kwarki są uwięzione w hadronie
|
|
- Amalia Rybak
- 6 lat temu
- Przeglądów:
Transkrypt
1
2
3
4 kwarki są uwięzione w hadronie
5 gluony są uwięzione w hadronie
6
7 QED - potencjał - QCD VQED α = r 1 potencjał coulombowski r nośniki (małe odległości) brak uwięzienia Precyzyjne przewidywania poziomów energetycznych VQCD 4α s = + kr 3r MODEL bezmasowe +kr uwięzienie k 0.85GeV / fm Przewidywania stanów wzbudzonych N*, Δ...
8 Chromodynamika kwantowa teoria oddziaływań silnych SU (3) c - 3 kolory ścisła symetria biegnąca stała sprzężenia α s ( µ ) zależna od skali μ µ swoboda asymptotyczna α s ( µ ) 0 µ 0 uwięzienie α s ( µ ) cząstki: kwarki, gluony
9 Silna stała sprzężenia α s (Q ) = α s (µ ) 7 [1 + α s ( µ ) ln(q / µ )] 4π Biegnąca stała sprzężenia running coupling constant 4π = 7 ln(q / Λ ) Λ 0. GeV
10 nieperturbacyjna QCD α s (Q ) >> Λ... perturbacyjna QCD
11 Porównanie QED i QCD ścisła symetria U(1) biegnąca stała sprzężenia 1 ładunek elektryczny 1 bezmasowy neutralny foton brak sprzężeń γγγ ścisła symetria SU (3) c biegnąca stała sprzężenia 3 ładunki kolorowe 8 bezmasowych kolorowych gluonów sprzężenie ggg
12 Biegnące stałe sprzężenia Uwaga: 1/α Wielka Unifikacja Grand Unification GUT rozpad protonu??? (patrz niżej)
13
14 Jak badać proton... p: uud naive n: udd QPM...gdy gluons valence q strong vacuum partony uwięzione? strong coupling sea q q PROTON 1 fm
15 Masy partonów 3 gluon u d s c b t zapach (flavour) bezmasowy MeV 4-8 MeV MeV GeV GeV 175 GeV Rq < 10 fm } walencyjne WIELKA TAJEMNICA PRZYRODY!!! masa protonu = 938 MeV
16 Układ nieskończonego pędu xp (axis z ) Pprotonu widzimy prawie swobodne partony x ułamek pędu protonu niesiony przez dany parton infinite momentum frame 0 < x <1
17 Czyli... obrazek pędowy tylko wzdłuż osi z brak obrazka przestrzennego (x,y,z lub r) zaniedbujemy pędy poprzeczne
18 Jak badamy? Rozpraszanie głębokonieelastyczne: (k k ' ) = q = Q (q + xp) = m 0 x P q+ xp Q x= qp q 0 < x <1
19 Jaki obszar protonu badamy? λ 1 Q 0. GeV 1 fm = 1... to zależy od λ: 0. GeV 1 fm cały proton (rozkład ładunku) GeV 0.1 fm 1/10 protonu kwarki 0 GeV 0.01 fm 1/100 protonu gluony
20 Więc aby badać wnętrze protonu... J.C potrzebny akcelerator DESY, Hamburg
21 Funkcje gęstości partonów (PDF) u uv q f : u ( x), d ( x), s ( x)... u ( x), d ( x), s ( x)... 1 Liczba partonów na jednostkę x q( x)dx = N 0 q
22 Od przekroju czynnego... d σ 4πα ep = F ( x, Q ) czynnik kinem. 4 dxdq xq ep w modelu partonowym: nf F ( x, Q ) = x e ep f [q f ( x, Q ) + q f ( x, Q )] f e f ładunek kwarku f
23 ep...poprzez funkcje struktury... F1 ( x, Q ) F ( x, Q ) F3 ( x, Q ) ν p, ν p, µ ± p, e ± p
24 ...do rozkładów partonów 0 < x <1 log x
25 x> 0.3 (około) nie ma już kwarków morza ani gluonów tylko kwarki walencyjne x
26 x x1 x g = x1 x λ = 0.05 fm λ = 0.1 fm Funkcje struktury i rozkłady partonów zależą od Q λ = fm valence sea Wraz ze zwiększaniem rozdzielczości fotonu widzimy coraz więcej kwarków morza
27 Nasycenie??? Gdy gęstości partonów w stałej objętości protonu (uwięzienie) rosną oczekiwałoby się x 0 nasycenia gęstości partonowych rekombinacji partonów czyli procesów 1 Dotychczas nie zaobserwowano
28 Ewolucja QCD oddziałujący kwark pochodzi z pary wyemitowanej przez gluon podstawowe oddziaływanie procesy 1 q q g g qq przed oddziaływaniem kwark wyemitował gluon g g g
29 Przewidywania QCD dla kwarków d q ( x, Q ) = d ln Q α s (Q ) = [ π q q g x dξ q ( ξ, Q ) P ( ) qq x ξ ξ g qq 1 x dξ + G (ξ, Q )Pgq ( ) x ξ ξ 1 ]
30 Przewidywania QCD dla gluonów d G ( x, Q ) = d ln Q α s (Q ) = [ π g g g x dξ G ( ξ, Q ) P ( ) gg x ξ ξ q gq 1 x dξ + q (ξ, Q )Pqg ( ) ] x ξ ξ 1
31 g q q ( g gg ) małe x Ewolucja QCD funkcji struktury F Doskonała zgodność QCD z pomiarami!!! q q g duże x
32 Reguła sum Gottfrieda [ 1 0 ] dx F ( x) F ( x) = x ep en 1 [ ] 1 + u ( x) d ( x) dx = 0.4 ± w protonie : d >u
33 Reguła sum Gross a i Llewellyn-Smith a 1 1 dx [ ] xf ( x ) = u ( x ) + d ( x ) dx = 3 V V 0 x 0 νn 3 (uv = u u, dv = d d ) N średni nukleon czyli 1 ( p + n)
34 Pęd protonu niesiony przez... 1 xq( x)dx = { 0 kwarki walencyjne 0.3 kwarki morza 0. gluony Zależy od Q 1.0
35
36 duże Q - mała stała sprzężenia małe Q - duża stała sprzężenia uwięzienie swoboda asymptotyczna kwarki, gluony hadron: modele perturbacyjna QCD mała rozdzielczość duża rozdzielczość
