ALGORYTM EWOLUCYJNY DLA PROBLEMU SZEREGOWANIA ZADAŃ W SYSTEMIE PRZEPŁYWOWYM
|
|
- Jolanta Bednarska
- 6 lat temu
- Przeglądów:
Transkrypt
1 ALGORYTM EWOLUCYJNY DLA PROBLEMU SZEREGOWANIA ZADAŃ W SYSTEMIE PRZEPŁYWOWYM Adam STAWOWY, Marek ŚWIĘCHOWICZ Streszczenie: W pracy zaprezentowano algorytm strategii ewolucyjnej do problemu szeregowania zadań w permutacyjnym systemie przepływowym przy kryterium minimalizacji długości uszeregowania oraz przedstawiono wyniki badań porównawczych z techniką Tabu Search. W opracowanej przez autorów wersji tego algorytmu wykorzystano nowy operator mutacji dostosowany do problemu szeregowania. Wyniki badań wykazały, że algorytm ten, szczególnie dzięki nowej mutacji oraz starannemu doborowi wszystkich parametrów, jest dokładniejszy niż algorytmy genetyczne opisywane w literaturze i może konkurować, z dużo bardziej skomplikowanymi, algorytmami Tabu Search. Słowa kluczowe: szeregowanie zadań, problem przepływowy, algorytmy ewolucyjne. Wprowadzenie Zagadnienie szeregowania zadań w permutacyjnym systemie przepływowym jest problemem silnie NP-trudnym, co oznacza, że nie jest możliwe sformułowanie efektywnego algorytmu, dla którego funkcja złożoności obliczeniowej jest ograniczona od góry przez wielomian liczby zadań n []. Dlatego też, już od połowy lat 0, obserwuje się burzliwy rozwój wielomianowych algorytmów heurystycznych dających rozwiązania przybliżone. Jako kryterium optymalizacji w procesie przepływowym stosowana jest powszechnie długość uszeregowania (DU) czyli czas zakończenia wykonywania zadań w systemie (ang. makespan): Cmax maxcim () gdzie: n - liczba zadań, M - liczba stopni przetwarzania (zespołów technologicznych, maszyn, urządzeń), M j - urządzenie nr j, j=... M, Z i - zadanie nr i, i=... n, t ij - czas wykonywania operacji zadania Z i na urządzeniu M j, C ij - czas zakończenia wykonywania zadania Z i na urządzeniu M j.. Strategia ewolucyjna do szeregowania zadań w systemie przepływowym i W ostatnich latach pojawiło się kilka publikacji dotyczących zastosowania algorytmów ewolucyjnych dla problemu przepływowego - wszystkie wykorzystują różne wersje algorytmu genetycznego: są to przede wszystkim prace Mulkensa [], Reeves a [] oraz Chena i zespołu []. W publikacjach autorzy ci porównali swoje heurystyki z techniką symulowanego wyżarzania oraz algorytmem Ho i Changa []; badania obliczeniowe potwierdziły efektywność działania techniki GA. Wersja strategii ewolucyjnej zastosowana przez autorów dla szeregowania zadań w systemie przepływowym jest wzorowana na algorytmie Nissena dla problemu alokacji zasobów
2 []. Jest to (,)-ES, w której potomków jest generowanych z jednego rodzica za pomocą prostej mutacji. Krzyżowanie nie jest stosowane. Najlepszy z potomków zastępuje rodzica w nowej populacji. Ten sposób selekcji (rodzic nie konkuruje z potomkami) powoduje często pogorszenie rozwiązania wejściowego, ale - wg Nissena - poprawia działanie algorytmu (potwierdziły to również obserwacje autorów). Ochronę przed przedwczesną zbieżnością algorytmu do optimum lokalnego stanowi mechanizm tzw. destabilizacji. Jeśli wartość funkcji dopasowania najlepszego potomka jest mniejsza niż wartość funkcji rodzica, zmienna (licznik) zliczająca takie zdarzenia jest zwiększana o jeden, w przeciwnym razie - jest zerowana. Jeżeli licznik przekroczy zadaną wartość, następuje faza destabilizacji, podczas której jest zerowany licznik i następuje generowanie potomków poprzez intensywną mutację rodzica. W naszym algorytmie przyjęto, że jest nią mutacja zamiany wykonywana 000 razy dla ostatniego rozwiązania rodzicielskiego. W ten sposób powstaje potomek bardziej różniący się od rodzica niż to ma miejsce podczas normalnego działania algorytmu, a przeszukiwanie zostaje skierowane w nowe obszary przestrzeni dopuszczalnych rozwiązań. Eksperymentalnie ustalono następujące elementy algorytmu: rozmiar populacji, parametry mechanizmu destabilizacji, warunek zakończenia obliczeń. Przyjęto, że funkcja dopasowania jest określona następującym wzorem: DG FD DU DG () gdzie: DG - dolna granica obliczana wg zasady podanej w pracy Taillarda [], DU - długość uszeregowania (makespan). Taka konstrukcja funkcji pozwala na jej maksymalizowanie, co jest zalecane dla poprawnego działania algorytmów ewolucyjnych. Ponadto funkcja taka silniej różnicuje rozwiązania o zbliżonej długości uszeregowania niż czyniłaby to funkcja jedynie długości uszeregowania oraz niesie dodatkową informację o potencjalnie optymalnym rozwiązaniu. Przyjęta funkcja ma również tę właściwość, że jeśli DU=DG to FD=DG. Operator mutacji wzięty z typowego algorytmu ewolucyjnego nie jest odpowiedni dla zagadnień permutacyjnych []. Autorzy opracowali nowy operator bazujący na założeniach, że potomek nie powinien różnić się bardzo od rodzica oraz że intensywność mutacji powinna maleć w kolejnych pokoleniach. W rezultacie powstał operator NDSM (ang. Normally Distributed Shift Mutation) działający w ten sposób, że zadanie z wylosowanej pozycji przesuwane jest o liczbę pozycji wylosowaną z rozkładu normalnego N(0,). Formalny zapis działania operatora NDSM wygląda następująco: przesunięcie round( N(0, )) cr gen () gdzie: 0 - początkowe odchylenie standardowe równe 0.*n,
