ALGORYTM EWOLUCYJNY DLA PROBLEMU GRUPOWANIA WYROBÓW Z ALTERNATYWNYMI MARSZRUTAMI

Wielkość: px
Rozpocząć pokaz od strony:

Download "ALGORYTM EWOLUCYJNY DLA PROBLEMU GRUPOWANIA WYROBÓW Z ALTERNATYWNYMI MARSZRUTAMI"

Transkrypt

1 Adam Stawowy ALGORYTM EWOLUCYJNY DLA PROBLEMU GRUPOWANIA WYROBÓW Z ALTERNATYWNYMI MARSZRUTAMI EVOLUTIONARY STRATEGY FOR CELL FORMATION PROBLEM WITH MULTIPLE ROUTINGS Summary: Group Technology (GT) is philosophy which aims to decompose a manufacturing system into autonomous subsystems (groups). The objective is to aggregating similar parts into families and dissimilar machines into cells such that inter-cell movement of parts is minimized. In this paper, the basic evolutionary strategy model is extended to consider alternative routes. The approach is demonstrated on data from the literature and is shown to be an effective cell design tool. The results confirmed once more the power of the evolutionary algorithms which consists in ability to generate very good solutions without going into the structure of the problem. 1. Wprowadzenie Technologia grupowa (ang. GT - Group Technology) jest metodą zarządzania produkcją, która zakłada podział systemu wytwarzania na autonomiczne podsystemy (grupy). Celem jest zebranie podobnych wyrobów (części) w grupy i niepodobnych urządzeń (maszyn) w komórki tak, by transport międzykomórkowy części był zminimalizowany [1, 6]. W artykule tym najpierw przedstawiono problem technologii grupowej z alternatywnymi marszrutami. W rozdziale 3. objaśniono strategię ewolucyjną (ES) użytą do rozwiązania problemu formowania komórek produkcyjnych. W rozdziale 4. omówiono rezultaty eksperymentu dla wybranego problemu literaturowego. Wnioski zaprezentowano w rozdziale 5. dr inż., Wydział Zarządzania, Akademia Górniczo-Hutnicza, Kraków

2 2. Problem projektowania komórek W procesie projektowania elastycznych struktur produkcyjnych najefektywniejszą metodą jest grupowanie wyrobów na bazie analizy przepływu produkcji PFA (Production Flow Analysis). Na podstawie analizy istniejących marszrut technologicznych konstruowana jest macierz incydencji M. Wartość 1 elementu Mij oznacza, że maszyna i jest używana do wykonania wyrobu j, a wartość 0 - sytuację przeciwną. Tak więc kolumna Mj macierzy opisuje marszrutę technologiczną dla j-tego produktu. Celem jest przetransformowanie macierzy M w klastry poprzez odpowiednie przestawianie wierszy i kolumn - otrzymane bloki formują komórki maszyn [7]. Zaproponowano wiele różnych algorytmów do rozwiązania tego problemu, wyczerpujący przegląd można znaleźć w pracy Joines'a i zespołu [4]. Prawie wszystkie algorytmy zakładają istnienie tylko jednej dopuszczalnej marszruty dla danej części. Tymczasem istnienie funkcjonalnie podobnych urządzeń jest w praktyce produkcyjnej oczywiste i co więcej ich uwzględnienie może prowadzić do znacznie lepszego zaprojektowania struktury produkcyjnej [8]. Proponowane w literaturze algorytmy są skomplikowane i mało elastyczne; wad tych jest pozbawione podejście ewolucyjne, które przedstawił Joines i zespół [5]. Jest to rozszerzenie specjalizowanego algorytmu genetycznego (GA) dla standardowego problemu formowania komórek [3]. Zastosowano w nim 7 różnych operatorów (4 mutacje i 3 krzyżówki) dla populacji złożonej z rozwiązań; liczba generacji wynosi , w zależności od rozmiaru problemu. Rozwiązanie (chromosom) kodowane jest w postaci trzech genów: R x1, x2,..., xm, y1, y2,..., yn, z1, z2,... zn maszyny wyroby marszruty 3. Algorytm ewolucyjny dla problemu grupowania z alternatywnymi marszrutami Proponowane podejście należy do technik sztucznej inteligencji i jest modyfikacją algorytmu strategii ewolucyjnej stosowanej przez autora dla standardowego problemu formowania komórek [10]. Jest to (1, )-ES, w której =100 potomków jest generowanych z jednego rodzica za pomocą prostych mutacji. Krzyżowanie nie jest stosowane. Najlepszy z potomków zastępuje rodzica w nowej populacji. Ten sposób selekcji (rodzic nie konkuruje z potomkami) powoduje często pogorszenie rozwiązania wejściowego, ale poprawia efektywność algorytmu. Działanie algorytmu było przerywane po ewolucji 250 pokoleń; oznacza to, że zaledwie pojedynczych rozwiązań było przeliczanych podczas działania algorytmu. Należy również podkreślić, że - podczas obliczania funkcji przystosowania - algorytm jednoznacznie przyporządkowuje maszyny i wyroby do komórek, więc określenie maszyny będącej "wąskim gardłem" nie przedstawia żadnych trudności.

3 Dopuszczalne rozwiązania są kodowane przy pomocy dwóch genów. Pierwszy jest listą n elementów i s separatorów grup, przy czym wartość j (1 j n) określająca numer elementu może wystąpić na liście tylko jeden raz, podobnie jak wartość i (n+1 i n+s) określająca numer separatora. Za pomocą parametru s można kontrolować liczbę grup w rozwiązaniu. Drugi gen koduje marszrutę przypisaną kolejnym częściom w rozwiązaniu. R y1, y2,..., yn, yn 1,..., yn s, z1, z2,... zn wyrobyi separatory marszruty Tak więc dla 7 elementów i 3 separatorów grup, rozwiązanie postaci R = (1,3,9,8,5,2,7,10,6,4,1,1,2,2,3,3,3) oznacza, że elementy umieszczone są w trzech grupach (1,3), (5,2,7) i (6,4), przy czym pierwszy wyrób przechodzi marszrutę nr 1, drugi nr 1, a siódmy nr 3. Funkcję dopasowania stanowi ważony wskaźnik efektywności zaproponowany przez Ng [9]; funkcję tę maksymalizowano: q( e e0 ) FF q( e ev e0 ) ( 1 q) e0 (1) gdzie: e - liczba operacji w macierzy incydencji e v - liczba pustych miejsc w blokach e 0 - liczba elementów leżących poza blokami q - współczynnik wagi (przyjęto q = 0,5). Dla pierwszego genu stosowano znane z literatury mutacje tj. wymiany, wstawiania i inwersji. Najistotniejszą cechą algorytmu, różniącą go od prób innych autorów, jest to, że mutacji podlegają zarówno elementy jak i separatory. Dla drugiego genu stosowano prostą mutację polegającą na losowaniu numeru marszruty oddzielnie dla każdego wyrobu. Algorytm strategii ewolucyjnej dla problemu formowania komórek charakteryzują zebrane w tabeli 1 elementy i parametry. 4. Badanie eksperymentalne Działanie proponowanego algorytmu przetestowano na przykładzie problemu opisanego przez Nagi i zespół [8]. W eksperymentach stosowano wartości parametrów zebrane w tabeli 1. Na rysunku 1 przedstawiono oryginalną macierz incydencji z alternatywnymi marszrutami dla poszczególnych wyrobów, spośród których wyroby nr 16, 17, 18 i 19 mają tylko jedną dopuszczalną marszrutę. Tak więc algorytm szukał rozwiązania dla 40 zmiennych (20 wyrobów, 4 separatory i 16 marszrut). Algorytm GA Joinesa i zespołu znajdywał najlepsze rozwiązanie =0,7952 średnio po 231,6 generacjach z jednym elementem leżącym poza blokami oraz 16 pustymi miejscami w blokach. Proponowany algorytm

