Techniki grupowania danych w środowisku Matlab
|
|
- Wanda Szymczak
- 8 lat temu
- Przeglądów:
Transkrypt
1 Techniki grupowania danych w środowisku Matlab 1. Normalizacja danych. Jedne z metod normalizacji: = = ma ( y =, rσ ( = ( ma ( = min = (1 + e, min ( = σ wartość średnia, r współczynnik, σ odchylenie standardowe y 1 Do normalizacji danych przed grupowaniem moŝemy zastosować funkcję zscore przekształcającej dane w zbiorze uŝywając tej samej skali proporcjonalnej. Z = zscore(d, gdzie D jest zbiorem danych. Wynikiem jest odchylenie wartości zawartych w kaŝdej kolumnie od jej średniej znormalizowanej przez jej odchylenie standardowe. JeŜeli w zbiorze danych znajduje się kolumna V to Z dla niej wynosi: (V-mean(V./std(V. 2. Określenie podobieństwa pomiędzy danymi w zbiorze danych. Do określenia podobieństwa pomiędzy kaŝdą parą danych w zbiorze posłuŝymy się funkcją pdist tworząc macierz odległości. Dane są tym bardziej podobne do siebie, im odległość między nimi jest mniejsza. Y=pdist(Z,Typodleglosci, gdzie Z jest zbiorem danych. 1
2 Typodleglosci (przykładowe Tabela 1. Sposoby obliczania odległości. Wzór Nazwa 'euclidean' Odległość Euklidesowa 'seuclidean' 'cityblock' Standaryzowana odległość Euklidesowa Odległość miejska 'cosine' Jeden minus kosinus kąta pomiędzy punktami 'correlation' 'hamming' Jeden minus korelacja pomiędzy punktami Odległość Hamminga 3. Grupowanie danych. Po określeniu odległości pomiędzy danymi w zbiorze danych naleŝy zdecydować, w jaki sposób dane powinny być pogrupowane. Do tego celu uŝywamy funkcji linkage, która korzystając z odległości wyznaczonych pomiędzy danymi grupuje je tworząc drzewo hierarchiczne. Tworzenie drzewa zaleŝy od zastosowanej metody. Z = linkage(y, Nazwametody, gdzie Y macierz odległości Tabela 2. Metody grupowania elementów zbioru. Nazwametody 'single' 'complete' 'average' 'weighted' Sposób grupowania elementów zbioru ze sobą NajbliŜsza odległość Najdalsza odległość Odległość średnia Wagowa odległość średnia Pogrupowane dane moŝna wyświetlić w postaci drzewa za pomocą funkcji dendrogram. H=dendrogram(Z. 4. Weryfikacja sposobu grupowania. Za pomocą funkcji cophenet porównujemy dwa zbiory wartości i obliczamy korelację pomiędzy nimi. Im wartość owej korelacji jest bliŝsza jedności tym lepiej sposób grupowania danych odzwierciedla faktyczne podobieństwa między danymi. C = cophenet(z,y, gdzie Z zawiera dane zgrupowane w postaci drzewa hierarchicznego, a Y jest macierzą odległości. 2
3 5. Tworzenie zadanej liczby grup. Za pomocą funkcji cluster moŝemy narzucić podział danych na zadaną liczbę grup. T = cluster(z,'cutoff',prógwspółczynnikaniespójności, próg współczynnika niespójności wiąŝący się z wysokością drzewa wymusza grupowanie danych posiadających jego wartość mniejszą niŝ progowa. T = cluster(z,'maclust',zadanaliczbagrup, wymuszenie podziału danych na zadaną liczbę grup. Ćwiczenia. PoniŜsza tabela obrazuje natęŝenie ruchu ulicznego na trzech skrzyŝowaniach w mieście zaleŝne od godziny pomiaru. Tabela 3. Dane testowe. Godzina/ Nr 1 skrzyŝowania Poleceniem load count.dat wczytujemy dane testowe do przestrzeni roboczej środowiska Matlab. Ćwiczenie 1. Dokonać normalizacji danych. Wyświetlić dane w postaci punktów w przestrzeni (funkcja plot3. 3
4 Dobrać odpowiedni typ odległości oraz metodę wyznaczaniu podobieństwa pomiędzy danymi w zbiorze testowym tak, aby współczynnik korelacji cophenet a był optymalny. Ćwiczenie 2. Wyświetlić drzewo hierarchiczne. Dobrać próg współczynnika niespójności tak, by utworzyć 2, 4, 6 i 8 grup danych. Ćwiczenie 3. Pogrupować natęŝenia ruchu dla kaŝdego skrzyŝowania osobno, wyznaczyć godziny największego i najmniejszego natęŝenia ruchu (grupy godzin. Wyświetlić drzewa hierarchiczne dla kaŝdego skrzyŝowania osobno. 6. Grupowanie danych za pomocą algorytmu k średnich. Algorytm k średnich traktuje dane jako miejsce (punkt w przestrzeni i tworząc grupy dba by elementy w grupie były blisko siebie i wystarczająco daleko od elementów z innych grup. KaŜdy klaster (dane zgrupowane reprezentowany jest przez jego elementy oraz przez środek klastra. Środek klastra jest to punkt gdzie suma odległości wszystkich elementów od niego jest minimalna. I = kmeans(x,liczbagrup,'distance',typodleglosci, gdzie X reprezentuje dane do klasteryzacji, 'distance' realizacja wybranego rodzaju obliczania odległości do środka klastra Typy odległości: -'sqeuclidean' -'cityblock' -'cosine' -'correlation' -'Hamming' Otrzymawszy pogrupowane dane moŝemy wyświetlić je w postaci zarysu grup. Funkcja silhouette wyświetla miarę jak blisko kaŝdy punkt naleŝący do grupy jest oddalony od punktów z grup sąsiadujących. Wyświetlany wynik zawiera się w przedziale <-1:1>, przy czym wartości mniejsze niŝ zero i zmierzające do -1 oznaczają, Ŝe dany punkt został umieszczony w niewłaściwym klastrze (grupie. [silh,h] = silhouette(x,i,typyodległosci WyróŜniamy następujące rodzaje odległości: -'Euclidean' -'sqeuclidean' -'cityblock' -'cosine' -'correlation' -'Hamming' 4