3 cr - czynnik redukujący wartość odchylenia w kolejnych generacjach cr = exp((ln( k )-ln( 0 ))/maxgen, k - końcowa wartość odchylenia standardowego równa 0.0*n, gen - numer aktualnej generacji, maxgen - maksymalna liczba generacji. Intensywność mutacji (mierzona średnią wielkością przesunięcia) jest duża na początku działania algorytmu i zmniejsza się z czasem w ślad za zmianą wartości odchylenia standardowego, które maleje wykładniczo od 0 do k. Jest to intuicyjnie zrozumiałe, gdyż na początku procesu przeszukiwania szansa na poprawę rodzicielskiego rozwiązania poprzez silniejsze zaburzenie jest dużo większa niż w końcowej fazie procesu, gdzie rodzic jest z reguły rozwiązaniem bliskim optymalnemu. Ostateczną wersję strategii ewolucyjnej dla problemu przepływowego charakteryzują zebrane w tabeli elementy i parametry. Tab.. Elementy strategii ewolucyjnej dla problemu przepływowego Funkcja dopasowania Postać Techniki zaawansowane Schemat i populacja Reprezentacja Rozmiar populacji Inicjalizacja Selekcja następnego pokolenia Warunek zatrzymania Mechanizm destabilizacji Reprodukcja Mutacja Operator mutacji P m.. Badania eksperymentalne DG FD( Ri) DU( R ) DG nie stosowano i lista (ciąg) n zadań rodzic, potomków rozwiązanie wyznaczone algorytmem NEH [9] najlepszy potomek zastępuje rodzica po wygenerowaniu 000 pokoleń po 900 kolejnych generacjach, podczas których nie nastąpiła poprawa najlepszego znalezionego przez algorytm rozwiązania nie stosowano NDSM,0 Algorytm ewolucyjny testowano przy użyciu przykładowych problemów Taillarda []. Testy te składają się ze 0 szczególnie trudnych przypadków o różnych rozmiarach, wybranych spośród wielkiej liczby losowo wygenerowanych problemów. Dla każdego n*m. = {0*, 0*0, 0*0, 0*, 0*0, 0*0, 00*, 00*0, 00*0, 00*0, 00*0, 00*0} Taillard wybrał 0 przykładów. Algorytm strategii ewolucyjnej (ES) porównano z algorytmami Tabu Search Taillarda (T) [0] oraz Nowickiego i Smutnickiego (TSAB) []. Algorytm ewolucyjny działał zgodnie ze schematem przedstawionym w tabeli. W każdym przypadku wykonywano pięć przebiegów obliczeniowych, spośród których wybrano najlepszy rezultat. Wyniki testów zawiera tabela ; pogrubioną czcionką oznaczono najlepsze rezultaty spośród otrzymanych podczas badań lub znalezionych w literaturze. Nie przedstawiono wyników testów dla problemów o
4 najmniejszych rozmiarach {0*, 0*0, 0*0, 0*}, gdyż wszystkie algorytmy osiągnęły identyczne rezultaty; z tego też względu nie uwzględniono tych wyników w badaniach statystycznych. Następnie zbadano, czy różnice pomiędzy wynikami otrzymywanymi przez poszczególne techniki są istotne. W tym celu dla każdego rozmiaru problemu obliczono dla poszczególnych algorytmów względną odległość od najlepszego rozwiązania i tak otrzymane średnie poddano testowi Cochrana-Coxa []. Tab.. Zestawienie długości uszeregowań porównywanych algorytmów dla przykładowych problemów Taillarda Rozmiar 0*0 0* Rozmiar 00* 00* Rozmiar 00*0 00*
5 Rozmiar 00*0 00* Analizując otrzymane wyniki można stwierdzić, iż nie ma statystycznych różnic między algorytmami dla problemów o rozmiarach 00* i 00*0. W pozostałych przypadkach: algorytm TSAB jest lepszy niż technika TS w wersji Taillarda, TSAB dominuje nad strategią ewolucyjną dla problemów o większych rozmiarach (n>=00), strategia ewolucyjna jest bardziej efektywna niż algorytm Taillarda dla problemów 0*0 i 00*0; dla pozostałych problemów nie ma statystycznych różnic między tymi technikami. Warto zauważyć, że w niektórych przypadkach bardzo dobre rezultaty dała prosta strategia ewolucyjna, która ogółem znalazła osiem rozwiązań lepszych niż spotkane do tej pory w literaturze fachowej.. Wnioski końcowe Badania eksperymentalne wykazały, że: algorytm ewolucyjny opracowany przez autorów, szczególnie dzięki nowej mutacji oraz starannemu doborowi wszystkich parametrów, jest efektywniejszy niż algorytmy genetyczne opisywane w literaturze i może konkurować, z dużo bardziej skomplikowanymi, algorytmami typu Tabu Search, istnieje możliwość wykorzystania opisanego algorytmu w systemach, gdzie czynnik czasu ma decydujące znaczenie; algorytm stosunkowo szybko dochodzi do dobrych rozwiązań i w razie konieczności przerwania obliczeń najlepsze znalezione dotychczas rozwiązanie można uznać za rozwiązanie suboptymalne. Przeprowadzone badania wykazały dużą przydatność algorytmów ewolucyjnych dla problemu szeregowania zadań w permutacyjnym systemie przepływowym. Wielką ich zaletą jest prostota, elastyczność oraz brak potrzeby wnikania w strukturę rozwiązywanego problemu.