4 znajdywał najlepsze rozwiązanie średnio po 132,3 pokoleniach, przy czym w 6 przypadkach na 10 było to rozwiązanie o =0,8 z trzema elementami leżącymi poza blokami oraz 14 pustymi miejscami w blokach. W tym przypadku, zaprezentowanym na rysunku 2, maszyna nr 17 nie jest wykorzystywana. Tabela 1. Elementy strategii ewolucyjnej dla problemu formowania komórek Funkcja przystosowania Schemat i populacja reprezentacja rozmiar populacji inicjalizacja selekcja następnego pokolenia warunek zatrzymania Reprodukcja Mutacja pierwszy gen P m drugi gen P m ważony wskaźnik efektywności lista (ciąg) n wyrobów i s separatorów grup oraz ciąg marszrut dla poszczególnych wyrobów 1 rodzic, 100 potomków 1 rozwiązanie wyznaczone w sposób losowy najlepszy potomek zastępuje rodzica po wygenerowaniu 250 pokoleń nie stosowano wymiana, wstawianie i inwersja stosowane z równym prawdopodobieństwem 1,0 losowanie z rozkładu równomiernego numeru marszruty 1/n Problem testowy okazały się łatwy dla naszego algorytmu: w żadnym przypadku algorytm ES nie potrzebował więcej niż 165 generacji, by znaleźć najlepsze rozwiązanie. Biorąc pod uwagę wartość tego parametru, wyniki osiągnięte przez ES są dużo lepsze niż GA Joinsa. Należy przy tym zauważyć, że ES operuje na mniejszej populacji niż GA, a operatory są mniej skomplikowane, stąd algorytm ES działa dużo szybciej niż GA.

5 wyrób marszruta maszyna Rys. 1. Wejściowa macierz dla problemu Nagi z alternatywnymi marszrutami

6 wyrób marszruta maszyny 5. Wnioski końcowe wyroby Rys. 2. Najlepsze rozwiązanie dla problemu Nagi Istnieje bogata literatura opisująca algorytmy optymalizacyjne i heurystyczne dla problemu formowania komórek produkcyjnych. Praktyczne ich zastosowanie jest jednak ograniczone ze względu na rozmiary problemów albo małą elastyczność. Autor [10] zaproponował prosty i elastyczny algorytm strategii ewolucyjnej dla rozwiązania grupowania wyrobów i maszyn. Dzięki zastosowanej reprezentacji oraz sposobowi mutacji, którym podlegają zarówno separatory jak i elementy, zaproponowany algorytm działa dużo szybciej niż bardziej skomplikowane, specjalizowane algorytmy genetyczne. W niniejszej pracy zaproponowano rozszerzenie oryginalnego algorytmu. Zastosowana reprezentacja umożliwia generowanie rozwiązań, które uwzględniają występowanie funkcjonalnie identycznych maszyn (alternatywnych marszrut). Wyniki eksperymentów jeszcze raz potwierdziły siłę algorytmów ewolucyjnych, która polega na zdolności do generowania bardzo dobrych rozwiązań bez wnikania w strukturę problemu.

7 Literatura [1] Gallagher C.C., Knight W.A., Group technology production methods in manufacture, Ellis Horwood Limited, New York [2] Falkenauer E., A new representation and operators for GAs applied to grouping problems, Evolutionary Computation, 2(2)/1994. [3] Joines J.A., Culbreth C.T., King R.E., Manufacturing cell design: An integer programming model employing genetic, IIE Transactions, 28(1)/1996. [4] Joines J.A., King R.E., Culbreth C.T.: A comprehensive review of production-oriented manufacturing cell formation techniques, International Journal of Flexible Automation and Integrated Manufacturing, 3(3&4)/1996. [5] Joines J.A., King R.E., Culbreth C.T., Moving beyond the parts incidence matrix: alternative routings and operations for the cell formation problem, [6] King J.R., Nakornchai V., Machine-component group formation in group technology: Review and extension, International Journal of Production Research, 20(2)/1982. [7] Kusiak A., Part families selection model for flexible manufacturing systems, International Journal of Production Research, 28(2)/1983. [8] Nagi R., Harhalakis G., Proth J.M., Multiple routings and capacity considerations in group technology applications, International Journal of Production Research, 28(12)/1990. [9] Ng S., Worst-case analysis of an algorithm for cellular manufacturing, EJOR, 69(3)/1993. [10]Stawowy A., Strategia ewolucyjna dla problemu grupowania wyrobów, Komputerowo zintegrowane zarządzanie, tom 2, pod red. Ryszarda Knosali, Wydawnictwa Naukowo-Techniczne, Warszawa 2000.

Algorytm genetyczny (genetic algorithm)-

Algorytm genetyczny (genetic algorithm)- Optymalizacja W praktyce inżynierskiej często zachodzi potrzeba znalezienia parametrów, dla których system/urządzenie będzie działać w sposób optymalny. Klasyczne podejście do optymalizacji: sformułowanie

Bardziej szczegółowo

WAE Jarosław Arabas Pełny schemat algorytmu ewolucyjnego

WAE Jarosław Arabas Pełny schemat algorytmu ewolucyjnego WAE Jarosław Arabas Pełny schemat algorytmu ewolucyjnego Algorytm ewolucyjny algorytm ewolucyjny inicjuj P 0 {P 0 1, P 0 2... P 0 μ } t 0 H P 0 while! stop for (i 1: λ) if (a< p c ) O t i mutation(crossover

Bardziej szczegółowo

IMPLIKACJE ZASTOSOWANIA KODOWANIA OPARTEGO NA LICZBACH CAŁKOWITYCH W ALGORYTMIE GENETYCZNYM

IMPLIKACJE ZASTOSOWANIA KODOWANIA OPARTEGO NA LICZBACH CAŁKOWITYCH W ALGORYTMIE GENETYCZNYM IMPLIKACJE ZASTOSOWANIA KODOWANIA OPARTEGO NA LICZBACH CAŁKOWITYCH W ALGORYTMIE GENETYCZNYM Artykuł zawiera opis eksperymentu, który polegał na uyciu algorytmu genetycznego przy wykorzystaniu kodowania

Bardziej szczegółowo

Algorytmy genetyczne

Algorytmy genetyczne 9 listopada 2010 y ewolucyjne - zbiór metod optymalizacji inspirowanych analogiami biologicznymi (ewolucja naturalna). Pojęcia odwzorowujące naturalne zjawiska: Osobnik Populacja Genotyp Fenotyp Gen Chromosom