5 7. Określanie poprawnej liczby klastrów. Chcąc określić czy załoŝona przy wywołaniu funkcji kmeans liczba klastrów jest prawidłowa obliczamy średnią wartość zwracaną przez funkcję silhouette. Im większa wartość średnia tym liczba klastrów jest bardziej poprawna. S=means(silh Ćwiczenie 4. Określić optymalny typ odległości przy grupowaniu kmeans dla wszystkich skrzyŝowań łącznie Wyświetlić zarysy klastrów Ćwiczenie 5. Określić prawidłową liczbę klastrów dla wszystkich skrzyŝowań łącznie. Określić prawidłową liczbę klastrów dla pierwszych dwóch skrzyŝowań. Które charakteryzuje się większą róŝnorodnością danych? 5
Metody eksploracji danych w odkrywaniu wiedzy (MED) projekt, dokumentacja końcowa
Metody eksploracji danych w odkrywaniu wiedzy (MED) projekt, dokumentacja końcowa Konrad Miziński 14 stycznia 2015 1 Temat projektu Grupowanie hierarchiczne na podstawie algorytmu k-średnich. 2 Dokumenty
Grupowanie Witold Andrzejewski, Politechnika Poznańska, Wydział Informatyki 201/633
Grupowanie Grupowanie 7 6 5 4 y 3 2 1 0-3 -2-1 0 1 2 3 4 5-1 -2-3 -4 x Witold Andrzejewski, Politechnika Poznańska, Wydział Informatyki 201/633 Wprowadzenie Celem procesu grupowania jest podział zbioru
Data Mining Wykład 9. Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster. Plan wykładu. Sformułowanie problemu
Data Mining Wykład 9 Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster Plan wykładu Wprowadzanie Definicja problemu Klasyfikacja metod grupowania Grupowanie hierarchiczne Sformułowanie problemu
Klasteryzacja danych
Monitorowanie i Diagnostyka w Systemach Sterowania na studiach II stopnia specjalności: Systemy Sterowania i Podejmowania Decyzji Klasteryzacja danych na podstawie: Leszek Rutkowski. Metody i techniki
CLUSTERING. Metody grupowania danych
CLUSTERING Metody grupowania danych Plan wykładu Wprowadzenie Dziedziny zastosowania Co to jest problem klastrowania? Problem wyszukiwania optymalnych klastrów Metody generowania: k centroidów (k - means
Elementy statystyki wielowymiarowej
Wnioskowanie_Statystyczne_-_wykład Spis treści 1 Elementy statystyki wielowymiarowej 1.1 Kowariancja i współczynnik korelacji 1.2 Macierz kowariancji 1.3 Dwumianowy rozkład normalny 1.4 Analiza składowych
ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH
1 ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH WFAiS UJ, Informatyka Stosowana II stopień studiów 2 Eksploracja danych Co to znaczy eksploracja danych Klastrowanie (grupowanie) hierarchiczne Klastrowanie
Monitorowanie i Diagnostyka w Systemach Sterowania
Monitorowanie i Diagnostyka w Systemach Sterowania Katedra Inżynierii Systemów Sterowania Dr inż. Michał Grochowski Monitorowanie i Diagnostyka w Systemach Sterowania na studiach II stopnia specjalności:
KP, Tele i foto, wykład 3 1
Krystian Pyka Teledetekcja i fotogrametria sem. 4 2007/08 Wykład 3 Promieniowanie elektromagnetyczne padające na obiekt jest w części: odbijane refleksja R rozpraszane S przepuszczane transmisja T pochłaniane
Doświadczalnictwo leśne. Wydział Leśny SGGW Studia II stopnia
Doświadczalnictwo leśne Wydział Leśny SGGW Studia II stopnia Metody nieparametryczne Do tej pory omawialiśmy metody odpowiednie do opracowywania danych ilościowych, mierzalnych W kaŝdym przypadku zakładaliśmy
1.UKŁADY RÓWNAŃ LINIOWYCH
UKŁADY RÓWNAŃ 1.UKŁADY RÓWNAŃ LINIOWYCH Układ: a1x + b1y = c1 a x + by = c nazywamy układem równań liniowych. Rozwiązaniem układu jest kaŝda para liczb spełniająca kaŝde z równań. Przy rozwiązywaniu układów
Algorytmy rozpoznawania obrazów. 11. Analiza skupień. dr inż. Urszula Libal. Politechnika Wrocławska
Algorytmy rozpoznawania obrazów 11. Analiza skupień dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. Analiza skupień Określenia: analiza skupień (cluster analysis), klasteryzacja (clustering), klasyfikacja
46 Olimpiada Biologiczna
46 Olimpiada Biologiczna Pracownia statystyczno-filogenetyczna Łukasz Banasiak i Jakub Baczyński 22 kwietnia 2017 r. Statystyka i filogenetyka / 30 Liczba punktów (wypełnia KGOB) PESEL Imię i nazwisko
Literatura. Leitner R., Zacharski J., Zarys matematyki wyŝszej dla studentów, cz. III.