6 Literatura. Błażewicz J., Cellary W., Słowiński R., Węglarz J.: Badania operacyjne dla informatyków. WNT, Warszawa, 9.. Mulkens H.: Revisiting the Johnson algorithm for flow-shop scheduling with genetic algorithms. [w:] Knowledge-Based Reactive Scheduling, North-Holland, Amsterdam, 99.. Reeves C.R., A genetic algorithm for flowshop sequencing. Computers and Operations Research, vol., nr, 99, pp. -.. Chen Ch.-L., Vempati V.S., Aljaber N.: An application of genetic algorithms for flow shop problems. European Journal of Operational Research, vol. 0, 99, pp Ho J.C., Chang Y.L.: A new heuristic for the n-job, M-machime flow-shop problem. European Journal of Operational Research, vol., 990, pp Nissen V.: Evolutionary facility layout - a comparison. Artykuł zgłoszony do Studies in Locational Analysis, 99.. Taillard E.: Benchmarks for basic scheduling problems. European Journal of Operational Research, vol., 99, pp. -.. Michalewicz Z.: Genetic algorithm + data structures = evolution programs. Springer- Verlang, Berlin, Nawaz M., Enscore Jr. E.E., Ham I.: A heuristic algorithm for the m-machime, n-job flowshop sequencing problem. OMEGA International Journal of Management Science, vol., 9, pp Taillard E.: Some efficient heuristic methods for flow shop sequencing. European Journal of Operational Research, vol., 990, pp. -.. Nowicki E., Smutnicki Cz.: A fast tabu search algorithm for the flow shop problem. Wydawnictwo Politechniki Wrocławskiej, Wrocław, 99.. Domański C.: Testy statystyczne. PWE, Warszawa, 990.
ALGORYTM EWOLUCYJNY DLA PROBLEMU SZEREGOWANIA ZADAŃ W SYSTEMIE PRZEPŁYWOWYM 1. WPROWADZENIE
szeregowanie zadań, algorytmy ewolucyjne Adam STAWOWY * ALGORYTM EWOLUCYJNY DLA PROBLEMU SZEREGOWANIA ZADAŃ W SYSTEMIE PRZEPŁYWOWYM W pracy zaprezentowano algorytm programowania ewolucyjnego do problemu
NOWE WARIANTY OPERATORÓW GENETYCZNYCH DLA PROBLEMÓW Z KRYTERIUM SUMACYJNYM
NOWE WARIANTY OPERATORÓW GENETYCZNYCH DLA PROBLEMÓW Z KRYTERIUM SUMACYJNYM Mariusz MAKUCHOWSKI Streszczenie: W pracy analizuje się własności sumacyjnego kryterium w permutacyjnym problemie przepływowym.
Algorytm genetyczny (genetic algorithm)-
Optymalizacja W praktyce inżynierskiej często zachodzi potrzeba znalezienia parametrów, dla których system/urządzenie będzie działać w sposób optymalny. Klasyczne podejście do optymalizacji: sformułowanie
Nowe warianty operatorów genetycznych dla problemów z kryterium sumacyjnym
Nowe warianty operatorów genetycznych dla problemów z kryterium sumacyjnym Mariusz MAKUCHOWSKI Politechnika Wrocławska, Instytut Informatyki, Automatyki i Robotyki 50-370 Wrocław, Wybrzeże Wyspiańskiego
Algorytm hybrydowy dla alokacji portfela inwestycyjnego przy ograniczonych zasobach
Adam Stawowy Algorytm hybrydowy dla alokacji portfela inwestycyjnego przy ograniczonych zasobach Summary: We present a meta-heuristic to combine Monte Carlo simulation with genetic algorithm for Capital
ALGORYTM PERTURBACYJNY DLA PROBLEMU PRZEPŁYWOWEGO
ALGORYTM PERTURBACYJNY DLA PROBLEMU PRZEPŁYWOWEGO Mariusz MAKUCHOWSKI Streszczenie: Proponowany w tej pracy algorytm perturbacyjny PNEH (dedykowany permutacyjnemu problemowi przepływowemu) pozwala na dostarczanie
LABORATORIUM 4: Algorytmy ewolucyjne cz. 2 wpływ operatorów krzyżowania i mutacji na skuteczność poszukiwań AE
Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl METODY HEURYSTYCZNE LABORATORIUM 4: Algorytmy ewolucyjne cz. 2 wpływ operatorów krzyżowania
ALGORYTM PERTURBACYJNY DLA PROBLEMU PRZEPŁYWOWEGO
ALGORYTM PERTURBACYJNY DLA PROBLEMU PRZEPŁYWOWEGO Mariusz MAKUCHOWSKI Streszczenie: Proponowany w tej pracy algorytm perturbacyjny PNEH (dedykowany permutacyjnemu problemowi przepływowemu) pozwala na dostarczanie
Strategie ewolucyjne (ang. evolu4on strategies)
Strategie ewolucyjne (ang. evolu4on strategies) Strategia ewolucyjna (1+1) W Strategii Ewolucyjnej(1 + 1), populacja złożona z jednego osobnika generuje jednego potomka. Kolejne (jednoelementowe) populacje
Generowanie i optymalizacja harmonogramu za pomoca
Generowanie i optymalizacja harmonogramu za pomoca na przykładzie generatora planu zajęć Matematyka Stosowana i Informatyka Stosowana Wydział Fizyki Technicznej i Matematyki Stosowanej Politechnika Gdańska
Algorytm Genetyczny. zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych
Algorytm Genetyczny zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych Dlaczego Algorytmy Inspirowane Naturą? Rozwój nowych technologii: złożone problemy obliczeniowe w
WEKTOROWE KODOWANIE PERMUTACJI. NOWE OPERATORY GENETYCZNE