Bardziej szczegółowo

ALGORYTM EWOLUCYJNY DLA PROBLEMU SZEREGOWANIA ZADAŃ W SYSTEMIE PRZEPŁYWOWYM

ALGORYTM EWOLUCYJNY DLA PROBLEMU SZEREGOWANIA ZADAŃ W SYSTEMIE PRZEPŁYWOWYM ALGORYTM EWOLUCYJNY DLA PROBLEMU SZEREGOWANIA ZADAŃ W SYSTEMIE PRZEPŁYWOWYM Adam STAWOWY, Marek ŚWIĘCHOWICZ Streszczenie: W pracy zaprezentowano algorytm strategii ewolucyjnej do problemu szeregowania

Bardziej szczegółowo

Strefa pokrycia radiowego wokół stacji bazowych. Zasięg stacji bazowych Zazębianie się komórek

Strefa pokrycia radiowego wokół stacji bazowych. Zasięg stacji bazowych Zazębianie się komórek Problem zapożyczania kanałów z wykorzystaniem narzędzi optymalizacji Wprowadzenie Rozwiązanie problemu przydziału częstotliwości prowadzi do stanu, w którym każdej stacji bazowej przydzielono żądaną liczbę

Bardziej szczegółowo

ALGORYTMY GENETYCZNE ćwiczenia

ALGORYTMY GENETYCZNE ćwiczenia ćwiczenia Wykorzystaj algorytmy genetyczne do wyznaczenia minimum globalnego funkcji testowej: 1. Wylosuj dwuwymiarową tablicę 100x2 liczb 8-bitowych z zakresu [-100; +100] reprezentujących inicjalną populację

Bardziej szczegółowo

LABORATORIUM 4: Algorytmy ewolucyjne cz. 2 wpływ operatorów krzyżowania i mutacji na skuteczność poszukiwań AE

LABORATORIUM 4: Algorytmy ewolucyjne cz. 2 wpływ operatorów krzyżowania i mutacji na skuteczność poszukiwań AE Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl METODY HEURYSTYCZNE LABORATORIUM 4: Algorytmy ewolucyjne cz. 2 wpływ operatorów krzyżowania

Bardziej szczegółowo

Algorytm hybrydowy dla alokacji portfela inwestycyjnego przy ograniczonych zasobach

Algorytm hybrydowy dla alokacji portfela inwestycyjnego przy ograniczonych zasobach Adam Stawowy Algorytm hybrydowy dla alokacji portfela inwestycyjnego przy ograniczonych zasobach Summary: We present a meta-heuristic to combine Monte Carlo simulation with genetic algorithm for Capital

Bardziej szczegółowo

Dobór parametrów algorytmu ewolucyjnego

Dobór parametrów algorytmu ewolucyjnego Dobór parametrów algorytmu ewolucyjnego 1 2 Wstęp Algorytm ewolucyjny posiada wiele parametrów. Przykładowo dla algorytmu genetycznego są to: prawdopodobieństwa stosowania operatorów mutacji i krzyżowania.

Bardziej szczegółowo

Algorytmy ewolucyjne - algorytmy genetyczne. I. Karcz-Dulęba

Algorytmy ewolucyjne - algorytmy genetyczne. I. Karcz-Dulęba Algorytmy ewolucyjne - algorytmy genetyczne I. Karcz-Dulęba Algorytmy klasyczne a algorytmy ewolucyjne Przeszukiwanie przestrzeni przez jeden punkt bazowy Przeszukiwanie przestrzeni przez zbiór punktów

Bardziej szczegółowo

Podejście memetyczne do problemu DCVRP - wstępne wyniki. Adam Żychowski

Podejście memetyczne do problemu DCVRP - wstępne wyniki. Adam Żychowski Podejście memetyczne do problemu DCVRP - wstępne wyniki Adam Żychowski Na podstawie prac X. S. Chen, L. Feng, Y. S. Ong A Self-Adaptive Memeplexes Robust Search Scheme for solving Stochastic Demands Vehicle

Bardziej szczegółowo

Algorytmy genetyczne. Materiały do laboratorium PSI. Studia niestacjonarne

Algorytmy genetyczne. Materiały do laboratorium PSI. Studia niestacjonarne Algorytmy genetyczne Materiały do laboratorium PSI Studia niestacjonarne Podstawowy algorytm genetyczny (PAG) Schemat blokowy algorytmu genetycznego Znaczenia, pochodzących z biologii i genetyki, pojęć

Bardziej szczegółowo

Algorytmy ewolucyjne NAZEWNICTWO

Algorytmy ewolucyjne NAZEWNICTWO Algorytmy ewolucyjne http://zajecia.jakubw.pl/nai NAZEWNICTWO Algorytmy ewolucyjne nazwa ogólna, obejmująca metody szczegółowe, jak np.: algorytmy genetyczne programowanie genetyczne strategie ewolucyjne

Bardziej szczegółowo

SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO

SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO. Rzeczywistość (istniejąca lub projektowana).. Model fizyczny. 3. Model matematyczny (optymalizacyjny): a. Zmienne projektowania

Bardziej szczegółowo

Katedra Informatyki Stosowanej. Algorytmy ewolucyjne. Inteligencja obliczeniowa

Katedra Informatyki Stosowanej. Algorytmy ewolucyjne. Inteligencja obliczeniowa Wydział Zarządzania AGH Katedra Informatyki Stosowanej Algorytmy ewolucyjne Treść wykładu Wprowadzenie Zasada działania Podział EA Cechy EA Algorytm genetyczny 2 EA - wprowadzenie Algorytmy ewolucyjne

Bardziej szczegółowo

Zadania laboratoryjne i projektowe - wersja β

Zadania laboratoryjne i projektowe - wersja β Zadania laboratoryjne i projektowe - wersja β 1 Laboratorium Dwa problemy do wyboru (jeden do realizacji). 1. Water Jug Problem, 2. Wieże Hanoi. Water Jug Problem Ograniczenia dla każdej z wersji: pojemniki

Bardziej szczegółowo

Projektowanie logistycznych gniazd przedmiotowych

Projektowanie logistycznych gniazd przedmiotowych Zygmunt Mazur Projektowanie logistycznych gniazd przedmiotowych Uwagi wstępne Logistyka obejmuje projektowanie struktury przep³ywu w procesie wytwarzania. Projektowanie dotyczy ustalania liczby, kszta³tu

Bardziej szczegółowo

Algorytm Genetyczny. zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych

Algorytm Genetyczny. zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych Algorytm Genetyczny zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych Dlaczego Algorytmy Inspirowane Naturą? Rozwój nowych technologii: złożone problemy obliczeniowe w

Bardziej szczegółowo

ALGORYTMY EWOLUCYJNE W OPTYMALIZACJI JEDNOKRYTERIALNEJ

ALGORYTMY EWOLUCYJNE W OPTYMALIZACJI JEDNOKRYTERIALNEJ ALGORYTMY EWOLUCYJNE W OPTYMALIZACJI JEDNOKRYTERIALNEJ Zalety: nie wprowadzają żadnych ograniczeń na sformułowanie problemu optymalizacyjnego. Funkcja celu może być wielowartościowa i nieciągła, obszar