37 F = C (Q ) x Q > 1 GeV λ (Q ) λ ln Q, C = const ( x<0.01) Q < 1 GeV : gdy Q 0 λ 0.08 kwarki hadron przy Q 0.3 fm granica Regge foton zachowuje się jak hadron dynamika hadronowa α s (Q ) >> 1 dynamika partonowa α s (Q ) < 1
38 Dualizm kwarkowo hadronowy obszar rezonansów x=1 elastic
39 Nukleon w jądrze atomowym antia B F ( x) / F ( x) shadowing shadowing J.C Stosunki funkcji struktury nukleonu w jądrach A i B (na nukleon) 0< x< A
40 Gdy x > 1... x >1 oznacza że kwark (walencyjny) niesie pęd > 1 nukleonu!!! Korelacje jądrowe widziane w obrazie kwarkowym Jefferson Laboratory Fe
41
42 Nowe spojrzenie nadzieja... Na uderzony kwark (DIS γ ) popatrzmy jednocześnie poprzecznie rozkłady pędu (transf. Fouriera) struktura przestrzenna Jak? Przy pomocy drugiego (swobodnego tzn. rzeczywistego) fotonu ponieważ nie jest uwięziony w protonie
43 Głęboko virtualne rozpraszanie Comptona Deeply Virtual Compton Scattering - DVCS stąd więcej informacji o kwarku q DIS γ GPD Generalised Parton Distributions γ q q γ GPD zmienne proton proton
44
45 Jak ważny jest spin w QCD? 1 uud J = proton masa 938 MeV 3 + uud J = masa 13 MeV L=0 stan wzbudzony o czasie życia 10 3 s Różnica mas pochodzi od różnicy konfiguracji spinów kwarków walencyjnych (por. QED)
46 np. u d mezon π + u d mezon ρ + masa 139 MeV masa 770 MeV L=0 stan wzbudzony o czasie życia 10^-3 s Różnica mas pochodzi od różnicy konfiguracji spinów walencyjnego kwarka i antykwarka: m > m π! (por. QED)
47 Wkład do spinu protonu Naive QPM: tylko kwarki walencyjne, spin kwarku 1/ qv QCD: + morze i gluony, spin gluonu 1 qs, G Orbitalny moment pędu Lq, Lg
48 + q = q q kwarki i antykwarki ze spinem równoległym (+) i antyrównoległym (-) do spinu protonu Σ = u + d + s +... Gdzie jest spin protonu? 1 1 = Σ + G + Lz kwarki gluony orbitalny
49 Spinowa funkcja struktury { } 1 + g1 ( x) = e f q f ( x) q f ( x) = f 1 e f q f ( x) f ± f Uwaga : q kwarki i antykwarki
50 Jak zmierzyć g1? Spolaryzowana wiązka i tarcza Asymetria: σ 1/ σ 3 / g1 ( x) A1 ( x) = = σ 1/ + σ 3 / F1 ( x) gdzie x F1 ( x) = F ( x)
51 Pierwszy moment funkcji g1 1 Γ1 = g1 ( x)dx 0 Niepodważalne przewidywanie teoretyczne Kryzys spinowy 1987 European Muon Collaboration J.C
52 Skąd bierze się spin? Σ = 0.4 ± 0.03 (...)dx 1 1 = Σ + G + Lz Scenariusze u ( x) > 0 d ( x) < 0 u, d, s, s 0?
53 Wkład do spinu od gluonów
54
55 Czy proton jest trwały? teorie GUT (Grand Unification) : różne schematy unifikacji oddziaływań skala energii 1016 GeV przewidywany rozpad protonu τ / B lat kanały rozpadu: p e π, µ π, e η, K ν
56 Przykładowy experyment: Super Kamiokande
57 Przykładowy rozpad: Rejestracja promieniowania Czerenkova rekonstrukcja pierścieni
58 Pomiary τ/b protonu wykluczanie schematów teoretycznych Wiele aktywności!!!
59
60 Stan wiedzy i niewiedzy proton składa się z kwarków, antykwarków i gluonów wiadomo od >30 lat dość dobrze znany obrazek pędowy (zmienna x) kwarki i gluony niosą po ok. połowie masy (pędu) protonu morze szybko rośnie gdy x 0 mimo tego nie obserwuje się nasycenia gęstości 5 partonowych do x 10 doskonała zgodność pomiarów z przewidywaniami perturbacyjnej QCD
61 badane przejście od obrazka partonowego do hadronu (od perturbacyjnej do nieperturbacyjnej QCD) pierwsze próby pomiaru procesów w kierunku uogólnionych rozkładów partonowych - DVCS obrazek przestrzenny wnętrza protonu? kwarki niosą tylko część spinu protonu pomiary wkładu gluonów do spinu trwają (na razie mała dokładność) poszukiwanie rozpadu protonu nowej fizyki metodami nieakceleratorowymi
62 Udział Polski European Muon Collaboration UW, IPJ, IFJ New Muon Collaboration UW, IPJ, IFJ Spin Muon Collaboration UW, IPJ, IFJ ZEUS, H1 (DESY/HERA) UŁ, UW, IPJ, IFJ, UJ, AGH
63 Atom vs. punktowe elektrony e.m. pole fotonowe e słabo związane niewielka polaryzacja próżni jest równanie ścisły potencjał proton punktowe kwarki silne pole gluonowe partony uwięzione silna polaryzacja próżni dużo par q q nie ma równania efektywny potencjał
64 stany wzbudzone przestrzenna struktura rezonanse jeszcze nieznana perturbacyjna QED QCD perturbacyjna i nieperturbacyjna spinowe efekty bardzo duże mało wiadomo o wkładzie do spinu ψ nlm ( r,θ, ϕ ) spinowe efekty bardzo małe wszystko wiadomo o spinie
65
Wstęp do oddziaływań hadronów
Wstęp do oddziaływań hadronów Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 9 M. Przybycień (WFiIS AGH) Wstęp do oddziaływań hadronów Wykład 9 1 / 21 Rozpraszanie
Struktura porotonu cd.