Literatura Krysicki W., Bartos J., Dyczka W., Królikowska K, Wasilewski M., Rachunek Prawdopodobieństwa i Statystyka Matematyczna w Zadaniach, cz. I. Leitner R., Zacharski J., Zarys matematyki wyŝszej
Laboratorium nr 5. Temat: Funkcje agregujące, klauzule GROUP BY, HAVING
Laboratorium nr 5 Temat: Funkcje agregujące, klauzule GROUP BY, HAVING Celem ćwiczenia jest zaprezentowanie zagadnień dotyczących stosowania w zapytaniach języka SQL predefiniowanych funkcji agregujących.
4.3 Grupowanie według podobieństwa
4.3 Grupowanie według podobieństwa Przykłady obiektów to coś więcej niż wektory wartości atrybutów. Reprezentują one poszczególne rasy psów. Ważnym pytaniem, jakie można sobie zadać, jest to jak dobrymi
SYSTEMY UCZĄCE SIĘ WYKŁAD 10. PRZEKSZTAŁCANIE ATRYBUTÓW. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska.
SYSTEMY UCZĄCE SIĘ WYKŁAD 10. PRZEKSZTAŁCANIE ATRYBUTÓW Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska INFORMACJE WSTĘPNE Hipotezy do uczenia się lub tworzenia
SPRAWDZENIE PRAWA OHMA POMIAR REZYSTANCJI METODĄ TECHNICZNĄ
Laboratorium Podstaw Elektroniki Marek Siłuszyk Ćwiczenie M 4 SPWDZENE PW OHM POM EZYSTNCJ METODĄ TECHNCZNĄ opr. tech. Mirosław Maś niwersytet Przyrodniczo - Humanistyczny Siedlce 2013 1. Wstęp Celem ćwiczenia
Egzamin ze Statystyki, Studia Licencjackie Stacjonarne czerwiec 2007 Temat A
(imię, nazwisko, nr albumu).. Przy rozwiązywaniu zadań, jeśli to konieczne, naleŝy przyjąć poziom istotności 0,01 i współczynnik ufności 0,95. Zadanie 1 W 005 roku przeprowadzono badanie ankietowe, którego
ANALIZA HIERARCHICZNA PROBLEMU W SZACOWANIU RYZYKA PROJEKTU INFORMATYCZNEGO METODĄ PUNKTOWĄ. Joanna Bryndza
ANALIZA HIERARCHICZNA PROBLEMU W SZACOWANIU RYZYKA PROJEKTU INFORMATYCZNEGO METODĄ PUNKTOWĄ Joanna Bryndza Wprowadzenie Jednym z kluczowych problemów w szacowaniu poziomu ryzyka przedsięwzięcia informatycznego
1. Eliminuje się ze zbioru potencjalnych zmiennych te zmienne dla których korelacja ze zmienną objaśnianą jest mniejsza od krytycznej:
Metoda analizy macierzy współczynników korelacji Idea metody sprowadza się do wyboru takich zmiennych objaśniających, które są silnie skorelowane ze zmienną objaśnianą i równocześnie słabo skorelowane
Diary przydatne polecenie. Korzystanie z funkcji wbudowanych i systemu pomocy on-line. Najczęstsze typy plików. diary nazwa_pliku
Diary przydatne polecenie diary nazwa_pliku Polecenie to powoduje, że od tego momentu sesja MATLAB-a, tj. polecenia i teksty wysyłane na ekran (nie dotyczy grafiki) będą zapisywane w pliku o podanej nazwie.
Analiza składowych głównych. Wprowadzenie
Wprowadzenie jest techniką redukcji wymiaru. Składowe główne zostały po raz pierwszy zaproponowane przez Pearsona(1901), a następnie rozwinięte przez Hotellinga (1933). jest zaliczana do systemów uczących
KNIME podstawy obsługi programu. Pracownia Chemometrii Środowiska Katedra Chemii i Radiochemii Środowiska Wydział Chemii UG
KNIME podstawy obsługi programu Pracownia Chemometrii Środowiska Katedra Chemii i Radiochemii Środowiska Wydział Chemii UG KNIME KNIME jest programem działającym na licencji GNU można go pobrać za darmo
Statystyka hydrologiczna i prawdopodobieństwo zjawisk hydrologicznych.