Bardziej szczegółowo

Generowanie i optymalizacja harmonogramu za pomoca

Generowanie i optymalizacja harmonogramu za pomoca Generowanie i optymalizacja harmonogramu za pomoca na przykładzie generatora planu zajęć Matematyka Stosowana i Informatyka Stosowana Wydział Fizyki Technicznej i Matematyki Stosowanej Politechnika Gdańska

Bardziej szczegółowo

Algorytmy genetyczne

Algorytmy genetyczne Algorytmy genetyczne Motto: Zamiast pracowicie poszukiwać najlepszego rozwiązania problemu informatycznego lepiej pozwolić, żeby komputer sam sobie to rozwiązanie wyhodował! Algorytmy genetyczne służą

Bardziej szczegółowo

PLAN WYKŁADU OPTYMALIZACJA GLOBALNA OPERATOR KRZYŻOWANIA ETAPY KRZYŻOWANIA

PLAN WYKŁADU OPTYMALIZACJA GLOBALNA OPERATOR KRZYŻOWANIA ETAPY KRZYŻOWANIA PLAN WYKŁADU Operator krzyżowania Operator mutacji Operator inwersji Sukcesja Przykłady symulacji AG Kodowanie - rodzaje OPTYMALIZACJA GLOBALNA Wykład 3 dr inż. Agnieszka Bołtuć OPERATOR KRZYŻOWANIA Wymiana

Bardziej szczegółowo

LABORATORIUM 3: Wpływ operatorów krzyżowania na skuteczność poszukiwań AE

LABORATORIUM 3: Wpływ operatorów krzyżowania na skuteczność poszukiwań AE Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl OBLICZENIA EWOLUCYJNE LABORATORIUM 3: Wpływ operatorów krzyżowania na skuteczność

Bardziej szczegółowo

Strategie ewolucyjne (ang. evolution strategies)

Strategie ewolucyjne (ang. evolution strategies) Strategie ewolucyjne (ang. evolution strategies) 1 2 Szybki przegląd Rozwijane w Niemczech w latach 60-70. Wcześni badacze: I. Rechenberg, H.-P. Schwefel (student Rechenberga). Typowe zastosowanie: Optymalizacja

Bardziej szczegółowo

Algorytmy genetyczne. Materiały do laboratorium PSI. Studia stacjonarne i niestacjonarne

Algorytmy genetyczne. Materiały do laboratorium PSI. Studia stacjonarne i niestacjonarne Algorytmy genetyczne Materiały do laboratorium PSI Studia stacjonarne i niestacjonarne Podstawowy algorytm genetyczny (PAG) Schemat blokowy algorytmu genetycznego Znaczenia, pochodzących z biologii i genetyki,

Bardziej szczegółowo

Algorytmy genetyczne w optymalizacji

Algorytmy genetyczne w optymalizacji Algorytmy genetyczne w optymalizacji Literatura 1. David E. Goldberg, Algorytmy genetyczne i ich zastosowania, WNT, Warszawa 1998; 2. Zbigniew Michalewicz, Algorytmy genetyczne + struktury danych = programy

Bardziej szczegółowo

ALGORYTMY GENETYCZNE (wykład + ćwiczenia)

ALGORYTMY GENETYCZNE (wykład + ćwiczenia) ALGORYTMY GENETYCZNE (wykład + ćwiczenia) Prof. dr hab. Krzysztof Dems Treści programowe: 1. Metody rozwiązywania problemów matematycznych i informatycznych.. Elementarny algorytm genetyczny: definicja

Bardziej szczegółowo

Algorytm hybrydowy dla problemu pakowania

Algorytm hybrydowy dla problemu pakowania Adam Stawowy Algorytm hybrydowy dla problemu pakowania Summary: We present a meta-heuristic to combine simulated annealing (SA) with local search technique for Bin Packing Problem. The main idea is to

Bardziej szczegółowo

Metody Rozmyte i Algorytmy Ewolucyjne

Metody Rozmyte i Algorytmy Ewolucyjne mgr inż. Wydział Matematyczno-Przyrodniczy Szkoła Nauk Ścisłych Uniwersytet Kardynała Stefana Wyszyńskiego Podstawowe operatory genetyczne Plan wykładu Przypomnienie 1 Przypomnienie Metody generacji liczb

Bardziej szczegółowo

Algorytmy genetyczne. Dariusz Banasiak. Katedra Informatyki Technicznej Wydział Elektroniki

Algorytmy genetyczne. Dariusz Banasiak. Katedra Informatyki Technicznej Wydział Elektroniki Dariusz Banasiak Katedra Informatyki Technicznej Wydział Elektroniki Obliczenia ewolucyjne (EC evolutionary computing) lub algorytmy ewolucyjne (EA evolutionary algorithms) to ogólne określenia używane

Bardziej szczegółowo

Algorytmy genetyczne. Paweł Cieśla. 8 stycznia 2009

Algorytmy genetyczne. Paweł Cieśla. 8 stycznia 2009 Algorytmy genetyczne Paweł Cieśla 8 stycznia 2009 Genetyka - nauka o dziedziczeniu cech pomiędzy pokoleniami. Geny są czynnikami, które decydują o wyglądzie, zachowaniu, rozmnażaniu każdego żywego organizmu.

Bardziej szczegółowo

Wstęp do Sztucznej Inteligencji

Wstęp do Sztucznej Inteligencji Wstęp do Sztucznej Inteligencji Algorytmy Genetyczne Joanna Kołodziej Politechnika Krakowska Wydział Fizyki, Matematyki i Informatyki Metody heurystyczne Algorytm efektywny: koszt zastosowania (mierzony

Bardziej szczegółowo

Odkrywanie algorytmów kwantowych za pomocą programowania genetycznego

Odkrywanie algorytmów kwantowych za pomocą programowania genetycznego Odkrywanie algorytmów kwantowych za pomocą programowania genetycznego Piotr Rybak Koło naukowe fizyków Migacz, Uniwersytet Wrocławski Piotr Rybak (Migacz UWr) Odkrywanie algorytmów kwantowych 1 / 17 Spis

Bardziej szczegółowo

Równoważność algorytmów optymalizacji

Równoważność algorytmów optymalizacji Równoważność algorytmów optymalizacji Reguła nie ma nic za darmo (ang. no free lunch theory): efektywność różnych typowych algorytmów szukania uśredniona po wszystkich możliwych problemach optymalizacyjnych

Bardziej szczegółowo

Algorytmy genetyczne (AG)

Algorytmy genetyczne (AG) Algorytmy genetyczne (AG) 1. Wprowadzenie do AG a) ewolucja darwinowska b) podstawowe definicje c) operatory genetyczne d) konstruowanie AG e) standardowy AG f) przykład rozwiązania g) naprawdę bardzo,

Bardziej szczegółowo

FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2009, Oeconomica 275 (57), 53 58

FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2009, Oeconomica 275 (57), 53 58 FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2009, Oeconomica 275 (57), 53 58 Anna LANDOWSKA ROZWIĄZANIE PROBLEMU OPTYMALNEGO PRZYDZIAŁU ZA POMOCĄ KLASYCZNEGO

Bardziej szczegółowo

ALHE Z11 Jarosław Arabas wykład 11

ALHE Z11 Jarosław Arabas wykład 11 ALHE Z11 Jarosław Arabas wykład 11 algorytm ewolucyjny inicjuj P 0 {x 1, x 2... x } t 0 while! stop for i 1: if a p c O t,i mutation crossover select P t, k else O t,i mutation select P t,1 P t 1 replacement