Struktura porotonu cd. Funkcje struktury Łamanie skalowania QCD Spinowa struktura protonu Ewa Rondio, 2 kwietnia 2007 wykład 7 informacja Termin egzaminu 21 czerwca, godz.9.00 Wiemy już jak wygląda nukleon???
Rozszyfrowywanie struktury protonu
Rozszyfrowywanie struktury protonu Metody pomiaru struktury obiektów złożonych v Rozpraszanie elektronów na nukleonie czy na jego składnikach v Składniki punktowe wewnątrz nukleonu to kwarki v Definicja
Budowa nukleonu. Krzysztof Kurek
Krzysztof Kurek Data selection Plan Statyczny model kwarków Plan Statyczny model kwarków i symetrie SU(N) zapachowe. Elastyczne rozpraszanie elektronów na nukleonie. Składniki punktowe wewnątrz nukleonu.
Struktura protonu. Elementy fizyki czastek elementarnych. Wykład V. spin protonu struktura fotonu
Struktura protonu Wykład V równania ewolucji QCD spin protonu struktura fotonu Elementy fizyki czastek elementarnych Funkcja struktury Różniczkowy przekrój czynny na NC DIS elektron proton: d 2 σ dx dq
Struktura protonu. Elementy fizyki czastek elementarnych. Wykład III
Struktura protonu Elementy fizyki czastek elementarnych Wykład III kinematyka rozpraszania doświadczenie Rutherforda rozpraszanie nieelastyczne partony i kwarki struktura protonu Kinematyka Rozpraszanie
Atomowa budowa materii
Atomowa budowa materii Wszystkie obiekty materialne zbudowane są z tych samych elementów cząstek elementarnych Cząstki elementarne oddziałują tylko kilkoma sposobami oddziaływania wymieniając kwanty pól
WYKŁAD 5 sem zim.2010/11
Wszechświat cząstek elementarnych dla przyrodników WYKŁAD 5 sem zim.2010/11 Maria Krawczyk, Wydział Fizyki UW Siły: porównania oddziaływań stałe sprzężenia Diagramy Feynmana Oddziaływania: elektromagnetyczne
VI. 6 Rozpraszanie głębokonieelastyczne i kwarki
r. akad. 005/ 006 VI. 6 Rozpraszanie głębokonieelastyczne i kwarki 1. Fale materii. Rozpraszanie cząstek wysokich energii mikroskopią na bardzo małych odległościach.. Akceleratory elektronów i protonów.
Struktura protonu. Elementy fizyki czastek elementarnych. Wykład IV
Struktura protonu Elementy fizyki czastek elementarnych Wykład IV kinematyka rozpraszania rozpraszanie nieelastyczne partony i kwarki struktura protonu akcelerator HERA wyznaczanie funkcji struktury Kinematyka
Rozpraszanie elektron-proton
Rozpraszanie elektron-proton V Badania struktury atomu - rozpraszanie Rutherforda. Rozpraszanie elastyczne elektronu na punktowym protonie. Rozpraszanie elastyczne elektronu na protonie o skończonych wymiarach.
Fizyka cząstek elementarnych i oddziaływań podstawowych
Fizyka cząstek elementarnych i oddziaływań podstawowych Wykład 1 Wstęp Jerzy Kraśkiewicz Krótka historia Odkrycie promieniotwórczości 1895 Roentgen odkrycie promieni X 1896 Becquerel promieniotwórczość
WYKŁAD I Wszechświat cząstek elementarnych dla przyrodników. Maria Krawczyk, Wydział Fizyki UW. Model Standardowy AD 2010
Wszechświat cząstek elementarnych dla przyrodników WYKŁAD 13 Maria Krawczyk, Wydział Fizyki UW Model Standardowy AD 2010 Hadrony i struny gluonowe 20.I. 2010 Hadrony=stany związane kwarków Kwarki zawsze
WYKŁAD 8. Wszechświat cząstek elementarnych dla humanistów
Wszechświat cząstek elementarnych dla humanistów WYKŁAD 8 Maria Krawczyk, A.Filip Żarnecki, Wydział Fizyki UW Siły: porównania oddziaływań stałe sprzężenia Diagramy Feynmana Oddziaływania: elektromagnetyczne
WYKŁAD 7. Wszechświat cząstek elementarnych. Maria Krawczyk, Wydział Fizyki UW
Wszechświat cząstek elementarnych WYKŁAD 7 Maria Krawczyk, Wydział Fizyki UW Siły: porównania oddziaływań stałe sprzężenia Diagramy Feynmana Oddziaływania: elektromagnetyczne i grawitacyjne elektromagnetyczne
Wstęp do Modelu Standardowego
Wstęp do Modelu Standardowego Dynamika oddziaływań cząstek Elektrodynamika kwantowa (QED) Chromodynamika kwantowa (QCD) Oddziaływania słabe Tomasz Szumlak AGH-UST Wydział Fizyki i Informatyki Stosowanej
Struktura protonu. Elementy fizyki czastek elementarnych. Wykład IV
Struktura protonu Wykład IV akcelerator HERA Elementy fizyki czastek elementarnych rekonstrukcja przypadków NC DIS wyznaczanie funkcji struktury równania ewolucji QCD struktura fotonu % & lub NC DIS Deep
Rozpraszanie elektron-proton
Rozpraszanie elektron-proton V Badania struktury atomu - rozpraszanie Rutherforda. Rozpraszanie elastyczne elektronu na punktowym protonie. Rozpraszanie elastyczne elektronu na protonie o skończonych wymiarach.