WEKTOROWE KODOWANIE PERMUTACJI. NOWE OPERATORY GENETYCZNE Mariusz MAKUCHOWSKI Streszczenie: W pracy proponuje się alternatywny sposób kodowania permutacji. Prezentuje się szereg jego własności niewystępujących
Podejście memetyczne do problemu DCVRP - wstępne wyniki. Adam Żychowski
Podejście memetyczne do problemu DCVRP - wstępne wyniki Adam Żychowski Na podstawie prac X. S. Chen, L. Feng, Y. S. Ong A Self-Adaptive Memeplexes Robust Search Scheme for solving Stochastic Demands Vehicle
NIETYPOWE WŁASNOŚCI PERMUTACYJNEGO PROBLEMU PRZEPŁYWOWEGO Z OGRANICZENIEM BEZ PRZESTOJÓW
NIETYPOWE WŁASNOŚCI PERMUTACYJNEGO PROBLEMU PRZEPŁYWOWEGO Z OGRANICZENIEM BEZ PRZESTOJÓW Mariusz MAKUCHOWSKI Streszczenie: W pracy rozważa się permutacyjny problem przepływowy z kryterium będącym momentem
Katedra Informatyki Stosowanej. Algorytmy ewolucyjne. Inteligencja obliczeniowa
Wydział Zarządzania AGH Katedra Informatyki Stosowanej Algorytmy ewolucyjne Treść wykładu Wprowadzenie Zasada działania Podział EA Cechy EA Algorytm genetyczny 2 EA - wprowadzenie Algorytmy ewolucyjne
1 Problemyprzepływowe
Problemyprzepływowe Problemy przepływowe należą do jednych z prostszych i często analizowanych modeli systemów produkcyjnych. Poniżej zostanie przedstawiony podstawowy problem przepływowy, permutacyjny
Algorytmy konstrukcyjne dla problemu harmonogramowania projektu z ograniczonymi zasobami. Marcin Klimek *
Zeszyty Naukowe WWSI, No 15, Vol. 10, 2016, s. 41-52 Algorytmy konstrukcyjne dla problemu harmonogramowania projektu z ograniczonymi zasobami Marcin Klimek * Państwowa Szkoła Wyższa w Białej Podlaskiej,
WAE Jarosław Arabas Pełny schemat algorytmu ewolucyjnego
WAE Jarosław Arabas Pełny schemat algorytmu ewolucyjnego Algorytm ewolucyjny algorytm ewolucyjny inicjuj P 0 {P 0 1, P 0 2... P 0 μ } t 0 H P 0 while! stop for (i 1: λ) if (a< p c ) O t i mutation(crossover
Algorytmy genetyczne
9 listopada 2010 y ewolucyjne - zbiór metod optymalizacji inspirowanych analogiami biologicznymi (ewolucja naturalna). Pojęcia odwzorowujące naturalne zjawiska: Osobnik Populacja Genotyp Fenotyp Gen Chromosom
ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ 2008 Seria: AUTOMATYKA z. 199 Nr kol. 1999
ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ 2008 Seria: AUTOMATYKA z. 199 Nr kol. 1999 Mariusz Makuchowski Politechnika Wrocławska, Instytut Informatyki Automatyki i Robotyki PROBLEM GNIAZDOWY Z OGRANICZENIEM
ALGORYTMY GENETYCZNE ćwiczenia
ćwiczenia Wykorzystaj algorytmy genetyczne do wyznaczenia minimum globalnego funkcji testowej: 1. Wylosuj dwuwymiarową tablicę 100x2 liczb 8-bitowych z zakresu [-100; +100] reprezentujących inicjalną populację
Dobór parametrów algorytmu ewolucyjnego
Dobór parametrów algorytmu ewolucyjnego 1 2 Wstęp Algorytm ewolucyjny posiada wiele parametrów. Przykładowo dla algorytmu genetycznego są to: prawdopodobieństwa stosowania operatorów mutacji i krzyżowania.
LABORATORIUM 3: Wpływ operatorów krzyżowania na skuteczność poszukiwań AE
Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl OBLICZENIA EWOLUCYJNE LABORATORIUM 3: Wpływ operatorów krzyżowania na skuteczność
Metody Rozmyte i Algorytmy Ewolucyjne
mgr inż. Wydział Matematyczno-Przyrodniczy Szkoła Nauk Ścisłych Uniwersytet Kardynała Stefana Wyszyńskiego Podstawowe operatory genetyczne Plan wykładu Przypomnienie 1 Przypomnienie Metody generacji liczb
SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO
SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO. Rzeczywistość (istniejąca lub projektowana).. Model fizyczny. 3. Model matematyczny (optymalizacyjny): a. Zmienne projektowania
Metody optymalizacji dyskretnej
Metody optymalizacji dyskretnej Spis treści Spis treści Metody optymalizacji dyskretnej...1 1 Wstęp...5 2 Metody optymalizacji dyskretnej...6 2.1 Metody dokładne...6 2.2 Metody przybliżone...6 2.2.1 Poszukiwanie
HEURYSTYCZNY ALGORYTM SZEREGOWANIA ZADAŃ W SYSTEMIE MASZYN RÓWNOLEGŁYCH Z KRYTERIUM MINIMALNO-CZASOWYM
EURYSTYCZNY ALGORYTM SZEREGOWANIA ZADAŃ W SYSTEMIE MASZYN RÓWNOLEGŁYC Z KRYTERIUM MINIMALNO-CZASOWYM Zbigniew BUCALSKI Streszczenie: Artykuł dotyczy zagadnienia czasowo-optymalnego przydziału zasobu podzielnego
ALGORYTM PRZESZUKIWANIA Z ZABRONIENIAMI DLA DWUKRYTERIALNEGO PROBLEMU PRZEPŁYWOWEGO
ALGORYTM PRZESZUKIWANIA Z ZABRONIENIAMI DLA DWUKRYTERIALNEGO PROBLEMU PRZEPŁYWOWEGO Jarosław PEMPERA, Dominik ŻELAZNY Streszczenie: Praca poświęcona jest problemowi przepływowemu z dwukryterialną funkcją
Optymalizacja. Wybrane algorytmy
dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Andrzej Jaszkiewicz Problem optymalizacji kombinatorycznej Problem optymalizacji kombinatorycznej jest problemem