Bardziej szczegółowo

Strategie ewolucyjne. Gnypowicz Damian Staniszczak Łukasz Woźniak Marek

Strategie ewolucyjne. Gnypowicz Damian Staniszczak Łukasz Woźniak Marek Strategie ewolucyjne Gnypowicz Damian Staniszczak Łukasz Woźniak Marek Strategie ewolucyjne, a algorytmy genetyczne Podobieństwa: Oba działają na populacjach rozwiązań Korzystają z zasad selecji i przetwarzania

Bardziej szczegółowo

Zadanie 5 - Algorytmy genetyczne (optymalizacja)

Zadanie 5 - Algorytmy genetyczne (optymalizacja) Zadanie 5 - Algorytmy genetyczne (optymalizacja) Marcin Pietrzykowski mpietrzykowski@wi.zut.edu.pl wersja 1.0 1 Cel Celem zadania jest zapoznanie się z Algorytmami Genetycznymi w celu rozwiązywanie zadania

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA WYKŁAD 15. ALGORYTMY GENETYCZNE Częstochowa 014 Dr hab. nż. Grzegorz Dudek Wydzał Elektryczny Poltechnka Częstochowska TERMINOLOGIA allele wartośc, waranty genów, chromosom - (naczej

Bardziej szczegółowo

Algorytmy ewolucyjne. Łukasz Przybyłek Studenckie Koło Naukowe BRAINS

Algorytmy ewolucyjne. Łukasz Przybyłek Studenckie Koło Naukowe BRAINS Algorytmy ewolucyjne Łukasz Przybyłek Studenckie Koło Naukowe BRAINS 1 Wprowadzenie Algorytmy ewolucyjne ogólne algorytmy optymalizacji operujące na populacji rozwiązań, inspirowane biologicznymi zjawiskami,

Bardziej szczegółowo

ZASTOSOWANIE ALGORYTMU GENETYCZNEGO DO WYZNACZANIA OPTYMALNYCH DECYZJI STERUJĄCYCH

ZASTOSOWANIE ALGORYTMU GENETYCZNEGO DO WYZNACZANIA OPTYMALNYCH DECYZJI STERUJĄCYCH ZASTOSOWANIE ALGORYTMU GENETYCZNEGO DO WYZNACZANIA OPTYMALNYCH DECYZJI STERUJĄCYCH KLAUDIUSZ MIGAWA 1 Uniwersytet Technologiczno-Przyrodniczy w Bydgoszczy Streszczenie Zagadnienia przedstawione w artykule

Bardziej szczegółowo

6. Klasyczny algorytm genetyczny. 1

6. Klasyczny algorytm genetyczny. 1 6. Klasyczny algorytm genetyczny. 1 Idea algorytmu genetycznego została zaczerpnięta z nauk przyrodniczych opisujących zjawiska doboru naturalnego i dziedziczenia. Mechanizmy te polegają na przetrwaniu

Bardziej szczegółowo

Algorytmy memetyczne (hybrydowe algorytmy ewolucyjne)

Algorytmy memetyczne (hybrydowe algorytmy ewolucyjne) Algorytmy memetyczne (hybrydowe algorytmy ewolucyjne) 1 2 Wstęp Termin zaproponowany przez Pablo Moscato (1989). Kombinacja algorytmu ewolucyjnego z algorytmem poszukiwań lokalnych, tak że algorytm poszukiwań

Bardziej szczegółowo

Obliczenia ewolucyjne - plan wykładu

Obliczenia ewolucyjne - plan wykładu Obliczenia ewolucyjne - plan wykładu Wprowadzenie Algorytmy genetyczne Programowanie genetyczne Programowanie ewolucyjne Strategie ewolucyjne Inne modele obliczeń ewolucyjnych Podsumowanie Ewolucja Ewolucja

Bardziej szczegółowo

Programowanie genetyczne, gra SNAKE

Programowanie genetyczne, gra SNAKE STUDENCKA PRACOWNIA ALGORYTMÓW EWOLUCYJNYCH Tomasz Kupczyk, Tomasz Urbański Programowanie genetyczne, gra SNAKE II UWr Wrocław 2009 Spis treści 1. Wstęp 3 1.1. Ogólny opis.....................................

Bardziej szczegółowo

Programowanie genetyczne

Programowanie genetyczne Dariusz Banasiak Katedra Informatyki Technicznej Wydział Elektroniki Programowanie genetyczne jest rozszerzeniem klasycznego algorytmu genetycznego i jest wykorzystywane do automatycznego generowania programów

Bardziej szczegółowo

FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2011, Oeconomica 285 (62), 45 50

FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2011, Oeconomica 285 (62), 45 50 FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2011, Oeconomica 285 (62), 45 50 Anna Landowska KLASYCZNY ALGORYTM GENETYCZNY W DYNAMICZNEJ OPTYMALIZACJI MODELU

Bardziej szczegółowo

Zastosowanie sztucznej inteligencji w testowaniu oprogramowania

Zastosowanie sztucznej inteligencji w testowaniu oprogramowania Zastosowanie sztucznej inteligencji w testowaniu oprogramowania Problem NP Problem NP (niedeterministycznie wielomianowy, ang. nondeterministic polynomial) to problem decyzyjny, dla którego rozwiązanie

Bardziej szczegółowo

APLIKACJA NAPISANA W ŚRODOWISKU LABVIEW SŁUŻĄCA DO WYZNACZANIA WSPÓŁCZYNNIKA UZWOJENIA MASZYNY INDUKCYJNEJ

APLIKACJA NAPISANA W ŚRODOWISKU LABVIEW SŁUŻĄCA DO WYZNACZANIA WSPÓŁCZYNNIKA UZWOJENIA MASZYNY INDUKCYJNEJ POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 83 Electrical Engineering 2015 Damian BURZYŃSKI* Leszek KASPRZYK* APLIKACJA NAPISANA W ŚRODOWISKU LABVIEW SŁUŻĄCA DO WYZNACZANIA WSPÓŁCZYNNIKA UZWOJENIA

Bardziej szczegółowo

Algorytmy ewolucyjne Część II

Algorytmy ewolucyjne Część II Wydział Zarządzania AGH Katedra Informatyki Stosowanej Algorytmy ewolucyjne Część II Metaheurystyki Treść wykładu Zastosowania Praktyczne aspekty GA Reprezentacja Funkcja dopasowania Zróżnicowanie dopasowania

Bardziej szczegółowo

Ewolucja Różnicowa Differential Evolution

Ewolucja Różnicowa Differential Evolution Ewolucja Różnicowa Differential Evolution Obliczenia z wykorzystaniem metod sztucznej inteligencji Arkadiusz Kalinowski Szczecin, 2016 Zachodniopomorski Uniwersytet Technologiczny w Szczecinie 1 / 22 Plan

Bardziej szczegółowo

Automatyczny dobór parametrów algorytmu genetycznego

Automatyczny dobór parametrów algorytmu genetycznego Automatyczny dobór parametrów algorytmu genetycznego Remigiusz Modrzejewski 22 grudnia 2008 Plan prezentacji Wstęp Atrakcyjność Pułapki Klasyfikacja Wstęp Atrakcyjność Pułapki Klasyfikacja Konstrukcja