Statystyka hydrologiczna i prawdopodobieństwo zjawisk hydrologicznych. Statystyka zajmuje się prawidłowościami zaistniałych zdarzeń. Teoria prawdopodobieństwa dotyczy przewidywania, jak często mogą zajść
Co to jest grupowanie
Grupowanie danych Co to jest grupowanie 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Szukanie grup, obszarów stanowiących lokalne gromady punktów Co to jest grupowanie
Wykład 10 Skalowanie wielowymiarowe
Wykład 10 Skalowanie wielowymiarowe Wrocław, 30.05.2018r Skalowanie wielowymiarowe (Multidimensional Scaling (MDS)) Główne cele MDS: przedstawienie struktury badanych obiektów przez określenie treści wymiarów
Zestaw 12- Macierz odwrotna, układy równań liniowych
Zestaw - Macierz odwrotna, układy równań liniowych Przykładowe zadania z rozwiązaniami ZałóŜmy, Ŝe macierz jest macierzą kwadratową stopnia n. Mówimy, Ŝe macierz tego samego wymiaru jest macierzą odwrotną
Układy równań liniowych. Ax = b (1)
Układy równań liniowych Dany jest układ m równań z n niewiadomymi. Liczba równań m nie musi być równa liczbie niewiadomych n, tj. mn. a a... a b n n a a... a b n n... a a... a b m m mn n m
WSKAZÓWKI DO WYKONANIA SPRAWOZDANIA Z WYRÓWNAWCZYCH ZAJĘĆ LABORATORYJNYCH
WSKAZÓWKI DO WYKONANIA SPRAWOZDANIA Z WYRÓWNAWCZYCH ZAJĘĆ LABORATORYJNYCH Dobrze przygotowane sprawozdanie powinno zawierać następujące elementy: 1. Krótki wstęp - maksymalnie pół strony. W krótki i zwięzły
P R Z E T W A R Z A N I E S Y G N A Ł Ó W B I O M E T R Y C Z N Y C H
W O J S K O W A A K A D E M I A T E C H N I C Z N A W Y D Z I A Ł E L E K T R O N I K I Drukować dwustronnie P R Z E T W A R Z A N I E S Y G N A Ł Ó W B I O M E T R Y C Z N Y C H Grupa... Data wykonania
ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH
1 ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH WFAiS UJ, Informatyka Stosowana II stopień studiów 2 Eksploracja danych Algorytmy klastujące Problem 3 Mając daną chmurę punktów chcielibyśmy zrozumieć ich
Uczenie sieci radialnych (RBF)
Uczenie sieci radialnych (RBF) Budowa sieci radialnej Lokalne odwzorowanie przestrzeni wokół neuronu MLP RBF Budowa sieci radialnych Zawsze jedna warstwa ukryta Budowa neuronu Neuron radialny powinien
Hierarchiczna analiza skupień
Hierarchiczna analiza skupień Cel analizy Analiza skupień ma na celu wykrycie w zbiorze obserwacji klastrów, czyli rozłącznych podzbiorów obserwacji, wewnątrz których obserwacje są sobie w jakimś określonym
PROJEKT CZĘŚCIOWO FINANSOWANY PRZEZ UNIĘ EUROPEJSKĄ. Opis działania raportów w ClearQuest
PROJEKT CZĘŚCIOWO FINANSOWANY PRZEZ UNIĘ EUROPEJSKĄ Opis działania raportów w ClearQuest Historia zmian Data Wersja Opis Autor 2008.08.26 1.0 Utworzenie dokumentu. Wersja bazowa dokumentu. 2009.12.11 1.1
METODY CHEMOMETRYCZNE W IDENTYFIKACJI ŹRÓDEŁ POCHODZENIA
METODY CHEMOMETRYCZNE W IDENTYFIKACJI ŹRÓDEŁ POCHODZENIA AMFETAMINY Waldemar S. Krawczyk Centralne Laboratorium Kryminalistyczne Komendy Głównej Policji, Warszawa (praca obroniona na Wydziale Chemii Uniwersytetu
Pzetestuj działanie pętli while i do...while na poniższym przykładzie:
Pzetestuj działanie pętli while i do...while na poniższym przykładzie: Zadania pętla while i do...while: 1. Napisz program, który wczytuje od użytkownika liczbę całkowitą, dopóki podana liczba jest mniejsza
Porównanie modeli statystycznych. Monika Wawrzyniak Katarzyna Kociałkowska
Porównanie modeli statystycznych Monika Wawrzyniak Katarzyna Kociałkowska Jaka jest miara podobieństwa? Aby porównywać rozkłady prawdopodobieństwa dwóch modeli statystycznych możemy użyć: metryki dywergencji
Egzamin ze statystyki, Studia Licencjackie Stacjonarne. TEMAT C grupa 1 Czerwiec 2007
Egzamin ze statystyki, Studia Licencjackie Stacjonarne TEMAT C grupa 1 Czerwiec 2007 (imię, nazwisko, nr albumu).. Przy rozwiązywaniu zadań, jeśli to konieczne, naleŝy przyjąć poziom istotności 0,01 i
STATYSTYKA I DOŚWIADCZALNICTWO
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 9 Analiza skupień wielowymiarowa klasyfikacja obiektów Metoda, a właściwie to zbiór metod pozwalających na grupowanie obiektów pod względem wielu cech jednocześnie.