PROBLEM PRZEPŁYWOWY Z PRZEZBROJENIAMI ORAZ CIĄGŁĄ PRACĄ MASZYN Wojciech BOŻEJKO, Radosław IDZIKOWSKI, Mieczysław WODECKI
PROBLEM PRZEPŁYWOWY Z PRZEZBROJENIAMI ORAZ CIĄGŁĄ PRACĄ MASZYN Wojciech BOŻEJKO, Radosław IDZIKOWSKI, Mieczysław WODECKI Streszczenie W pracy rozpatrujemy problem przepływowy z przezbrojeniami maszyn pomiędzy
Algorytmy genetyczne. Dariusz Banasiak. Katedra Informatyki Technicznej Wydział Elektroniki
Dariusz Banasiak Katedra Informatyki Technicznej Wydział Elektroniki Obliczenia ewolucyjne (EC evolutionary computing) lub algorytmy ewolucyjne (EA evolutionary algorithms) to ogólne określenia używane
LABORATORIUM 7: Problem komiwojażera (TSP) cz. 2
Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl OBLICZENIA EWOLUCYJNE LABORATORIUM 7: Problem komiwojażera (TSP) cz. 2 opracował:
Algorytmy ewolucyjne - algorytmy genetyczne. I. Karcz-Dulęba
Algorytmy ewolucyjne - algorytmy genetyczne I. Karcz-Dulęba Algorytmy klasyczne a algorytmy ewolucyjne Przeszukiwanie przestrzeni przez jeden punkt bazowy Przeszukiwanie przestrzeni przez zbiór punktów
Algorytmy genetyczne w optymalizacji
Algorytmy genetyczne w optymalizacji Literatura 1. David E. Goldberg, Algorytmy genetyczne i ich zastosowania, WNT, Warszawa 1998; 2. Zbigniew Michalewicz, Algorytmy genetyczne + struktury danych = programy
Strategie ewolucyjne (ang. evolution strategies)
Strategie ewolucyjne (ang. evolution strategies) 1 2 Szybki przegląd Rozwijane w Niemczech w latach 60-70. Wcześni badacze: I. Rechenberg, H.-P. Schwefel (student Rechenberga). Typowe zastosowanie: Optymalizacja
Algorytmy ewolucyjne 1
Algorytmy ewolucyjne 1 2 Zasady zaliczenia przedmiotu Prowadzący (wykład i pracownie specjalistyczną): Wojciech Kwedlo, pokój 205. Konsultacje dla studentów studiów dziennych: poniedziałek,środa, godz
ALGORYTMY EWOLUCYJNE W OPTYMALIZACJI JEDNOKRYTERIALNEJ
ALGORYTMY EWOLUCYJNE W OPTYMALIZACJI JEDNOKRYTERIALNEJ Zalety: nie wprowadzają żadnych ograniczeń na sformułowanie problemu optymalizacyjnego. Funkcja celu może być wielowartościowa i nieciągła, obszar
HARMONOGRAMOWANIE PRZEDSIĘWZIĘĆ BUDOWLANYCH Z ZASTOSOWANIEM ALGORYTMÓW METAHEURYSTYCZNYCH
ZESZYTY NAUKOWE WSOWL Nr 4 (166) 2012 HARMONOGRAMOWANIE PRZEDSIĘWZIĘĆ BUDOWLANYCH Z ZASTOSOWANIEM ALGORYTMÓW METAHEURYSTYCZNYCH Zdzisław HEJDUCKI, Michał PODOLSKI Instytut Budownictwa, Politechnika Wrocławska
Politechnika Wrocławska Wydział Elektroniki INFORMATYKA SYSTEMÓW AUTONOMICZNYCH. Heurystyka, co to jest, potencjalne zastosowania
Politechnika Wrocławska Wydział Elektroniki INFORMATYKA SYSTEMÓW AUTONOMICZNYCH Autor: Łukasz Patyra indeks: 133325 Prowadzący zajęcia: dr inż. Marek Piasecki Ocena pracy: Wrocław 2007 Spis treści 1 Wstęp
PLAN WYKŁADU OPTYMALIZACJA GLOBALNA OPERATOR KRZYŻOWANIA ETAPY KRZYŻOWANIA
PLAN WYKŁADU Operator krzyżowania Operator mutacji Operator inwersji Sukcesja Przykłady symulacji AG Kodowanie - rodzaje OPTYMALIZACJA GLOBALNA Wykład 3 dr inż. Agnieszka Bołtuć OPERATOR KRZYŻOWANIA Wymiana
METODY SZTUCZNEJ INTELIGENCJI algorytmy ewolucyjne
METODY SZTUCZNEJ INTELIGENCJI algorytmy ewolucyjne dr hab. inż. Andrzej Obuchowicz, prof. UZ Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski A. Obuchowicz: MSI - algorytmy ewolucyjne
LABORATORIUM 2: Wpływ wielkości populacji i liczby pokoleń na skuteczność poszukiwań AE. opracował: dr inż. Witold Beluch
OBLICZENIA EWOLUCYJNE LABORATORIUM 2: Wpływ wielkości populacji i liczby pokoleń na skuteczność poszukiwań AE opracował: dr inż. Witold Beluch witold.beluch@polsl.pl Gliwice 12 OBLICZENIA EWOLUCYJNE LABORATORIUM
ALGORYTM EWOLUCYJNY DLA PROBLEMU GRUPOWANIA WYROBÓW Z ALTERNATYWNYMI MARSZRUTAMI
Adam Stawowy ALGORYTM EWOLUCYJNY DLA PROBLEMU GRUPOWANIA WYROBÓW Z ALTERNATYWNYMI MARSZRUTAMI EVOLUTIONARY STRATEGY FOR CELL FORMATION PROBLEM WITH MULTIPLE ROUTINGS Summary: Group Technology (GT) is philosophy
Odkrywanie algorytmów kwantowych za pomocą programowania genetycznego
Odkrywanie algorytmów kwantowych za pomocą programowania genetycznego Piotr Rybak Koło naukowe fizyków Migacz, Uniwersytet Wrocławski Piotr Rybak (Migacz UWr) Odkrywanie algorytmów kwantowych 1 / 17 Spis
Automatyczny dobór parametrów algorytmu genetycznego
Automatyczny dobór parametrów algorytmu genetycznego Remigiusz Modrzejewski 22 grudnia 2008 Plan prezentacji Wstęp Atrakcyjność Pułapki Klasyfikacja Wstęp Atrakcyjność Pułapki Klasyfikacja Konstrukcja
Wybrane podstawowe rodzaje algorytmów