Bardziej szczegółowo

LABORATORIUM 2: Wpływ wielkości populacji i liczby pokoleń na skuteczność poszukiwań AE. opracował: dr inż. Witold Beluch

LABORATORIUM 2: Wpływ wielkości populacji i liczby pokoleń na skuteczność poszukiwań AE. opracował: dr inż. Witold Beluch OBLICZENIA EWOLUCYJNE LABORATORIUM 2: Wpływ wielkości populacji i liczby pokoleń na skuteczność poszukiwań AE opracował: dr inż. Witold Beluch witold.beluch@polsl.pl Gliwice 12 OBLICZENIA EWOLUCYJNE LABORATORIUM

Bardziej szczegółowo

BIOCYBERNETYKA ALGORYTMY GENETYCZNE I METODY EWOLUCYJNE. Adrian Horzyk. Akademia Górniczo-Hutnicza

BIOCYBERNETYKA ALGORYTMY GENETYCZNE I METODY EWOLUCYJNE. Adrian Horzyk. Akademia Górniczo-Hutnicza BIOCYBERNETYKA ALGORYTMY GENETYCZNE I METODY EWOLUCYJNE Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki i Inżynierii

Bardziej szczegółowo

Program "FLiNN-GA" wersja 2.10.β

Program FLiNN-GA wersja 2.10.β POLSKIE TOWARZYSTWO SIECI NEURONOWYCH POLITECHNIKA CZĘSTOCHOWSKA Zakład Elektroniki, Informatyki i Automatyki Maciej Piliński Robert Nowicki - GA Program "FLiNN-GA" wersja 2.10.β Podręcznik użytkownika

Bardziej szczegółowo

Algorytmy ewolucyjne (3)

Algorytmy ewolucyjne (3) Algorytmy ewolucyjne (3) http://zajecia.jakubw.pl/nai KODOWANIE PERMUTACJI W pewnych zastosowaniach kodowanie binarne jest mniej naturalne, niż inne sposoby kodowania. Na przykład, w problemie komiwojażera

Bardziej szczegółowo

Standardowy algorytm genetyczny

Standardowy algorytm genetyczny Standardowy algorytm genetyczny 1 Szybki przegląd 2 Opracowany w USA w latach 70. Wcześni badacze: John H. Holland. Autor monografii Adaptation in Natural and Artificial Systems, wydanej w 1975 r., (teoria

Bardziej szczegółowo

NOWE WARIANTY OPERATORÓW GENETYCZNYCH DLA PROBLEMÓW Z KRYTERIUM SUMACYJNYM

NOWE WARIANTY OPERATORÓW GENETYCZNYCH DLA PROBLEMÓW Z KRYTERIUM SUMACYJNYM NOWE WARIANTY OPERATORÓW GENETYCZNYCH DLA PROBLEMÓW Z KRYTERIUM SUMACYJNYM Mariusz MAKUCHOWSKI Streszczenie: W pracy analizuje się własności sumacyjnego kryterium w permutacyjnym problemie przepływowym.

Bardziej szczegółowo

Wybrane podstawowe rodzaje algorytmów

Wybrane podstawowe rodzaje algorytmów Wybrane podstawowe rodzaje algorytmów Tomasz Głowacki tglowacki@cs.put.poznan.pl Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych

Bardziej szczegółowo

Obrona rozprawy doktorskiej Neuro-genetyczny system komputerowy do prognozowania zmiany indeksu giełdowego

Obrona rozprawy doktorskiej Neuro-genetyczny system komputerowy do prognozowania zmiany indeksu giełdowego IBS PAN, Warszawa 9 kwietnia 2008 Obrona rozprawy doktorskiej Neuro-genetyczny system komputerowy do prognozowania zmiany indeksu giełdowego mgr inż. Marcin Jaruszewicz promotor: dr hab. inż. Jacek Mańdziuk,

Bardziej szczegółowo

Algorytmy genetyczne

Algorytmy genetyczne Politechnika Łódzka Katedra Informatyki Stosowanej Algorytmy genetyczne Wykład 2 Przygotował i prowadzi: Dr inż. Piotr Urbanek Powtórzenie Pytania: Jaki mechanizm jest stosowany w naturze do takiego modyfikowania

Bardziej szczegółowo

PRZYKŁAD ZASTOSOWANIA DOKŁADNEGO NIEPARAMETRYCZNEGO PRZEDZIAŁU UFNOŚCI DLA VaR. Wojciech Zieliński

PRZYKŁAD ZASTOSOWANIA DOKŁADNEGO NIEPARAMETRYCZNEGO PRZEDZIAŁU UFNOŚCI DLA VaR. Wojciech Zieliński PRZYKŁAD ZASTOSOWANIA DOKŁADNEGO NIEPARAMETRYCZNEGO PRZEDZIAŁU UFNOŚCI DLA VaR Wojciech Zieliński Katedra Ekonometrii i Statystyki SGGW Nowoursynowska 159, PL-02-767 Warszawa wojtek.zielinski@statystyka.info

Bardziej szczegółowo

Algorytmy ewolucyjne 1

Algorytmy ewolucyjne 1 Algorytmy ewolucyjne 1 2 Zasady zaliczenia przedmiotu Prowadzący (wykład i pracownie specjalistyczną): Wojciech Kwedlo, pokój 205. Konsultacje dla studentów studiów dziennych: poniedziałek,środa, godz

Bardziej szczegółowo

Problemy z ograniczeniami

Problemy z ograniczeniami Problemy z ograniczeniami 1 2 Dlaczego zadania z ograniczeniami Wiele praktycznych problemów to problemy z ograniczeniami. Problemy trudne obliczeniowo (np-trudne) to prawie zawsze problemy z ograniczeniami.

Bardziej szczegółowo

Testy De Jonga. Problemy. 1 Optymalizacja dyskretna i ciągła

Testy De Jonga. Problemy. 1 Optymalizacja dyskretna i ciągła Problemy 1 Optymalizacja dyskretna i ciągła Problemy 1 Optymalizacja dyskretna i ciągła 2 Środowisko pomiarowe De Jonga Problemy 1 Optymalizacja dyskretna i ciągła 2 Środowisko pomiarowe De Jonga 3 Ocena

Bardziej szczegółowo

Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa. Diagnostyka i niezawodność robotów

Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa. Diagnostyka i niezawodność robotów Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa Diagnostyka i niezawodność robotów Laboratorium nr 6 Model matematyczny elementu naprawialnego Prowadzący: mgr inż. Marcel Luzar Cele ćwiczenia:

Bardziej szczegółowo

Wykorzystanie metod ewolucyjnych w projektowaniu algorytmów kwantowych

Wykorzystanie metod ewolucyjnych w projektowaniu algorytmów kwantowych Wykorzystanie metod ewolucyjnych w projektowaniu algorytmów kwantowych mgr inż. Robert Nowotniak Politechnika Łódzka 1 października 2008 Robert Nowotniak 1 października 2008 1 / 18 Plan referatu 1 Informatyka

