej szczegółowo

14 Modulatory FM CELE ĆWICZEŃ PODSTAWY TEORETYCZNE Podstawy modulacji częstotliwości Dioda pojemnościowa (waraktor)

14 Modulatory FM CELE ĆWICZEŃ PODSTAWY TEORETYCZNE Podstawy modulacji częstotliwości Dioda pojemnościowa (waraktor) 14 Modulatory FM CELE ĆWICZEŃ Poznanie zasady działania i charakterystyk diody waraktorowej. Zrozumienie zasady działania oscylatora sterowanego napięciem. Poznanie budowy modulatora częstotliwości z oscylatorem

Bardziej szczegółowo

Katedra Elektrotechniki Teoretycznej i Informatyki

Katedra Elektrotechniki Teoretycznej i Informatyki Katedra Elektrotechniki Teoretycznej i normatyki aboratorium Teorii Obwodów Przedmiot: Elektrotechnika teoretyczna Numer ćwiczenia: 4 Temat: Obwody rezonansowe (rezonans prądów i napięć). Wprowadzenie

Bardziej szczegółowo

I= = E <0 /R <0 = (E/R)

I= = E <0 /R <0 = (E/R) Ćwiczenie 28 Temat: Szeregowy obwód rezonansowy. Cel ćwiczenia Zmierzenie parametrów charakterystycznych szeregowego obwodu rezonansowego. Wykreślenie krzywej rezonansowej szeregowego obwodu rezonansowego.

Bardziej szczegółowo

Zaliczenie wykładu Technika Analogowa Przykładowe pytania (czas zaliczenia minut, liczba pytań 6 8)

Zaliczenie wykładu Technika Analogowa Przykładowe pytania (czas zaliczenia minut, liczba pytań 6 8) Zaliczenie wyładu Technia Analogowa Przyładowe pytania (czas zaliczenia 3 4 minut, liczba pytań 6 8) Postulaty i podstawowe wzory teorii obowdów 1 Sformułuj pierwsze i drugie prawo Kirchhoffa Wyjaśnij

Bardziej szczegółowo

DANE: wartość skuteczna międzyprzewodowego napięcia zasilającego E S = 230 V; rezystancja odbiornika R d = 2,7 Ω; indukcyjność odbiornika.

DANE: wartość skuteczna międzyprzewodowego napięcia zasilającego E S = 230 V; rezystancja odbiornika R d = 2,7 Ω; indukcyjność odbiornika. Zadanie 4. Prostownik mostkowy 6-pulsowy z tyrystorami idealnymi o komutacji natychmiastowej zasilany z sieci 3 400 V, 50 Hz pracuje z kątem opóźnienia załączenia tyrystorów α = 60º. Obciążenie prostownika

Bardziej szczegółowo

WSTĘP DO ELEKTRONIKI

WSTĘP DO ELEKTRONIKI WSTĘP DO ELEKTONIKI Część II Podstawowe elementy elektroniczne dwójniki bierne LC Formalizm zespolony opisu napięć i prądów harmonicznie zmiennych w czasie impedancja Źródła napięcia i prądu Przekazywanie

Bardziej szczegółowo

Równania Maxwella. Wstęp E B H J D

Równania Maxwella. Wstęp E B H J D Równania Maxwella E B t, H J D t, D, B 0 Równania materiałowe B 0 H M, D 0 E P, J E, gdzie: 0 przenikalność elektryczną próżni ( 0 8854 10 1 As/Vm), 0 przenikalność magetyczną próżni ( 0 4 10 7 Vs/Am),

Bardziej szczegółowo

Wpływ nieliniowości elementów układu pomiarowego na błąd pomiaru impedancji

Wpływ nieliniowości elementów układu pomiarowego na błąd pomiaru impedancji Wpływ nieliniowości elementów układu pomiarowego na błąd pomiaru impedancji Wiesław Miczulski* W artykule przedstawiono wyniki badań ilustrujące wpływ nieliniowości elementów układu porównania napięć na

Bardziej szczegółowo

RÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego?

RÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego? RÓWNANIA MAXWELLA Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego? Wykład 3 lato 2012 1 Doświadczenia Wykład 3 lato 2012 2 1

Bardziej szczegółowo

PODSTAWY ELEKTRONIKI I TECHNIKI CYFROWEJ

PODSTAWY ELEKTRONIKI I TECHNIKI CYFROWEJ z 0 0-0-5 :56 PODSTAWY ELEKTONIKI I TECHNIKI CYFOWEJ opracowanie zagadnieo dwiczenie Badanie wzmacniaczy operacyjnych POLITECHNIKA KAKOWSKA Wydział Inżynierii Elektrycznej i Komputerowej Kierunek informatyka