TEORETYCZNE PODSTAWY INFORMATYKI
1 TEORETYCZNE PODSTAWY INFORMATYKI WFAiS UJ, Informatyka Stosowana II stopień studiów Wykład 13b 2 Eksploracja danych Co rozumiemy pod pojęciem eksploracja danych Algorytmy grupujące (klajstrujące) Graficzna
LABORATORIUM AUDIOLOGII I AUDIOMETRII
LABORATORIUM AUDIOLOGII I AUDIOMETRII ĆWICZENIE NR 4 MASKOWANIE TONU TONEM Cel ćwiczenia Wyznaczenie przesunięcia progu słyszenia przy maskowaniu równoczesnym tonu tonem. Układ pomiarowy I. Zadania laboratoryjne:
Analiza skupień. Analiza Skupień W sztucznej inteligencji istotną rolę ogrywają algorytmy grupowania
Analiza skupień W sztucznej inteligencji istotną rolę ogrywają algorytmy grupowania Analiza Skupień Elementy składowe procesu grupowania obiekt Ekstrakcja cech Sprzężenie zwrotne Grupowanie klastry Reprezentacja
KLASYFIKACJA. Słownik języka polskiego
KLASYFIKACJA KLASYFIKACJA Słownik języka polskiego Klasyfikacja systematyczny podział przedmiotów lub zjawisk na klasy, działy, poddziały, wykonywany według określonej zasady Klasyfikacja polega na przyporządkowaniu
INSTRUKCJE ITERACYJNE
INSTRUKCJE ITERACYJNE Zadanie nr 1 Przedstaw algorytm za pomocą a i schematów blokowych, który wyświetla na ekranie monitora 10 kolejnych liczb całkowitych począwszy od 1. Zrealizuj problem za pomocą instrukcji
Temat: BADANIE NIEZALEśNOŚCI DWÓCH CECH JAKOŚCIOWYCH TEST CHI KWADRAT. Anna Rajfura 1
Temat: BADANIE NIEZALEśNOŚCI DWÓCH CECH JAKOŚCIOWYCH TEST CHI KWADRAT Anna Rajfura 1 Przykład W celu porównania skuteczności wybranych herbicydów: A, B, C sprawdzano, czy masa chwastów na poletku zaleŝy
Laboratorium nr 1. i 2.
Laboratorium nr 1. i 2. Celem laboratorium jest zapoznanie się ze zintegrowanym środowiskiem programistycznym, na przykładzie podstawowych aplikacji z obsługą standardowego wejścia wyjścia, podstawowych
Eksploracja danych. Grupowanie. Wprowadzanie Definicja problemu Klasyfikacja metod grupowania Grupowanie hierarchiczne. Grupowanie wykład 1
Grupowanie Wprowadzanie Definicja problemu Klasyfikacja metod grupowania Grupowanie hierarchiczne Grupowanie wykład 1 Sformułowanie problemu Dany jest zbiór obiektów (rekordów). Znajdź naturalne pogrupowanie
Wszystkie wyniki w postaci ułamków należy podawać z dokładnością do czterech miejsc po przecinku!
Pracownia statystyczno-filogenetyczna Liczba punktów (wypełnia KGOB) / 30 PESEL Imię i nazwisko Grupa Nr Czas: 90 min. Łączna liczba punktów do zdobycia: 30 Czerwona Niebieska Zielona Żółta Zaznacz znakiem
Rozdział 22 Pole elektryczne
Rozdział 22 Pole elektryczne 1. NatęŜenie pola elektrycznego jest wprost proporcjonalne do A. momentu pędu ładunku próbnego B. energii kinetycznej ładunku próbnego C. energii potencjalnej ładunku próbnego
Równania kwadratowe. Zad. 4: (profil matematyczno-fizyczny) Dla jakich wartości parametru m równanie mx 2 + 2x + m 2 = 0 ma dwa pierwiastki mniejsze
Równania kwadratowe Zad : Dany jest wielomian W(x) = x mx + m m + a) Dla jakich wartości parametru m wielomian ten ma dwa pierwiastki, których suma jest o jeden większa od ich iloczynu? *b) Przyjmij, Ŝe
Metody analizy skupień Wprowadzenie Charakterystyka obiektów Metody grupowania Ocena poprawności grupowania
Wielowymiarowe metody segmentacji CHAID Metoda Automatycznej Detekcji Interakcji CHAID Cele CHAID Dane CHAID Przebieg analizy CHAID Parametry CHAID Wyniki Metody analizy skupień Wprowadzenie Charakterystyka
Zadania po 4 punkty. 7. Na rysunku z prawej dana jest gwiazda pięcioramienna ABCDE. Kąt przy wierzchołku C ma miarę: A) 22 B) 50 C) 52 D) 58 E) 80
VI Piotrkowski Maraton Matematyczny 9-.06.0 Test jednokrotnego wyboru Czas na rozwiązanie: godz. 5 min. Do zdobycia: 80 punktów. Przed Tobą 0 zadań testowych. W kaŝdym zadaniu jest dokładnie jedna poprawna
Zadanie 1. Analiza Analiza rozkładu
Zadanie 1 data lab.zad 1; input czas; datalines; 85 3060 631 819 805 835 955 595 690 73 815 914 ; run; Analiza Analiza rozkładu Ponieważ jesteśmy zainteresowani wyznaczeniem przedziału ufności oraz weryfikacja
Wymagania na poszczególne oceny szkolne dla klasy VI. (na podstawie Grażyny Koba, Teraz bajty. Informatyka dla szkoły podstawowej.