Bardziej szczegółowo

Algorytmy stochastyczne, wykład 01 Podstawowy algorytm genetyczny

Algorytmy stochastyczne, wykład 01 Podstawowy algorytm genetyczny Algorytmy stochastyczne, wykład 01 J. Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2014-02-21 In memoriam prof. dr hab. Tomasz Schreiber (1975-2010) 1 2 3 Różne Orientacyjny

Bardziej szczegółowo

Metody i techniki sztucznej inteligencji / Leszek Rutkowski. wyd. 2, 3 dodr. Warszawa, Spis treści

Metody i techniki sztucznej inteligencji / Leszek Rutkowski. wyd. 2, 3 dodr. Warszawa, Spis treści Metody i techniki sztucznej inteligencji / Leszek Rutkowski. wyd. 2, 3 dodr. Warszawa, 2012 Spis treści Przedmowa do wydania drugiego Przedmowa IX X 1. Wstęp 1 2. Wybrane zagadnienia sztucznej inteligencji

Bardziej szczegółowo

ALGORYTM EWOLUCYJNY DLA PROBLEMU SZEREGOWANIA ZADAŃ W SYSTEMIE PRZEPŁYWOWYM 1. WPROWADZENIE

ALGORYTM EWOLUCYJNY DLA PROBLEMU SZEREGOWANIA ZADAŃ W SYSTEMIE PRZEPŁYWOWYM 1. WPROWADZENIE szeregowanie zadań, algorytmy ewolucyjne Adam STAWOWY * ALGORYTM EWOLUCYJNY DLA PROBLEMU SZEREGOWANIA ZADAŃ W SYSTEMIE PRZEPŁYWOWYM W pracy zaprezentowano algorytm programowania ewolucyjnego do problemu

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA SYSTEMY ROZMYTE Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki i Inżynierii Biomedycznej Laboratorium

Bardziej szczegółowo

Inspiracje soft computing. Soft computing. Terminy genetyczne i ich odpowiedniki w algorytmach genetycznych. Elementarny algorytm genetyczny

Inspiracje soft computing. Soft computing. Terminy genetyczne i ich odpowiedniki w algorytmach genetycznych. Elementarny algorytm genetyczny Soft computing Soft computing tym róŝni się od klasycznych obliczeń (hard computing), Ŝe jest odporny na brak precyzji i niepewność danych wejściowych. Obliczenia soft computing mają inspiracje ze świata

Bardziej szczegółowo

METODY SZTUCZNEJ INTELIGENCJI algorytmy ewolucyjne

METODY SZTUCZNEJ INTELIGENCJI algorytmy ewolucyjne METODY SZTUCZNEJ INTELIGENCJI algorytmy ewolucyjne dr hab. inż. Andrzej Obuchowicz, prof. UZ Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski A. Obuchowicz: MSI - algorytmy ewolucyjne

Bardziej szczegółowo

Algorytmy ewolucyjne `

Algorytmy ewolucyjne ` Algorytmy ewolucyjne ` Wstęp Czym są algorytmy ewolucyjne? Rodzaje algorytmów ewolucyjnych Algorytmy genetyczne Strategie ewolucyjne Programowanie genetyczne Zarys historyczny Alan Turing, 1950 Nils Aall

Bardziej szczegółowo

Techniki optymalizacji

Techniki optymalizacji Techniki optymalizacji Algorytm kolonii mrówek Idea Smuga feromonowa 1 Sztuczne mrówki w TSP Sztuczna mrówka agent, który porusza się z miasta do miasta Mrówki preferują miasta połączone łukami z dużą

Bardziej szczegółowo

1. Symulacje komputerowe Idea symulacji Przykład. 2. Metody próbkowania Jackknife Bootstrap. 3. Łańcuchy Markova. 4. Próbkowanie Gibbsa

1. Symulacje komputerowe Idea symulacji Przykład. 2. Metody próbkowania Jackknife Bootstrap. 3. Łańcuchy Markova. 4. Próbkowanie Gibbsa BIOINFORMATYKA 1. Wykład wstępny 2. Bazy danych: projektowanie i struktura 3. Równowaga Hardyego-Weinberga, wsp. rekombinacji 4. Analiza asocjacyjna 5. Analiza asocjacyjna 6. Sekwencjonowanie nowej generacji

Bardziej szczegółowo

Gospodarcze zastosowania algorytmów genetycznych

Gospodarcze zastosowania algorytmów genetycznych Marta Woźniak Gospodarcze zastosowania algorytmów genetycznych 1. Wstęp Ekonometria jako nauka zajmująca się ustalaniem za pomocą metod statystycznych ilościowych prawidłowości zachodzących w życiu gospodarczym

Bardziej szczegółowo

Algorytm memetyczny w grach wielokryterialnych z odroczoną preferencją celów. Adam Żychowski

Algorytm memetyczny w grach wielokryterialnych z odroczoną preferencją celów. Adam Żychowski Algorytm memetyczny w grach wielokryterialnych z odroczoną preferencją celów Adam Żychowski Definicja problemu dwóch graczy: P 1 (minimalizator) oraz P 2 (maksymalizator) S 1, S 2 zbiory strategii graczy

Bardziej szczegółowo

OPTYMALIZACJA KSZTAŁTU WYKRESU WÖHLERA Z WYKORZYSTANIEM ALGORYTMÓW EWOLUCYJNYCH W UJĘCIU DIAGNOSTYCZNYM

OPTYMALIZACJA KSZTAŁTU WYKRESU WÖHLERA Z WYKORZYSTANIEM ALGORYTMÓW EWOLUCYJNYCH W UJĘCIU DIAGNOSTYCZNYM mgr inż. Marta Woch *, prof. nadzw. dr hab. inż. Sylwester Kłysz *,** * Instytut Techniczny Wojsk Lotniczych, ** Uniwersytet Warmińsko-Mazurski w Olsztynie OPTYMALIZACJA KSZTAŁTU WYKRESU WÖHLERA Z WYKORZYSTANIEM

Bardziej szczegółowo

Modyfikacje i ulepszenia standardowego algorytmu genetycznego

Modyfikacje i ulepszenia standardowego algorytmu genetycznego Modyfikacje i ulepszenia standardowego algorytmu genetycznego 1 2 Przypomnienie: pseudokod SGA t=0; initialize(p 0 ); while(!termination_condition(p t )) { evaluate(p t ); T t =selection(p t ); O t =crossover(t

Bardziej szczegółowo

Optymalizacja. Wybrane algorytmy

Optymalizacja. Wybrane algorytmy dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Andrzej Jaszkiewicz Problem optymalizacji kombinatorycznej Problem optymalizacji kombinatorycznej jest problemem

Bardziej szczegółowo

LABORATORIUM 1: Program Evolutionary Algorithms

LABORATORIUM 1: Program Evolutionary Algorithms Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl OBLICZENIA EWOLUCYJNE LABORATORIUM 1: Program Evolutionary Algorithms opracował:

Bardziej szczegółowo

Integracja systemu CAD/CAM Catia z bazą danych uchwytów obróbkowych MS Access za pomocą interfejsu API

Integracja systemu CAD/CAM Catia z bazą danych uchwytów obróbkowych MS Access za pomocą interfejsu API Dr inż. Janusz Pobożniak, pobozniak@mech.pk.edu.pl Instytut Technologii Maszyn i Automatyzacji produkcji Politechnika Krakowska, Wydział Mechaniczny Integracja systemu CAD/CAM Catia z bazą danych uchwytów