Rozpraszanie elektron-proton
Rozpraszanie elektron-proton V 1. Badania struktury atomu - rozpraszanie Rutherforda. 2. Rozpraszanie elastyczne elektronu na punktowym protonie. 3. Rozpraszanie elastyczne elektronu na protonie o skończonych
WYKŁAD 6. Oddziaływania kolorowe cd. Oddziaływania słabe. Wszechświat cząstek elementarnych dla przyrodników
Wszechświat cząstek elementarnych dla przyrodników WYKŁAD 6 Maria Krawczyk, Wydział Fizyki UW 11.XI.2009 Oddziaływania kolorowe cd. Oddziaływania słabe Cztery podstawowe oddziaływania Oddziaływanie grawitacyjne
WYKŁAD Wszechświat cząstek elementarnych. 24.III.2010 Maria Krawczyk, Wydział Fizyki UW. Masa W
Wszechświat cząstek elementarnych WYKŁAD 6 24 24.III.2010 Maria Krawczyk, Wydział Fizyki UW Oddziaływania kolorowe i biegnąca stała sprzężenia α s Oddziaływania słabe Masa W Stałe sprzężenia Siła elementarnego
Wstęp do chromodynamiki kwantowej
Wstęp do chromodynamiki kwantowej Wykład 1 przez 2 tygodnie wykład następnie wykład/ćwiczenia/konsultacje/lab proszę pamiętać o konieczności posiadania kąta gdy będziemy korzystać z labolatorium (Mathematica
WYKŁAD 13. Wszechświat cząstek elementarnych dla przyrodników. Maria Krawczyk, Wydział Fizyki UW 5.I Hadrony i struny gluonowe
Wszechświat cząstek elementarnych dla przyrodników WYKŁAD 13 Maria Krawczyk, Wydział Fizyki UW 5.I. 2011 Hadrony i struny gluonowe Model Standardowy AD 2010 Hadrony = stany związane kwarków Kwarki zawsze
Rozdział 7 Kinematyka oddziaływań. Wnioski z transformacji Lorentza. Zmienna x Feynmana, pospieszność (rapidity) i pseudopospieszność
Rozdział 7 Kinematyka oddziaływań. Wnioski z transformacji Lorentza. Zmienna x Feynmana, pospieszność (rapidity) i pseudopospieszność (pseudorapidity). Rozpraszanie leptonów na hadronach. Zmienna x Bjorkena.
Cząstki i siły. Piotr Traczyk. IPJ Warszawa
Cząstki i siły tworzące nasz wszechświat Piotr Traczyk IPJ Warszawa Plan Wstęp Klasyfikacja cząstek elementarnych Model Standardowy 2 Wstęp 3 Jednostki, konwencje Prędkość światła c ~ 3 x 10 8 m/s Stała
Promieniowanie jonizujące
Promieniowanie jonizujące Wykład II Promieniotwórczość Fizyka MU, semestr 2 Uniwersytet Rzeszowski, 8 marca 2017 Wykład II Promieniotwórczość Promieniowanie jonizujące 1 / 22 Jądra pomieniotwórcze Nuklidy
Wszechświat cząstek elementarnych WYKŁAD 5
Wszechświat cząstek elementarnych WYKŁAD 5 Maria Krawczyk, Wydział Fizyki UW 17.III.2010 Oddziaływania: elektromagnetyczne i grawitacyjne elektromagnetyczne i silne (kolorowe) Biegnące stałe sprzężenia:
Struktura protonu. Elementy fizyki czastek elementarnych. Wykład IV. rekonstrukcja przypadków NC DIS wyznaczanie funkcji struktury.