1 Wymagania na poszczególne oceny szkolne dla klasy VI (na podstawie Grażyny Koba, Teraz bajty. Informatyka dla szkoły podstawowej. Klasa VI ) 2 1. Obliczenia w arkuszu kalkulacyjnym słucha poleceń nauczyciela
Czym jest analiza skupień?
Statystyczna analiza danych z pakietem SAS Analiza skupień metody hierarchiczne Czym jest analiza skupień? wielowymiarowa technika pozwalająca wykrywać współzależności między obiektami; ściśle związana
Algorytmy klasteryzacji jako metoda dyskretyzacji w algorytmach eksploracji danych. Łukasz Przybyłek, Jakub Niwa Studenckie Koło Naukowe BRAINS
Algorytmy klasteryzacji jako metoda dyskretyzacji w algorytmach eksploracji danych Łukasz Przybyłek, Jakub Niwa Studenckie Koło Naukowe BRAINS Dyskretyzacja - definicja Dyskretyzacja - zamiana atrybutów
Porównanie szeregów czasowych z wykorzystaniem algorytmu DTW
Zlot użytkowników R Porównanie szeregów czasowych z wykorzystaniem algorytmu DTW Paweł Teisseyre Instytut Podstaw Informatyki, Polska Akademia Nauk 21 września 2010 Miary podobieństwa między szeregami
Teraz bajty. Informatyka dla szkoły podstawowej. Klasa VI
1 Teraz bajty. Informatyka dla szkoły podstawowej. Klasa VI Opis założonych osiągnięć ucznia przykłady wymagań na poszczególne oceny szkolne dla klasy VI Grażyna Koba Spis treści 1. Obliczenia w arkuszu
Obszar pierwszy to pasek narzędzi (rys. 1) zawierający skróty do najczęściej uŝywanych funkcji. Rys. 1 Pasek Narzędzi
Do najwaŝniejszych zmian w CERTO v4.0 naleŝy: MoŜliwość wczytywania do programu plików graficznych zawierających rzuty lub przekroje budynku i zaznaczania na nich elementów wprowadzanych do programu CERTO.
Algorytm grupowania danych typu kwantyzacji wektorów
Algorytm grupowania danych typu kwantyzacji wektorów Wstęp Definicja problemu: Typowe, rozważane dotychczas problemy koncentrowały się na nauczeniu na podstawie zbioru treningowego i zbioru etykiet klasyfikacji
Definicja pochodnej cząstkowej
1 z 8 gdzie punkt wewnętrzny Definicja pochodnej cząstkowej JeŜeli iloraz ma granicę dla to granicę tę nazywamy pochodną cząstkową funkcji względem w punkcie. Oznaczenia: Pochodną cząstkową funkcji względem
1 : m z = c k : W. c k. r A. r B. R B B 0 B p. Rys.1. Skala zdjęcia lotniczego.
adanie kartometryczności zdjęcia lotniczego stęp by skorzystać z pomiarów na zdjęciach naleŝy, zdawać sobie sprawę z ich kartometryczności. Jak wiadomo, zdjęcie wykonane kamerą fotogrametryczną jest rzutem
2. Permutacje definicja permutacji definicja liczba permutacji zbioru n-elementowego
Wymagania dla kl. 3 Zakres podstawowy Temat lekcji Zakres treści Osiągnięcia ucznia 1. RACHUNEK PRAWDOPODOBIEŃSTWA 1. Reguła mnożenia reguła mnożenia ilustracja zbioru wyników doświadczenia za pomocą drzewa
WYKORZYSTANIE NARZĘDZIA Solver DO ROZWIĄZYWANIA ZAGADNIENIA Problem przydziału
WYKORZYSTANIE NARZĘDZIA Solver DO ROZWIĄZYWANIA ZAGADNIENIA Problem przydziału Problem przydziału Przykład Firma KARMA zamierza w okresie letnim przeprowadzić konserwację swoich urządzeń; mieszalników,
Regresja wielokrotna jest metodą statystyczną, w której oceniamy wpływ wielu zmiennych niezależnych (X1, X2, X3,...) na zmienną zależną (Y).
Statystyka i opracowanie danych Ćwiczenia 12 Izabela Olejarczyk - Wożeńska AGH, WIMiIP, KISIM REGRESJA WIELORAKA Regresja wielokrotna jest metodą statystyczną, w której oceniamy wpływ wielu zmiennych niezależnych
Algorytmy decyzyjne będące alternatywą dla sieci neuronowych
Algorytmy decyzyjne będące alternatywą dla sieci neuronowych Piotr Dalka Przykładowe algorytmy decyzyjne Sztuczne sieci neuronowe Algorytm k najbliższych sąsiadów Kaskada klasyfikatorów AdaBoost Naiwny
operacje porównania, a jeśli jest to konieczne ze względu na złe uporządkowanie porównywanych liczb zmieniamy ich kolejność, czyli przestawiamy je.