Wybrane podstawowe rodzaje algorytmów Tomasz Głowacki tglowacki@cs.put.poznan.pl Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych
Algorytmy genetyczne. Materiały do laboratorium PSI. Studia niestacjonarne
Algorytmy genetyczne Materiały do laboratorium PSI Studia niestacjonarne Podstawowy algorytm genetyczny (PAG) Schemat blokowy algorytmu genetycznego Znaczenia, pochodzących z biologii i genetyki, pojęć
Algorytmy genetyczne
Politechnika Łódzka Katedra Informatyki Stosowanej Algorytmy genetyczne Wykład 2 Przygotował i prowadzi: Dr inż. Piotr Urbanek Powtórzenie Pytania: Jaki mechanizm jest stosowany w naturze do takiego modyfikowania
Teoria algorytmów ewolucyjnych
Teoria algorytmów ewolucyjnych 1 2 Dlaczego teoria Wynik analiza teoretycznej może pokazać jakie warunki należy spełnić, aby osiągnąć zbieżność do minimum globalnego. Np. sukcesja elitarystyczna. Może
Metody Optymalizacji: Przeszukiwanie z listą tabu
Metody Optymalizacji: Przeszukiwanie z listą tabu Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje: wtorek
Algorytmy memetyczne (hybrydowe algorytmy ewolucyjne)
Algorytmy memetyczne (hybrydowe algorytmy ewolucyjne) 1 2 Wstęp Termin zaproponowany przez Pablo Moscato (1989). Kombinacja algorytmu ewolucyjnego z algorytmem poszukiwań lokalnych, tak że algorytm poszukiwań
AUTOMATYZACJA PROCESÓW DYSKRETNYCH 2014 PROBLEM PRZEPŁYWOWY: PERMUTACYJNY, BEZ CZEKANIA, BEZ PRZESTOJÓW
AUTOMATYZACJA PROCESÓW DYSKRETNYCH 2014 Mariusz MAKUCHOWSKI Politechnika Wrocławska PROBLEM PRZEPŁYWOWY: PERMUTACYJNY, BEZ CZEKANIA, BEZ PRZESTOJÓW Streszczenie W pracy porównuje się harmonogramy różnych
Algorytmy ewolucyjne NAZEWNICTWO
Algorytmy ewolucyjne http://zajecia.jakubw.pl/nai NAZEWNICTWO Algorytmy ewolucyjne nazwa ogólna, obejmująca metody szczegółowe, jak np.: algorytmy genetyczne programowanie genetyczne strategie ewolucyjne
Zaawansowane programowanie
Zaawansowane programowanie wykład 1: wprowadzenie + algorytmy genetyczne Plan wykładów 1. Wprowadzenie + algorytmy genetyczne 2. Metoda przeszukiwania tabu 3. Inne heurystyki 4. Jeszcze o metaheurystykach
6. Klasyczny algorytm genetyczny. 1
6. Klasyczny algorytm genetyczny. 1 Idea algorytmu genetycznego została zaczerpnięta z nauk przyrodniczych opisujących zjawiska doboru naturalnego i dziedziczenia. Mechanizmy te polegają na przetrwaniu
AUTOMATYZACJA PROCESÓW DYSKRETNYCH 2016
AUTOMATYZACJA PROCESÓW DYSKRETNYCH 2016 Adam PRUS, Krzysztof PIEŃKOSZ Politechnika Warszawska SZEREGOWANIE ZADAŃ CZĘŚCIOWO PODZIELNYCH NA PROCESORACH RÓWNOLEGŁYCH Streszczenie. W pracy jest rozpatrywany
ALHE Z11 Jarosław Arabas wykład 11
ALHE Z11 Jarosław Arabas wykład 11 algorytm ewolucyjny inicjuj P 0 {x 1, x 2... x } t 0 while! stop for i 1: if a p c O t,i mutation crossover select P t, k else O t,i mutation select P t,1 P t 1 replacement
Obliczenia ewolucyjne - plan wykładu
Obliczenia ewolucyjne - plan wykładu Wprowadzenie Algorytmy genetyczne Programowanie genetyczne Programowanie ewolucyjne Strategie ewolucyjne Inne modele obliczeń ewolucyjnych Podsumowanie Ewolucja Ewolucja
Algorytmy ewolucyjne. Łukasz Przybyłek Studenckie Koło Naukowe BRAINS
Algorytmy ewolucyjne Łukasz Przybyłek Studenckie Koło Naukowe BRAINS 1 Wprowadzenie Algorytmy ewolucyjne ogólne algorytmy optymalizacji operujące na populacji rozwiązań, inspirowane biologicznymi zjawiskami,
Algorytmy ewolucyjne Część II
Wydział Zarządzania AGH Katedra Informatyki Stosowanej Algorytmy ewolucyjne Część II Metaheurystyki Treść wykładu Zastosowania Praktyczne aspekty GA Reprezentacja Funkcja dopasowania Zróżnicowanie dopasowania
Zadania laboratoryjne i projektowe - wersja β
Zadania laboratoryjne i projektowe - wersja β 1 Laboratorium Dwa problemy do wyboru (jeden do realizacji). 1. Water Jug Problem, 2. Wieże Hanoi. Water Jug Problem Ograniczenia dla każdej z wersji: pojemniki
Strategie ewolucyjne. Gnypowicz Damian Staniszczak Łukasz Woźniak Marek
Strategie ewolucyjne Gnypowicz Damian Staniszczak Łukasz Woźniak Marek Strategie ewolucyjne, a algorytmy genetyczne Podobieństwa: Oba działają na populacjach rozwiązań Korzystają z zasad selecji i przetwarzania
Metody przeszukiwania
Metody przeszukiwania Co to jest przeszukiwanie Przeszukiwanie polega na odnajdywaniu rozwiązania w dyskretnej przestrzeni rozwiązao. Zwykle przeszukiwanie polega na znalezieniu określonego rozwiązania
Algorytmy genetyczne. Paweł Cieśla. 8 stycznia 2009
Algorytmy genetyczne Paweł Cieśla 8 stycznia 2009 Genetyka - nauka o dziedziczeniu cech pomiędzy pokoleniami. Geny są czynnikami, które decydują o wyglądzie, zachowaniu, rozmnażaniu każdego żywego organizmu.