Bardziej szczegółowo

Anteny i Propagacja Fal

Anteny i Propagacja Fal Anteny i Propagacja Fal Seminarium Dyplomowe 26.11.2012 Bartosz Nizioł Grzegorz Kapusta 1. Charakterystyka promieniowania anteny określa: P: unormowany do wartości maksymalnej przestrzenny rozkład natężenia

Bardziej szczegółowo

Indukcja wzajemna. Transformator. dr inż. Romuald Kędzierski

Indukcja wzajemna. Transformator. dr inż. Romuald Kędzierski Indukcja wzajemna Transformator dr inż. Romuald Kędzierski Do czego służy transformator? Jest to urządzenie (zwane też maszyną elektryczną), które wykorzystując zjawisko indukcji elektromagnetycznej pozwala

Bardziej szczegółowo

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH POMIARY WIELKOŚCI NIEELEKTRYCZNYCH Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EMNS Semestr zimowy studia niestacjonarne Wykład nr

Bardziej szczegółowo

Mikrofalowe elementy pasywne. Poniżej przedstawiono opis układów mikrofalowych pasywnych wykorzystywanych w technice wysokich częstotliwości.

Mikrofalowe elementy pasywne. Poniżej przedstawiono opis układów mikrofalowych pasywnych wykorzystywanych w technice wysokich częstotliwości. Mikrofalowe elementy pasywne Poniżej przedstawiono opis układów mikrofalowych pasywnych wykorzystywanych w technice wysokich częstotliwości. Fixed attenuator FAT - Tłumik Sygnału Tłumik sygnału służy do

Bardziej szczegółowo

Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie

Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie napisał Michał Wierzbicki Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie Prędkość grupowa paczki falowej Paczka falowa jest superpozycją fal o różnej częstości biegnących wzdłuż osi z.

Bardziej szczegółowo

Ćwiczenie nr 05 1 Oscylatory RF Podstawy teoretyczne Aβ(s) 1 Generator w układzie Colpittsa gmr Aβ(S) =1 gmrc1/c2=1 lub gmr=c2/c1 gmr C2/C1

Ćwiczenie nr 05 1 Oscylatory RF Podstawy teoretyczne Aβ(s) 1 Generator w układzie Colpittsa gmr Aβ(S) =1 gmrc1/c2=1 lub gmr=c2/c1 gmr C2/C1 Ćwiczenie nr 05 Oscylatory RF Cel ćwiczenia: Zrozumienie zasady działania i charakterystyka oscylatorów RF. Projektowanie i zastosowanie oscylatorów w obwodach. Czytanie schematów elektronicznych, przestrzeganie

Bardziej szczegółowo

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO ĆWICZENIE 53 PRAWO OHMA DLA PRĄDU PRZEMIENNEGO Cel ćwiczenia: wyznaczenie wartości indukcyjności cewek i pojemności kondensatorów przy wykorzystaniu prawa Ohma dla prądu przemiennego; sprawdzenie prawa

Bardziej szczegółowo

Wprowadzenie do optyki nieliniowej

Wprowadzenie do optyki nieliniowej Wprowadzenie do optyki nieliniowej Prezentacja zawiera kopie folii omawianych na wykładzie. Niniejsze opracowanie chronione jest prawem autorskim. Wykorzystanie niekomercyjne dozwolone pod warunkiem podania

Bardziej szczegółowo

Wykaz symboli, oznaczeń i skrótów

Wykaz symboli, oznaczeń i skrótów Wykaz symboli, oznaczeń i skrótów Symbole a a 1 operator obrotu podstawowej zmiennych stanu a 1 podstawowej uśrednionych zmiennych stanu b 1 podstawowej zmiennych stanu b 1 A A i A A i, j B B i cosφ 1

Bardziej szczegółowo

BADANIE ELEKTRYCZNEGO OBWODU REZONANSOWEGO RLC

BADANIE ELEKTRYCZNEGO OBWODU REZONANSOWEGO RLC Ćwiczenie 45 BADANE EEKTYZNEGO OBWOD EZONANSOWEGO 45.. Wiadomości ogólne Szeregowy obwód rezonansowy składa się z oporu, indukcyjności i pojemności połączonych szeregowo i dołączonych do źródła napięcia

Bardziej szczegółowo

Mostek Wheatstone a, Maxwella, Sauty ego-wiena. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Mostek Wheatstone a, Maxwella, Sauty ego-wiena. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Mostek Wheatstone a, Maxwella, Sauty ego-wiena Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego 2 Do pomiaru rezystancji rezystorów, rezystancji i indukcyjności

Bardziej szczegółowo

Systemy liniowe i stacjonarne

Systemy liniowe i stacjonarne Systemy liniowe i stacjonarne Układ (np.: dwójnik) jest liniowy wtedy i tylko wtedy gdy: Spełnia własność skalowania (jednorodność): T [a x (t )]=a T [ x (t)]=a y (t ) Jeśli wymuszenie zostanie przeskalowane

Bardziej szczegółowo

Ćwiczenie: "Silnik indukcyjny"

Ćwiczenie: Silnik indukcyjny Ćwiczenie: "Silnik indukcyjny" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: Zasada

Bardziej szczegółowo

) I = dq. Obwody RC. I II prawo Kirchhoffa: t = RC (stała czasowa) IR V C. ! E d! l = 0 IR +V C. R dq dt + Q C V 0 = 0. C 1 e dt = V 0.