Struktura protonu Wykład IV akcelerator HERA Elementy fizyki czastek elementarnych rekonstrukcja przypadków NC DIS wyznaczanie funkcji struktury równania ewolucji QCD struktura fotonu NC DIS Deep Inelastic
Oddziaływania. Zachowanie liczby leptonowej i barionowej Diagramy Feynmana. Elementy kwantowej elektrodynamiki (QED)
Oddziaływania Zachowanie liczby leptonowej i barionowej Diagramy Feynmana Elementy kwantowej elektrodynamiki (QED) Teoria Yukawy Zasięg oddziaływań i propagator bozonowy Równanie Diraca Antycząstki; momenty
Promieniowanie jonizujące
Promieniowanie jonizujące Wykład II Krzysztof Golec-Biernat Promieniotwórczość Uniwersytet Rzeszowski, 18 października 2017 Wykład II Krzysztof Golec-Biernat Promieniowanie jonizujące 1 / 23 Jądra pomieniotwórcze
Stany skupienia (fazy) materii (1) p=const Gaz (cząsteczkowy lub atomowy), T eratura, Tempe Ciecz wrzenie topnienie Ciało ł stałe ł (kryształ)
Plazma Kwarkowo-Gluonowa Nowy Stan Materii Stany skupienia (fazy) materii (1) p=const Gaz (cząsteczkowy lub atomowy), T eratura, Tempe Ciecz wrzenie topnienie Ciało ł stałe ł (kryształ) Diagram fazowy
Symetrie. D. Kiełczewska, wykład 5 1
Symetrie Symetrie a prawa zachowania Spin Parzystość Spin izotopowy Multiplety hadronowe Niezachowanie parzystości w oddz. słabych Sprzężenie ładunkowe C Symetria CP Zależność spinowa oddziaływań słabych
Symetrie. D. Kiełczewska, wykład 5 1
Symetrie Symetrie a prawa zachowania Spin Parzystość Spin izotopowy Multiplety hadronowe Niezachowanie parzystości w oddz. słabych Sprzężenie ładunkowe C Symetria CP Zależność spinowa oddziaływań słabych
DYFRAKCJA W ODDZIAŁYWANIACH e-p NA AKCELRATORZE HERA
DYFRAKCJA W ODDZIAŁYWANIACH e-p NA AKCELRATORZE HERA Jan Figiel Dyfrakcja w oddziaływaniach hadronów model Regge Dyfrakcja w oddziaływaniach e-p perturbacyjna chromodynamika (pqcd) produkcja mezonów wektorowych
Najgorętsze krople materii wytworzone na LHC
Najgorętsze krople materii wytworzone na LHC Adam Bzdak AGH, KZFJ Plan Wprowadzenie do A+A Przepływ eliptyczny, trójkątny, hydrodynamika Odkrycie na LHC w p+p i p+a Korelacje 2- i wielu-cząstkowe Podsumowanie
Oddziaływania. Przekrój czynny Zachowanie liczby leptonowej i barionowej Diagramy Feynmana. Elementy kwantowej elektrodynamiki (QED)
Oddziaływania Przekrój czynny Zachowanie liczby leptonowej i barionowej Diagramy Feynmana Elementy kwantowej elektrodynamiki (QED) Teoria Yukawy Zasięg oddziaływań i propagator bozonowy Równanie Diraca
Wstęp do fizyki cząstek elementarnych
Wstęp do fizyki cząstek elementarnych Ewa Rondio cząstki elementarne krótka historia pierwsze cząstki próby klasyfikacji troche o liczbach kwantowych kolor uwięzienie kwarków obecny stan wiedzy oddziaływania
Spinowa Struktura Nukleonu
Spinowa Struktura Nukleonu Marcin Stolarski CERN nukleon i jego spin doświadczenie COMPASS 6-XI-007 M. Stolarski, xxx-xxx Strona 1 Jednostki i skale mikroświata jednostki energii i odleg lości Giga elektronowolt
Z czego i jak zbudowany jest Wszechświat? Jak powstał? Jak się zmienia?
Z czego i jak zbudowany jest Wszechświat? Jak powstał? Jak się zmienia? Cząstki elementarne Kosmologia Wielkość i kształt Świata Ptolemeusz (~100 n.e. - ~165 n.e.) Mikołaj Kopernik (1473 1543) geocentryzm
Oddziaływania silne. Również na tym wykładzie Wielkie unifikacje. Mówiliśmy na poprzednich wykładach o: rezonansach hadronowych multipletach
Oddziaływania silne Mówiliśmy na poprzednich wykładach o: rezonansach hadronowych multipletach Tu powiemy więcej o: Kolorze QCD czyli chromodynamice kwantowej Symetrii SU(3) kolor Uwięzieniu kwarków i
WYKŁAD 8. Maria Krawczyk, Wydział Fizyki UW. Oddziaływania słabe
Wszechświat cząstek elementarnych WYKŁAD 8 Maria Krawczyk, Wydział Fizyki UW Oddziaływania słabe Cztery podstawowe siłyprzypomnienie Oddziaływanie grawitacyjne Działa między wszystkimi cząstkami, jest
Elementy Fizyki Jądrowej. Wykład 5 cząstki elementarne i oddzialywania
Elementy Fizyki Jądrowej Wykład 5 cząstki elementarne i oddzialywania atom co jest elementarne? jądro nukleon 10-10 m 10-14 m 10-15 m elektron kwark brak struktury! elementarność... 1897 elektron (J.J.Thomson)
Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki?
Mechanika kwantowa Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Elektron fala stojąca wokół jądra Mechanika kwantowa Równanie Schrödingera Ĥ E ψ H ˆψ = Eψ operator różniczkowy
Fizyka do przodu w zderzeniach proton-proton
Fizyka do przodu w zderzeniach proton-proton Leszek Adamczyk (KOiDC WFiIS AGH) Seminarium WFiIS March 9, 2018 Fizyka do przodu w oddziaływaniach proton-proton Fizyka do przodu: procesy dla których obszar
Oddziaływania fundamentalne
Oddziaływania fundamentalne Silne: krótkozasięgowe (10-15 m). Siła rośnie ze wzrostem odległości. Znaczna siła oddziaływania. Elektromagnetyczne: nieskończony zasięg, siła maleje z kwadratem odległości.