Problem porządkowania zwanego również sortowaniem jest jednym z najważniejszych i najpopularniejszych zagadnień informatycznych. Dane: Liczba naturalna n i ciąg n liczb x 1, x 2,, x n. Wynik: Uporządkowanie
Akademia Górniczo-Hutnicza
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie Wyznaczanie dysparycji z użyciem pakietu Matlab Kraków, 2012 1. Mapa dysparycji W wizyjnych metodach odwzorowania, cyfrowa reprezentacja sceny
Luty 2001 Algorytmy (4) 2000/2001
Mając dany zbiór elementów, chcemy znaleźć w nim element największy (maksimum), bądź najmniejszy (minimum). We wszystkich naturalnych metodach znajdywania najmniejszego i największego elementu obecne jest
Teraz bajty. Informatyka dla szkoły podstawowej. Klasa VI
1 Teraz bajty. Informatyka dla szkoły podstawowej. Klasa VI 1. Obliczenia w arkuszu kalkulacyjnym Rozwiązywanie problemów z wykorzystaniem aplikacji komputerowych obliczenia w arkuszu kalkulacyjnym wykonuje
Instrukcja automatycznego tworzenia pozycji towarowych SAD na podstawie danych wczytywanych z plików zewnętrznych (XLS).
Instrukcja automatycznego tworzenia pozycji towarowych SAD na podstawie danych wczytywanych z plików zewnętrznych (XLS). W programie FRAKTAL SAD++ istnieje moŝliwość automatycznego wczytywania danych z
Wymagania egzaminacyjne z matematyki. Klasa 3C. MATeMATyka. Nowa Era. Klasa 3
Wymagania egzaminacyjne z matematyki. lasa 3C. MATeMATyka. Nowa Era. y są ze sobą ściśle powiązane ( + P + R + D + W), stanowiąc ocenę szkolną, i tak: ocenę dopuszczającą (2) otrzymuje uczeń, który spełnił
jest rozwiązaniem równania jednorodnego oraz dla pewnego to jest toŝsamościowo równe zeru.
Układy liniowe Układ liniowy pierwszego rzędu, niejednorodny. gdzie Jeśli to układ nazywamy jednorodnym Pamiętamy, Ŝe kaŝde równanie liniowe rzędu m moŝe zostać sprowadzone do układu n równań liniowych
KORELACJE I REGRESJA LINIOWA
KORELACJE I REGRESJA LINIOWA Korelacje i regresja liniowa Analiza korelacji: Badanie, czy pomiędzy dwoma zmiennymi istnieje zależność Obie analizy się wzajemnie przeplatają Analiza regresji: Opisanie modelem
Testy nieparametryczne
Testy nieparametryczne Testy nieparametryczne możemy stosować, gdy nie są spełnione założenia wymagane dla testów parametrycznych. Stosujemy je również, gdy dane można uporządkować według określonych kryteriów
Eksploracja danych w środowisku R
Eksploracja danych w środowisku R Moi drodzy, niniejszy konspekt nie omawia eksploracji danych samej w sobie. Nie dowiecie się tutaj o co chodzi w generowaniu drzew decyzyjnych czy grupowaniu danych. Te
Psychometria PLAN NAJBLIŻSZYCH WYKŁADÓW. Co wyniki testu mówią nam o samym teście? A. Rzetelność pomiaru testem. TEN SLAJD JUŻ ZNAMY
definicja rzetelności błąd pomiaru: systematyczny i losowy Psychometria Co wyniki testu mówią nam o samym teście? A. Rzetelność pomiaru testem. rozkład X + błąd losowy rozkład X rozkład X + błąd systematyczny
Kodowanie transformacyjne. Plan 1. Zasada 2. Rodzaje transformacji 3. Standard JPEG
Kodowanie transformacyjne Plan 1. Zasada 2. Rodzaje transformacji 3. Standard JPEG Zasada Zasada podstawowa: na danych wykonujemy transformacje która: Likwiduje korelacje Skupia energię w kilku komponentach
Politechnika Poznańska Instytut Technologii Mechanicznej. Laboratorium Programowanie obrabiarek CNC. Nr 2
1 Politechnika Poznańska Instytut Technologii Mechanicznej Laboratorium Programowanie obrabiarek CNC Nr 2 Obróbka z wykorzystaniem kompensacji promienia narzędzia Opracował: Dr inŝ. Wojciech Ptaszyński
pedagogicznego sprawowanego w roku szkolnym 2009/2010.
PROJEKT: Program wzmocnienia efektywności systemu nadzoru pedagogicznego i oceny jakości pracy szkoły etap II projekt jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Algorytmy wyznaczania centralności w sieci Szymon Szylko
Algorytmy wyznaczania centralności w sieci Szymon Szylko Zakład systemów Informacyjnych Wrocław 10.01.2008 Agenda prezentacji Cechy sieci Algorytmy grafowe Badanie centralności Algorytmy wyznaczania centralności
Predykcja a kozy - studium przypadku
Predykcja a kozy - studium przypadku I.T. Podolak, A. Roman, K. Bartocha Instytut Informatyki UJ 26 lutego 2010 (Instytut Informatyki UJ) Predykcja a kozy - studium przypadku 26 lutego 2010 1 / 28 Czy
Wyniki pomiarów okresu drgań dla wahadła o długości l = 1,215 m i l = 0,5 cm.