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 17. ALGORYTMY EWOLUCYJNE Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska KODOWANIE BINARNE Problem różnych struktur przestrzeni
Algorytmy genetyczne
Politechnika Łódzka Katedra Informatyki Stosowanej Algorytmy genetyczne Wykład 2 Przygotował i prowadzi: Dr inż. Piotr Urbanek Powtórzenie Pytania: Jaki mechanizm jest stosowany w naturze do takiego modyfikowania
Testy De Jonga. Problemy. 1 Optymalizacja dyskretna i ciągła
Problemy 1 Optymalizacja dyskretna i ciągła Problemy 1 Optymalizacja dyskretna i ciągła 2 Środowisko pomiarowe De Jonga Problemy 1 Optymalizacja dyskretna i ciągła 2 Środowisko pomiarowe De Jonga 3 Ocena
Algorytmy metaheurystyczne podsumowanie
dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Andrzej Jaszkiewicz Problem optymalizacji kombinatorycznej Problem optymalizacji kombinatorycznej jest problemem
Algorytm hybrydowy dla problemu pakowania
Adam Stawowy Algorytm hybrydowy dla problemu pakowania Summary: We present a meta-heuristic to combine simulated annealing (SA) with local search technique for Bin Packing Problem. The main idea is to
Sztuczne sieci neuronowe. Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyki, p. 311
Sztuczne sieci neuronowe Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyki, p. 311 Wykład 7 PLAN: - Repetitio (brevis) -Algorytmy miękkiej selekcji: algorytmy ewolucyjne symulowane wyżarzanie
LABORATORIUM 5: Wpływ reprodukcji na skuteczność poszukiwań AE. opracował: dr inż. Witold Beluch
OBLICZENIA EWOLUCYJNE LABORATORIUM 5: Wpływ reprodukcji na skuteczność poszukiwań AE opracował: dr inż. Witold Beluch witold.beluch@polsl.pl Gliwice 2012 OBLICZENIA EWOLUCYJNE LABORATORIUM 5 2 Cel ćwiczenia
AUTOMATYZACJA PROCESW DYSKRETNYCH 2012 ZASTOSOWANIE TECHNIK RÓWNOLEGŁYCH W SZEREGOWANIU ZA- DAŃ Z KRYTERIUM MINIMALIZACJI SUMY SPÓŹNIEŃ
AUTOMATYZACJA PROCESW DYSKRETNYCH 2012 Mariusz MAKUCHOWSKI, Jarosław PEMPERA Politechnika Wroclawska ZASTOSOWANIE TECHNIK RÓWNOLEGŁYCH W SZEREGOWANIU ZA- DAŃ Z KRYTERIUM MINIMALIZACJI SUMY SPÓŹNIEŃ Streszczenie.
IMPLIKACJE ZASTOSOWANIA KODOWANIA OPARTEGO NA LICZBACH CAŁKOWITYCH W ALGORYTMIE GENETYCZNYM
IMPLIKACJE ZASTOSOWANIA KODOWANIA OPARTEGO NA LICZBACH CAŁKOWITYCH W ALGORYTMIE GENETYCZNYM Artykuł zawiera opis eksperymentu, który polegał na uyciu algorytmu genetycznego przy wykorzystaniu kodowania
Optymalizacja optymalizacji
7 maja 2008 Wstęp Optymalizacja lokalna Optymalizacja globalna Algorytmy genetyczne Badane czasteczki Wykorzystane oprogramowanie (Algorytm genetyczny) 2 Sieć neuronowa Pochodne met-enkefaliny Optymalizacja
HARMONOGRAMOWANIE ROBÓT BUDOWLANYCH Z MINIMALIZACJĄ ŚREDNIEGO POZIOMU ZATRUDNIENIA
HARMONOGRAMOWANIE ROBÓT BUDOWLANYCH Z MINIMALIZACJĄ ŚREDNIEGO POZIOMU ZATRUDNIENIA Wojciech BOśEJKO, Zdzisław HEJDUCKI, Michał PODOLSKI, Mariusz UCHROŃSKI Streszczenie: w pracy proponujemy zastosowanie
Problemy z ograniczeniami
Problemy z ograniczeniami 1 2 Dlaczego zadania z ograniczeniami Wiele praktycznych problemów to problemy z ograniczeniami. Problemy trudne obliczeniowo (np-trudne) to prawie zawsze problemy z ograniczeniami.