Bardziej szczegółowo

Metody przeszukiwania

Metody przeszukiwania Metody przeszukiwania Co to jest przeszukiwanie Przeszukiwanie polega na odnajdywaniu rozwiązania w dyskretnej przestrzeni rozwiązao. Zwykle przeszukiwanie polega na znalezieniu określonego rozwiązania

Bardziej szczegółowo

Programowanie genetyczne (ang. genetic programming)

Programowanie genetyczne (ang. genetic programming) Programowanie genetyczne (ang. genetic programming) 1 2 Wstęp Spopularyzowane przez Johna Kozę na początku lat 90-tych. Polega na zastosowaniu paradygmatu obliczeń ewolucyjnych do generowania programów

Bardziej szczegółowo

Cechy systemu MRP II: modułowa budowa, pozwalająca na etapowe wdrażanie, funkcjonalność obejmująca swym zakresem obszary technicznoekonomiczne

Cechy systemu MRP II: modułowa budowa, pozwalająca na etapowe wdrażanie, funkcjonalność obejmująca swym zakresem obszary technicznoekonomiczne Zintegrowany System Informatyczny (ZSI) jest systemem informatycznym należącym do klasy ERP, który ma na celu nadzorowanie wszystkich procesów zachodzących w działalności głównie średnich i dużych przedsiębiorstw,

Bardziej szczegółowo

1. Problem badawczy i jego znaczenie. Warszawa,

1. Problem badawczy i jego znaczenie. Warszawa, Prof. dr hab. inż. Franciszek Seredyński Uniwersytet Kardynała Stefana Wyszyńskiego w Warszawie Wydział Matematyczno-Przyrodniczy.SNŚ Instytut Informatyki f.seredynski@uksw.edu.pl Warszawa, 22.11.2018

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA WYKŁAD 17. ALGORYTMY EWOLUCYJNE Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska KODOWANIE BINARNE Problem różnych struktur przestrzeni

Bardziej szczegółowo

Według raportu ISO z 1988 roku algorytm JPEG składa się z następujących kroków: 0.5, = V i, j. /Q i, j

Według raportu ISO z 1988 roku algorytm JPEG składa się z następujących kroków: 0.5, = V i, j. /Q i, j Kompresja transformacyjna. Opis standardu JPEG. Algorytm JPEG powstał w wyniku prac prowadzonych przez grupę ekspertów (ang. Joint Photographic Expert Group). Prace te zakończyły się w 1991 roku, kiedy

Bardziej szczegółowo

Metody optymalizacji dyskretnej

Metody optymalizacji dyskretnej Metody optymalizacji dyskretnej Spis treści Spis treści Metody optymalizacji dyskretnej...1 1 Wstęp...5 2 Metody optymalizacji dyskretnej...6 2.1 Metody dokładne...6 2.2 Metody przybliżone...6 2.2.1 Poszukiwanie

Bardziej szczegółowo

Obliczenia inspirowane Naturą

Obliczenia inspirowane Naturą Obliczenia inspirowane Naturą Wykład 07 - Genetyka i automaty (uzupełnienie wykładu 06) Jarosław Miszczak IITiS PAN Gliwice 21/04/2016 1 / 21 1 Wprowadzenie 2 3 2 / 21 Wprowadzenie 1 Wprowadzenie 2 3 3

Bardziej szczegółowo

ALGORYTMY GENETYCZNE JAKO NARZĘDZIE OPTYMALIZACYJNE STOSOWANE W SIECIACH NEURONOWYCH

ALGORYTMY GENETYCZNE JAKO NARZĘDZIE OPTYMALIZACYJNE STOSOWANE W SIECIACH NEURONOWYCH Inżynieria Rolnicza 2/2005 Instytut Inżynierii Rolniczej Akademia Rolnicza w Poznaniu ALGORYTMY GENETYCZNE JAKO NARZĘDZIE OPTYMALIZACYJNE STOSOWANE W SIECIACH NEURONOWYCH Streszczenie Rewolucyjne wynalazki

Bardziej szczegółowo

Algorytmy ewolucyjne

Algorytmy ewolucyjne Algorytmy ewolucyjne wprowadzenie Piotr Lipiński lipinski@ii.uni.wroc.pl Piotr Lipiński Algorytmy ewolucyjne p.1/16 Cel wykładu zapoznanie studentów z algorytmami ewolucyjnymi, przede wszystkim nowoczesnymi

Bardziej szczegółowo

Opis podstawowych modułów

Opis podstawowych modułów Opis podstawowych modułów Ofertowanie: Moduł przeznaczony jest dla działów handlowych, pozwala na rejestrację historii wysłanych ofert i istotnych zdarzeń w kontaktach z kontrahentem. Moduł jest szczególnie

Bardziej szczegółowo

Analiza stanów gry na potrzeby UCT w DVRP

Analiza stanów gry na potrzeby UCT w DVRP Analiza stanów gry na potrzeby UCT w DVRP Seminarium IO na MiNI 04.11.2014 Michał Okulewicz based on the decision DEC-2012/07/B/ST6/01527 Plan prezentacji Definicja problemu DVRP DVRP na potrzeby UCB Analiza

Bardziej szczegółowo

Algorytm indukcji klasyfikatora za pomocą EA z automatycznym przełączaniem ukierunkowań

Algorytm indukcji klasyfikatora za pomocą EA z automatycznym przełączaniem ukierunkowań Algorytm indukcji klasyfikatora za pomocą EA z automatycznym przełączaniem ukierunkowań Anna Manerowska, Michal Kozakiewicz 2.12.2009 1 Wstęp Jako projekt na przedmiot MEUM (Metody Ewolucyjne Uczenia Maszyn)

Bardziej szczegółowo

OPTYMALIZACJA HARMONOGRAMOWANIA MONTAŻU SAMOCHODÓW Z ZASTOSOWANIEM PROGRAMOWANIA W LOGICE Z OGRANICZENIAMI

OPTYMALIZACJA HARMONOGRAMOWANIA MONTAŻU SAMOCHODÓW Z ZASTOSOWANIEM PROGRAMOWANIA W LOGICE Z OGRANICZENIAMI Autoreferat do rozprawy doktorskiej OPTYMALIZACJA HARMONOGRAMOWANIA MONTAŻU SAMOCHODÓW Z ZASTOSOWANIEM PROGRAMOWANIA W LOGICE Z OGRANICZENIAMI Michał Mazur Gliwice 2016 1 2 Montaż samochodów na linii w

Bardziej szczegółowo

ZASTOSOWANIE ALGORYTMÓW GENETYCZNYCH DO AUTOMATYCZNEGO GENEROWANIA PLANU ZAJĘĆ 10

ZASTOSOWANIE ALGORYTMÓW GENETYCZNYCH DO AUTOMATYCZNEGO GENEROWANIA PLANU ZAJĘĆ 10 Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej Nr 21 XV Seminarium ZASTOSOWANIE KOMPUTERÓW w NAUCE i TECHNICE 2005 Oddział Gdański PTETiS ZASTOSOWANIE ALGORYTMÓW GENETYCZNYCH

Bardziej szczegółowo