2 Wyniki pomiarów okresu drgań dla wahadła o długości l = 1,215 m i l = 0,5 cm. Nr pomiaru T[s] 1 2,21 2 2,23 3 2,19 4 2,22 5 2,25 6 2,19 7 2,23 8 2,24 9 2,18 10 2,16 Wyniki pomiarów okresu drgań dla wahadła
Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć
Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie podstawowym. Klasa 3 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego
Komunikaty statystyczne medyczne
Komunikaty statystyczne-medyczne (raporty statystyczne SWX) zawierają informację o usługach medycznych wykonanych przez świadczeniodawcę. Przekazany przez świadczeniodawcę komunikat podlega sprawdzeniu
1. Grupowanie Algorytmy grupowania:
1. 1.1. 2. 3. 3.1. 3.2. Grupowanie...1 Algorytmy grupowania:...1 Grupowanie metodą k-średnich...3 Grupowanie z wykorzystaniem Oracle Data Miner i Rapid Miner...3 Grupowanie z wykorzystaniem algorytmu K-Means
Algorytm grupowania danych typu kwantyzacji wektorów
Algorytm grupowania danych typu kwantyzacji wektorów Wstęp Definicja problemu: Typowe, problemem często spotykanym w zagadnieniach eksploracji danych (ang. data mining) jest zagadnienie grupowania danych
CMAES. Zapis algorytmu. Generacja populacji oraz selekcja Populacja q i (t) w kroku t generowana jest w następujący sposób:
CMAES Covariance Matrix Adaptation Evolution Strategy Opracowanie: Lidia Wojciechowska W algorytmie CMAES, podobnie jak w algorytmie EDA, adaptowany jest rozkład prawdopodobieństwa generacji punktów, opisany
46 Olimpiada Biologiczna
46 Olimpiada Biologiczna Pracownia statystyczno-filogenetyczna Łukasz Banasiak i Jakub Baczyński 22 kwietnia 2017 r. Zasady oceniania rozwiązań zadań Zadanie 1 1.1 Kodowanie cech (5 pkt) 0,5 pkt za poprawne
08. Normalizacja wyników testu
08. Normalizacja wyników testu q Pojęcie normy q Rodzaje norm q Znormalizowana skala ciągła ( z ) q Znormalizowane skale skokowe q Kryteria wyboru właściwej skali standardowej vpojęcie normy Norma -wzór,
VI WYKŁAD STATYSTYKA. 9/04/2014 B8 sala 0.10B Godz. 15:15
VI WYKŁAD STATYSTYKA 9/04/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 6 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI Weryfikacja hipotez ( błędy I i II rodzaju, poziom istotności, zasady
Podstawowe definicje statystyczne
Podstawowe definicje statystyczne 1. Definicje podstawowych wskaźników statystycznych Do opisu wyników surowych (w punktach, w skali procentowej) stosuje się następujące wskaźniki statystyczne: wynik minimalny
5.4. ROZKŁAD WIELOMIANU NA CZYNNIKI
5.4. ROZKŁAD WIELOMIANU NA CZYNNIKI KaŜdy wielomian moŝna rozłoŝyć na czynniki co najwyŝej drugiego. Metody rozkładu wielomianu na czynniki a) rozkład wielomianu, korzystając z postaci iloczynowej funkcji
Tutaj powinny znaleźć się wyniki pomiarów (tabelki) potwierdzone przez prowadzacego zajęcia laboratoryjne i podpis dyżurujacego pracownika obsługi
Tutaj powinny znaleźć się wyniki pomiarów (tabelki) potwierdzone przez prowadzacego zajęcia laboratoryjne i podpis dyżurujacego pracownika obsługi technicznej. 1. Wstęp Celem ćwiczenia jest wyznaczenie
ρ siła związku korelacyjnego brak słaba średnia silna bardzo silna
Ćwiczenie 4 ANALIZA KORELACJI, BADANIE NIEZALEŻNOŚCI Analiza korelacji jest działem statystyki zajmującym się badaniem zależności pomiędzy rozkładami dwu lub więcej badanych cech w populacji generalnej.
I.1.1. Dietetyk 322[12]
I.1.1. Dietetyk 322[12] Do egzaminu zostało zgłoszonych: 376 Przystąpiło łącznie: 349 przystąpiło: 348 przystąpiło: 349 ETAP PISEMNY ETAP PRAKTYCZNY zdało: 343 (98,6%) zdało: 305 (87,4%) DYPLOM POTWIERDZAJĄCY
InŜynieria ruchu str. 114
NATĘśENIE RUCHU InŜynieria ruchu str. 114 Pomiary wykonuje się oddzielnie dla następujących kategorii: motocykli, samochodów osobowych, lekkich samochodów cięŝarowych (dostawczych) o masie całkowitej
Taksonomia numeryczna co to jest?
dr Ireneusz R. Moraczewski Zakład Systematyki i Geografii Roślin UW Al. Ujazdowskie 4, 00-478 Warszawa e-mail: moraczew@biol.uw.edu.pl Taksonomia numeryczna co to jest? To dziedzina formalna, leżąca na
Ćw. 2: Analiza błędów i niepewności pomiarowych
Wydział: EAIiE Kierunek: Imię i nazwisko (e mail): Rok:. (200/20) Grupa: Zespół: Data wykonania: Zaliczenie: Podpis prowadzącego: Uwagi: LABORATORIUM METROLOGII Ćw. 2: Analiza błędów i niepewności pomiarowych