Wykład 43 Cząstki elementarne - przedłużenie
Wykład 4 Cząstki elementarne - przedłużenie Hadrony Cząstki elementarne oddziałujące silnie nazywają hadronami ( nazwa hadron oznacza "wielki" "masywny"). Hadrony są podzielony na dwie grupy: mezony i
Już wiemy. Wykład IV J. Gluza
Już wiemy Oddziaływania: QED, QCD, słabe Ładunek kolor, potencjały w QED i QCD Stała struktury subtelnej zależy od odległości od ładunku: wielkie osiągnięcie fizyki oddziaływań elementarnych (tzw. running)
Wszechświat Cząstek Elementarnych dla Humanistów Oddziaływania słabe
Wszechświat Cząstek Elementarnych dla Humanistów Oddziaływania słabe Aleksander Filip Żarnecki Wykład ogólnouniwersytecki Wydział Fizyki Uniwersytetu Warszawskiego 7 listopada 2017 A.F.Żarnecki WCE Wykład
Fizyka zderzeń relatywistycznych jonów
Fizyka zderzeń relatywistycznych jonów kilka pytań i możliwe odpowiedzi Stanisław Mrówczyński Uniwersytet Jana Kochanowskiego, Kielce & Instytut Problemów Jądrowych, Warszawa 1 Programy eksperymentalne
Fizyka 2. Janusz Andrzejewski
Fizyka 2 wykład 15 Janusz Andrzejewski Janusz Andrzejewski 2 Egzamin z fizyki I termin 31 stycznia2014 piątek II termin 13 luty2014 czwartek Oba egzaminy odbywać się będą: sala 301 budynek D1 Janusz Andrzejewski
Symetrie w fizyce cząstek elementarnych
Symetrie w fizyce cząstek elementarnych Odkrycie : elektronu- koniec XIX wieku protonu początek XX neutron lata 3 XX w; mion µ -1937, mezon π 1947 Lata 5 XX w zalew nowych cząstek; łączna produkcja cząstek
Fizyka hadronowa. Fizyka układów złożonych oddziałujących silnie! (w których nie działa rachunek zaburzeń)
Fizyka układów złożonych oddziałujących silnie! (w których nie działa rachunek zaburzeń) Fizyka hadronowa Podstawowe pytania: Mechanizm generacji masy i uwięzienia związany z naturą oddziaływań silnych
Produkcja dżetów do przodu w głęboko nieelastycznym rozpraszaniu ep na akceleratorze HERA
Produkcja dżetów do przodu w głęboko nieelastycznym rozpraszaniu ep na akceleratorze HERA Izabela Milcewicz-Mika Instytut Fizyki Jądrowej im. Henryka Niewodniczańskiego Polskiej Akademii Nauk Kraków Polska
Masy cząstek vs. struktura wewnętrzna
Masy cząstek vs. struktura wewnętrzna Leptony Hadrony Skąd wiemy, że atomy mają strukturę? Podobnie jak na atomy można spojrzeć na hadrony Rozpatrzmy wpierw proton i neutron http://pdg.lbl.gov 938.27203(8)
Reakcje jądrowe. X 1 + X 2 Y 1 + Y b 1 + b 2
Reakcje jądrowe X 1 + X 2 Y 1 + Y 2 +...+ b 1 + b 2 kanał wejściowy kanał wyjściowy Reakcje wywołane przez nukleony - mechanizm reakcji Wielkości mierzone Reakcje wywołane przez ciężkie jony a) niskie
Wielka Unifikacja. Elementy fizyki czastek elementarnych. Wykład XI. Co to jest ładunek?... Biegnaca stała sprzężenia i renormalizacja w QED Pomiar
Wielka Unifikacja Wykład XI Co to jest ładunek?... Elementy fizyki czastek elementarnych Biegnaca stała sprzężenia i renormalizacja w QED Pomiar Biegnaca stała sprzężenia QCD Unifikacja SU(5) Leptokwarki
Cząstki elementarne. Składnikami materii są leptony, mezony i bariony. Leptony są niepodzielne. Mezony i bariony składają się z kwarków.
Cząstki elementarne Składnikami materii są leptony, mezony i bariony. Leptony są niepodzielne. Mezony i bariony składają się z kwarków. Cząstki elementarne Leptony i kwarki są fermionami mają spin połówkowy
czastki elementarne Czastki elementarne
czastki elementarne "zwykła" materia, w warunkach które znamy na Ziemi, które panuja w ekstremalnych warunkach na Słońcu: protony, neutrony, elektrony. mówiliśmy również o neutrinach - czastki, które nie
2008/2009. Seweryn Kowalski IVp IF pok.424
2008/2009 seweryn.kowalski@us.edu.pl Seweryn Kowalski IVp IF pok.424 Plan wykładu Wstęp, podstawowe jednostki fizyki jądrowej, Własności jądra atomowego, Metody wyznaczania własności jądra atomowego, Wyznaczanie
Podstawy Fizyki Jądrowej
Podstawy Fizyki Jądrowej III rok Fizyki Kurs WFAIS.IF-D008.0 Składnik egzaminu licencjackiego (sesja letnia)! OPCJA: Po uzyskaniu zaliczenia z ćwiczeń możliwość zorganizowania ustnego egzaminu (raczej
Maria Krawczyk, Wydział Fizyki UW. Oddziaływania słabe 4.IV.2012
Wszechświat cząstek elementarnych WYKŁAD 8sem.letni.2011-12 Maria Krawczyk, Wydział Fizyki UW Oddziaływania słabe Cztery podstawowe siły Oddziaływanie grawitacyjne Działa między wszystkimi cząstkami, jest
Podstawy Fizyki Jądrowej
Podstawy Fizyki Jądrowej III rok Fizyki Kurs WFAIS.IF-D008.0 Składnik egzaminu licencjackiego (sesja letnia)! OPCJA: Po uzyskaniu zaliczenia z ćwiczeń możliwość zorganizowania ustnego egzaminu (raczej
WYKŁAD 3. Maria Krawczyk, Wydział Fizyki UW. Masy i czasy życia cząstek elementarnych. Kwarki: zapach i kolor. Prawa zachowania i liczby kwantowe:
Wszechświat cząstek elementarnych WYKŁAD 3 Maria Krawczyk, Wydział Fizyki UW Masy i czasy życia cząstek elementarnych Kwarki: zapach i kolor Prawa zachowania i liczby kwantowe: liczba barionowa i liczby
Wielka Unifikacja. Elementy fizyki czastek elementarnych. Wykład XI. Co to jest ładunek?...