) I = dq. Obwody RC. I II prawo Kirchhoffa: t = RC (stała czasowa) IR V C. ! E d! l = 0 IR +V C. R dq dt + Q C V 0 = 0. C 1 e dt = V 0. Obwody RC t = 0, V C = 0 V 0 IR 0 V C C I II prawo Kirchhoffa: " po całym obwodzie zamkniętym E d l = 0 IR +V C V 0 = 0 R dq dt + Q C V 0 = 0 V 0 R t = RC (stała czasowa) Czas, po którym prąd spadnie do

Bardziej szczegółowo

Spis treści. Strona 1 z 36

Spis treści. Strona 1 z 36 Spis treści 1. Wzmacniacz mocy 50Ω 50W 20 do 512 MHz - sztuk 4... 2 2. Wzmacniacz małej mocy 50Ω 0.2 MHz do 750 MHz sztuk 3... 3 3. Wzmacniacz Niskoszumowy 50Ω 0.1 MHz do 500 MHz sztuk 3... 4 4. Wzmacniacz

Bardziej szczegółowo

Laboratorium Podstaw Elektrotechniki i Elektroniki

Laboratorium Podstaw Elektrotechniki i Elektroniki Politechnika Gdańska Wydział Elektrotechniki i utomatyki 1) Wstęp st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDLNEGO

Bardziej szczegółowo

Ćwiczenie 2: pomiar charakterystyk i częstotliwości granicznych wzmacniacza napięcia REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU

Ćwiczenie 2: pomiar charakterystyk i częstotliwości granicznych wzmacniacza napięcia REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU R C E Z w B I Ł G O R A J U LABORATORIUM pomiarów elektronicznych UKŁADÓW ANALOGOWYCH Ćwiczenie 2: pomiar charakterystyk i częstotliwości granicznych wzmacniacza

Bardziej szczegółowo

INSTRUKCJA LABORATORIUM ELEKTROTECHNIKI BADANIE TRANSFORMATORA. Autor: Grzegorz Lenc, Strona 1/11

INSTRUKCJA LABORATORIUM ELEKTROTECHNIKI BADANIE TRANSFORMATORA. Autor: Grzegorz Lenc, Strona 1/11 NSTRKCJA LABORATORM ELEKTROTECHNK BADANE TRANSFORMATORA Autor: Grzegorz Lenc, Strona / Badanie transformatora Celem ćwiczenia jest poznanie zasady działania transformatora oraz wyznaczenie parametrów schematu

Bardziej szczegółowo

Charakterystyki częstotliwościowe elementów pasywnych

Charakterystyki częstotliwościowe elementów pasywnych Charakterystyki częstotliwościowe elementów pasywnych Parametry elementów pasywnych; reaktancji indukcyjnej (XLωL) oraz pojemnościowej (XC1/ωC) zależą od częstotliwości. Ma to istotne znaczenie w wielu

Bardziej szczegółowo

Stosując tzw. równania telegraficzne możemy wyznaczyć napięcie i prąd w układzie: x x. x x

Stosując tzw. równania telegraficzne możemy wyznaczyć napięcie i prąd w układzie: x x. x x WFiIS LABORATORIUM Z ELEKTRONIKI Imię i nazwisko: 1. 2. TEMAT: ROK GRUPA ZESPÓŁ NR ĆWICZENIA Data wykonania: Data oddania: Zwrot do poprawy: Data oddania: Data zliczenia: OCENA WSTĘP TEORETYCZNY Model

Bardziej szczegółowo

Temat: Wzmacniacze operacyjne wprowadzenie

Temat: Wzmacniacze operacyjne wprowadzenie Temat: Wzmacniacze operacyjne wprowadzenie.wzmacniacz operacyjny schemat. Charakterystyka wzmacniacza operacyjnego 3. Podstawowe właściwości wzmacniacza operacyjnego bardzo dużym wzmocnieniem napięciowym

Bardziej szczegółowo

PODSTAWY FIZYKI LASERÓW Wstęp

PODSTAWY FIZYKI LASERÓW Wstęp PODSTAWY FIZYKI LASERÓW Wstęp LASER Light Amplification by Stimulation Emission of Radiation Składa się z: 1. ośrodka czynnego. układu pompującego 3.Rezonator optyczny - wnęka rezonansowa Generatory: liniowe