Testowanie hipotez statystycznych. Wnioskowanie statystyczne
Testowanie hipotez statystycznych Wnioskowanie statystyczne Hipoteza statystyczna to dowolne przypuszczenie co do rozkładu populacji generalnej (jego postaci funkcyjnej lub wartości parametrów). Hipotezy
Algorytmy genetyczne
Algorytmy genetyczne Motto: Zamiast pracowicie poszukiwać najlepszego rozwiązania problemu informatycznego lepiej pozwolić, żeby komputer sam sobie to rozwiązanie wyhodował! Algorytmy genetyczne służą
Metoda określania pozycji wodnicy statków na podstawie pomiarów odległości statku od głowic laserowych
inż. Marek Duczkowski Metoda określania pozycji wodnicy statków na podstawie pomiarów odległości statku od głowic laserowych słowa kluczowe: algorytm gradientowy, optymalizacja, określanie wodnicy W artykule
SYSTEM WSPOMAGANIA HARMONOGRAMOWANIA PRZEDSIĘWZIĘĆ BUDOWLANYCH
SYSTEM WSPOMAGANIA HARMONOGRAMOWANIA PRZEDSIĘWZIĘĆ BUDOWLANYCH Wojciech BOŻEJKO, Zdzisław HEJDUCKI, Mariusz UCHROŃSKI, Mieczysław WODECKI Streszczenie: W pracy przedstawiamy system wspomagający harmonogramowanie
Algorytmy genetyczne. Materiały do laboratorium PSI. Studia stacjonarne i niestacjonarne
Algorytmy genetyczne Materiały do laboratorium PSI Studia stacjonarne i niestacjonarne Podstawowy algorytm genetyczny (PAG) Schemat blokowy algorytmu genetycznego Znaczenia, pochodzących z biologii i genetyki,
Modyfikacje i ulepszenia standardowego algorytmu genetycznego
Modyfikacje i ulepszenia standardowego algorytmu genetycznego 1 2 Przypomnienie: pseudokod SGA t=0; initialize(p 0 ); while(!termination_condition(p t )) { evaluate(p t ); T t =selection(p t ); O t =crossover(t
Algorytmy ewolucyjne `
Algorytmy ewolucyjne ` Wstęp Czym są algorytmy ewolucyjne? Rodzaje algorytmów ewolucyjnych Algorytmy genetyczne Strategie ewolucyjne Programowanie genetyczne Zarys historyczny Alan Turing, 1950 Nils Aall
PROBLEMY HAROMONOGRAMOWANIA PRODUKCJI
Łukasz Sobaszek, mgr inż. Wydział Mechaniczny, Politechnika Lubelska PROBLEMY HAROMONOGRAMOWANIA PRODUKCJI Artykuł zawiera informacje dotyczące procesu harmonogramowania produkcji, problemów występujących
Wstęp do Sztucznej Inteligencji
Wstęp do Sztucznej Inteligencji Algorytmy Genetyczne Joanna Kołodziej Politechnika Krakowska Wydział Fizyki, Matematyki i Informatyki Metody heurystyczne Algorytm efektywny: koszt zastosowania (mierzony
FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2009, Oeconomica 275 (57), 53 58
FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2009, Oeconomica 275 (57), 53 58 Anna LANDOWSKA ROZWIĄZANIE PROBLEMU OPTYMALNEGO PRZYDZIAŁU ZA POMOCĄ KLASYCZNEGO
Techniki optymalizacji
Techniki optymalizacji Dokładne algorytmy optymalizacji Maciej Hapke maciej.hapke at put.poznan.pl Problem optymalizacji kombinatorycznej Problem optymalizacji kombinatorycznej jest problemem minimalizacji
Mikroekonometria 6. Mikołaj Czajkowski Wiktor Budziński
Mikroekonometria 6 Mikołaj Czajkowski Wiktor Budziński Metody symulacyjne Monte Carlo Metoda Monte-Carlo Wykorzystanie mocy obliczeniowej komputerów, aby poznać charakterystyki zmiennych losowych poprzez
Maciej Piotr Jankowski
Reduced Adder Graph Implementacja algorytmu RAG Maciej Piotr Jankowski 2005.12.22 Maciej Piotr Jankowski 1 Plan prezentacji 1. Wstęp 2. Implementacja 3. Usprawnienia optymalizacyjne 3.1. Tablica ekspansji
Techniki optymalizacji
Techniki optymalizacji Algorytm kolonii mrówek Idea Smuga feromonowa 1 Sztuczne mrówki w TSP Sztuczna mrówka agent, który porusza się z miasta do miasta Mrówki preferują miasta połączone łukami z dużą
Standardowy algorytm genetyczny
Standardowy algorytm genetyczny 1 Szybki przegląd 2 Opracowany w USA w latach 70. Wcześni badacze: John H. Holland. Autor monografii Adaptation in Natural and Artificial Systems, wydanej w 1975 r., (teoria
Strefa pokrycia radiowego wokół stacji bazowych. Zasięg stacji bazowych Zazębianie się komórek
Problem zapożyczania kanałów z wykorzystaniem narzędzi optymalizacji Wprowadzenie Rozwiązanie problemu przydziału częstotliwości prowadzi do stanu, w którym każdej stacji bazowej przydzielono żądaną liczbę
Rozwiązanie problemu komiwojażera przy użyciu algorytmu genetycznego 2
Joanna Ochelska-Mierzejewska 1 Politechnika Łódzka Rozwiązanie problemu komiwojażera przy użyciu algorytmu genetycznego 2 Wprowadzenie Jednym z podstawowych ogniw usług logistycznych jest transport [7].
Ewolucja Różnicowa Differential Evolution
Ewolucja Różnicowa Differential Evolution Obliczenia z wykorzystaniem metod sztucznej inteligencji Arkadiusz Kalinowski Szczecin, 2016 Zachodniopomorski Uniwersytet Technologiczny w Szczecinie 1 / 22 Plan
Sterowanie procesami dyskretnymi
Politechnika Rzeszowska Wydział Elektrotechniki i Informatyki Katedra Informatyki i Automatyki Laboratorium Sterowanie procesami dyskretnymi Stanowisko 3 Algorytmy harmonogramowania zadań pakiet LiSA Rzeszów
Algorytm indukcji klasyfikatora za pomocą EA z automatycznym przełączaniem ukierunkowań
Algorytm indukcji klasyfikatora za pomocą EA z automatycznym przełączaniem ukierunkowań Anna Manerowska, Michal Kozakiewicz 2.12.2009 1 Wstęp Jako projekt na przedmiot MEUM (Metody Ewolucyjne Uczenia Maszyn)
Heurystyki. Strategie poszukiwań
Sztuczna inteligencja Heurystyki. Strategie poszukiwań Jacek Bartman Zakład Elektrotechniki i Informatyki Instytut Techniki Uniwersytet Rzeszowski DLACZEGO METODY PRZESZUKIWANIA? Sztuczna Inteligencja
Aproksymacja funkcji a regresja symboliczna
Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(x), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(x), zwaną funkcją aproksymującą
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 13. PROBLEMY OPTYMALIZACYJNE Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska PROBLEMY OPTYMALIZACYJNE Optymalizacja poszukiwanie
Tomasz M. Gwizdałła 2012/13
METODY METODY OPTYMALIZACJI OPTYMALIZACJI Tomasz M. Gwizdałła 2012/13 Informacje wstępne Tomasz Gwizdałła Katedra Fizyki Ciała Stałego UŁ Pomorska 149/153, p.523b tel. 6355709 tomgwizd@uni.lodz.pl http://www.wfis.uni.lodz.pl/staff/tgwizdalla