Wielka Unifikacja Wykład XI Co to jest ładunek?... Elementy fizyki czastek elementarnych Biegnaca stała sprzężenia i renormalizacja w QED Asymptotyczna swoboda QCD Unifikacja SU(5) Problemy Modelu Standardowego
Fizyka cząstek elementarnych. Tadeusz Lesiak
Fizyka cząstek elementarnych Tadeusz Lesiak 1 WYKŁAD VII Elektrodynamika kwantowa T.Lesiak Fizyka cząstek elementarnych 2 Krótka historia oddziaływań elektromagnetycznych 1900-1930 r. powstanie mechaniki
WYKŁAD 3. Maria Krawczyk, Wydział Fizyki UW. Masy i czasy życia cząstek elementarnych. Kwarki: zapach i kolor. Prawa zachowania i liczby kwantowe:
Wszechświat cząstek elementarnych WYKŁAD 3 Maria Krawczyk, Wydział Fizyki UW Masy i czasy życia cząstek elementarnych Kwarki: zapach i kolor Prawa zachowania i liczby kwantowe: liczba barionowa i liczby
Struktura protonu. Elementy fizyki czastek elementarnych. Wykład IV
Struktura protonu Wykład IV akcelerator HERA Elementy fizyki czastek elementarnych rekonstrukcja przypadków NC DIS wyznaczanie funkcji struktury równania ewolucji QCD struktura fotonu NC DIS Deep Inelastic
Wstęp do oddziaływań hadronów
Wstęp do oddziaływań hadronów Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia GórniczoHutnicza Wykład 3 M. Przybycień (WFiIS AGH) Wstęp do oddziaływań hadronów Wykład 3 1 / 16 Diaramy
Pakiet ROOT. prosty generator Monte Carlo. Maciej Trzebiński. Instytut Fizyki Jądrowej Polskiej Akademii Nauki
M. Trzebiński ROOT generator MC 1/5 Pakiet ROOT prosty generator Monte Carlo Maciej Trzebiński Instytut Fizyki Jądrowej Polskiej Akademii Nauki Praktyki studenckie na LHC IFJ PAN, 23 sierpnia 2016 Wprowadzenie
Wszechświat Cząstek Elementarnych dla Humanistów Diagramy Faynmana
Wszechświat Cząstek Elementarnych dla Humanistów Diagramy Faynmana Aleksander Filip Żarnecki Wykład ogólnouniwersytecki Wydział Fizyki Uniwersytetu Warszawskiego 21 listopada 2017 A.F.Żarnecki WCE Wykład
Symetrie. D. Kiełczewska, wykład9
Symetrie Symetrie a prawa zachowania Zachowanie momentu pędu (niezachowanie spinu) Parzystość, sprzężenie ładunkowe Symetria CP Skrętność (eksperyment Goldhabera) Zależność spinowa oddziaływań słabych
Cząstki elementarne i ich oddziaływania III
Cząstki elementarne i ich oddziaływania III 1. Przekrój czynny. 2. Strumień cząstek. 3. Prawdopodobieństwo procesu. 4. Szybkość reakcji. 5. Złota Reguła Fermiego 1 Oddziaływania w eksperymencie Oddziaływania
Wszechświat Cząstek Elementarnych dla Humanistów Diagramy Faynmana
Wszechświat Cząstek Elementarnych dla Humanistów Aleksander Filip Żarnecki Wykład ogólnouniwersytecki 27 listopada 2018 A.F.Żarnecki WCE Wykład 8 27 listopada 2018 1 / 28 1 Budowa materii (przypomnienie)
Podstawowe własności jąder atomowych
Podstawowe własności jąder atomowych 1. Ilość protonów i neutronów Z, N 2. Masa jądra M j = M p + M n - B 2 2 Q ( M c ) ( M c ) 3. Energia rozpadu p 0 k 0 Rozpad zachodzi jeżeli Q > 0, ta nadwyżka energii
Karta przedmiotu. Przedmiot Grupa ECTS. Fizyka Wysokich Energii 9. Kierunek studiów: fizyka. Specjalność: fizyka
Wydział Fizyki, Uniwersytet w Białymstoku Kod USOS Karta przedmiotu Przedmiot Grupa ECTS Fizyka Wysokich Energii 9 Kierunek studiów: fizyka Specjalność: fizyka Formy zajęć Wykład Konwersatorium Seminarium
Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach
Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach Efekt Comptona. p f Θ foton elektron p f p e 0 p e Zderzenia fotonów
Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki?