Bardziej szczegółowo

Elektronika (konspekt)

Elektronika (konspekt) Elektronika (konspekt) Franciszek Gołek (golek@ifd.uni.wroc.pl) www.pe.ifd.uni.wroc.pl Wykład 04 Filtry RLC Filtrem nazywamy urządzenie, które przepuszczając (transmitując) sygnał wejściowy może zmieniać

Bardziej szczegółowo

u (0) = 0 i(0) = 0 Obwód RLC Odpowiadający mu schemat operatorowy E s 1 sc t = 0 i(t) w u R (t) E u C (t) C

u (0) = 0 i(0) = 0 Obwód RLC Odpowiadający mu schemat operatorowy E s 1 sc t = 0 i(t) w u R (t) E u C (t) C Obwód RLC t = 0 i(t) R L w u R (t) u L (t) E u C (t) C Odpowiadający mu schemat operatorowy R I Dla zerowych warunków początkowych na cewce i kondensatorze 1 sc sl u (0) = 0 C E s i(0) = 0 Prąd I w obwodzie

Bardziej szczegółowo

WYKŁAD 2 Pojęcia podstawowe obwodów prądu zmiennego

WYKŁAD 2 Pojęcia podstawowe obwodów prądu zmiennego Pracownia Wstępna - - WYKŁAD 2 Pojęcia podstawowe obwodów prądu zmiennego Układy złożone z elementów biernych Bierne elementy elektroniczne to : opór R: u ( = Ri( indukcyjność L: di( u( = L i pojemność

Bardziej szczegółowo

X L = jωl. Impedancja Z cewki przy danej częstotliwości jest wartością zespoloną

X L = jωl. Impedancja Z cewki przy danej częstotliwości jest wartością zespoloną Cewki Wstęp. Urządzenie elektryczne charakteryzujące się indukcyjnością własną i służące do uzyskiwania silnych pól magnetycznych. Szybkość zmian prądu płynącego przez cewkę indukcyjną zależy od panującego

Bardziej szczegółowo

Ćwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDALNEGO

Ćwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDALNEGO Politechnika Gdańska Wydział Elektrotechniki i Automatyki 1. Wstęp st. stacjonarne I st. inżynierskie, Mechatronika (WM) Laboratorium Elektrotechniki Ćwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDALNEGO

Bardziej szczegółowo

XXXIII OOWEE 2010 Grupa Elektryczna

XXXIII OOWEE 2010 Grupa Elektryczna 1. W jakich jednostkach mierzymy natężenie pola magnetycznego: a) w amperach na metr b) w woltach na metr c) w henrach d) w teslach 2. W przedstawionym na rysunku układzie trzech rezystorów R 1 = 8 Ω,

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 6, Radosław Chrapkiewicz, Filip Ozimek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 6, Radosław Chrapkiewicz, Filip Ozimek Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 6, 0.03.01 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 5 - przypomnienie ciągłość

Bardziej szczegółowo

2. REZONANS W OBWODACH ELEKTRYCZNYCH

2. REZONANS W OBWODACH ELEKTRYCZNYCH 2. EZONANS W OBWODAH EEKTYZNYH 2.. ZJAWSKO EZONANS Obwody elektryczne, w których występuje zjawisko rezonansu nazywane są obwodami rezonansowymi lub drgającymi. ozpatrując bezźródłowy obwód elektryczny,

Bardziej szczegółowo

Metody mostkowe. Mostek Wheatstone a, Maxwella, Sauty ego-wiena

Metody mostkowe. Mostek Wheatstone a, Maxwella, Sauty ego-wiena Metody mostkowe Mostek Wheatstone a, Maxwella, Sauty ego-wiena Rodzaje przewodników Do pomiaru rezystancji rezystorów, rezystancji i indukcyjności cewek, pojemności i stratności kondensatorów stosuje się

Bardziej szczegółowo

LABORATORIUM PRZEKŁADNIKÓW

LABORATORIUM PRZEKŁADNIKÓW Politechnika Łódzka, Wydział Elektrotechniki, Elektroniki, nformatyki i Automatyki nstytut Elektroenergetyki, Zakład Przekładników i Kompatybilności Elektromagnetycznej Grupa dziekańska... Rok akademicki...

Bardziej szczegółowo

LABORATORIUM OBWODÓW I SYGNAŁÓW

LABORATORIUM OBWODÓW I SYGNAŁÓW POLITECHNIKA WARSZAWSKA Instytut Radioelektroniki Zakład Radiokomunikacji WIECZOROWE STUDIA ZAWODOWE LABORATORIUM OBWODÓW I SYGNAŁÓW Ćwiczenie Temat: OBWODY PRĄDU SINUSOIDALNIE ZMIENNEGO Opracował: mgr

Bardziej szczegółowo