Mechanika kwantowa Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Równanie Schrödingera Ĥ E ψ H ˆψ = Eψ operator różniczkow Hamiltona energia funkcja falowa h d d d + + m d d dz
Uwolnienie kwarków i gluonów
Wykład IV Przejścia fazowe 1 Uwolnienie kwarków i gluonów Gaz hadronów cząstek elementarnych podlegających oddziaływaniom silnym zamienia się przy odpowiednio wysokiej temperaturze lub gęstości energii
M. Krawczyk, Wydział Fizyki UW
Wszechświat cząstek elementarnych WYKŁAD 3 M. Krawczyk, Wydział Fizyki UW Zoo cząstek elementarnych 6.III.2013 Masy, czasy życia cząstek elementarnych Liczby kwantowe kwarków (zapach i kolor) Prawa zachowania
Fizyka jądrowa. Podstawowe pojęcia. Izotopy. budowa jądra atomowego przemiany promieniotwórcze reakcje jądrowe. jądra atomowe (nuklidy) dzielimy na:
Fizyka jądrowa budowa jądra atomowego przemiany promieniotwórcze reakcje jądrowe Podstawowe pojęcia jądra atomowe (nuklidy) dzielimy na: trwałe (stabilne) nietrwałe (promieniotwórcze) jądro składa się
Własności jąder w stanie podstawowym
Własności jąder w stanie podstawowym Najważniejsze liczby kwantowe charakteryzujące jądro: A liczba masowa = liczbie nukleonów (l. barionów) Z liczba atomowa = liczbie protonów (ładunek) N liczba neutronów
Fizyka 3. Konsultacje: p. 329, Mechatronika
Fizyka 3 Konsultacje: p. 329, Mechatronika marzan@mech.pw.edu.pl Zaliczenie: 2 sprawdziany (10 pkt każdy) lub egzamin (2 części po 10 punktów) 10.1 12 3.0 12.1 14 3.5 14.1 16 4.0 16.1 18 4.5 18.1 20 5.0
Wiadomości wstępne. Krótka historia Przekrój czynny Układ jednostek naturalnych Eksperymenty formacji i produkcji
Wiadomości wstępne Krótka historia Przekrój czynny Układ jednostek naturalnych Eksperymenty formacji i produkcji Historia fizyki cząstek w pigułce 1930 1940 1950 1960 1970 1980 1990 000 Bevatron PS AGS
Cząstki elementarne wprowadzenie. Krzysztof Turzyński Wydział Fizyki Uniwersytet Warszawski
Cząstki elementarne wprowadzenie Krzysztof Turzyński Wydział Fizyki Uniwersytet Warszawski Historia badania struktury materii XVII w.: ruch gwiazd i planet, zasady dynamiki, teoria grawitacji, masa jako
Zderzenia relatywistyczne
Zderzenia relatywistyczne Fizyka I (B+C) Wykład XIX: Zderzenia nieelastyczne Energia progowa Rozpady czastek Neutrina Zderzenia relatywistyczne Zderzenia elastyczne 2 2 Czastki rozproszone takie same jak
WYKŁAD 4 10.III.2010
Wszechświat cząstek elementarnych WYKŁAD 4 10.III.2010 Maria Krawczyk, Wydział Fizyki UW Spin historia odkrycia fermiony i bozony spin cząstek fundamentalnych Oddziaływanie słabe i rodziny cząstek fundamentalnych
JÜLICH ELECTRIC DIPOLE INVESTIGATIONS MEASUREMENT WITH STORAGE RING
JÜLICH ELECTRIC DIPOLE INVESTIGATIONS MEASUREMENT WITH STORAGE RING testowe pomiary i demonstracja iż proponowana metoda pracuje są wykonywane na działającym akceleratorze COSY pierwszy pomiar z precyzją
Plazma Kwarkowo-Gluonowa
Fizyka zderzeń relatywistycznych ciężkich jonów Wykład 0: LHC okno na Mikroświat Wykład 1: AA: Motywacja, cele fizyczne, akceleratory, eksperymenty Wykład 2: Plazma kwarkowo-gluonowa Wykład 3: Geometria
Unifikacja elektro-słaba
Unifikacja elektro-słaba ee + Anihilacja Oddziaływania NC (z wymianą bozonu ) - zachowanie zapachów Potrzeba unifikacji Warunki unifikacji elektro-słabej Rezonans Liczenie zapachów neutrin (oraz generacji)
Badanie Gigantycznego Rezonansu Dipolowego wzbudzanego w zderzeniach ciężkich jonów.
Badanie Gigantycznego Rezonansu Dipolowego wzbudzanego w zderzeniach ciężkich jonów. prof. dr hab. Marta Kicińska-Habior Wydział Fizyki UW Zakład Fizyki Jądra Atomowego e-mail: Marta.Kicinska-Habior@fuw.edu.pl
WYKŁAD X.2009 Maria Krawczyk, Wydział Fizyki UW
Wszechświat cząstek elementarnych dla przyrodników WYKŁAD 4 28 Spin Fermiony i bozony Oddziaływanie słabe Rodziny fermionów fundamentalnych Prawe i lewe fermiony o spinie ½ Siły Porównania oddziaływań
Promieniowanie jonizujące
Promieniowanie jonizujące Wykład III Krzysztof Golec-Biernat Reakcje jądrowe Uniwersytet Rzeszowski, 8 listopada 2017 Wykład III Krzysztof Golec-Biernat Promieniowanie jonizujące 1 / 12 Energia wiązania
Skad się bierze masa Festiwal Nauki, Wydział Fizyki U.W. 25 września 2005 A.F.Żarnecki p.1/39
Skad się bierze masa Festiwal Nauki Wydział Fizyki U.W. 25 września 2005 dr hab. A.F.Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej Skad się bierze masa Festiwal Nauki,
Rozdział 1 Wiadomości wstępne. Krótka historia Przekrój czynny, świetlność Układ jednostek naturalnych Eksperymenty formacji i produkcji
Rozdział 1 Wiadomości wstępne Krótka historia Przekrój czynny, świetlność Układ jednostek naturalnych Eksperymenty formacji i produkcji Historia fizyki cząstek w pigułce 1930 1940 1950 1960 1970 1980 1990
Teoria Wielkiego Wybuchu FIZYKA 3 MICHAŁ MARZANTOWICZ
Teoria Wielkiego Wybuchu Epoki rozwoju Wszechświata Wczesny Wszechświat Epoka Plancka (10-43 s): jedno podstawowe oddziaływanie Wielka Unifikacja (10-36 s): oddzielenie siły grawitacji od reszty oddziaływań
Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków).
Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków). 1925r. postulat Pauliego: Na jednej orbicie może znajdować się nie więcej
V.6.6 Pęd i energia przy prędkościach bliskich c. Zastosowania
V.6.6 Pęd i energia przy prędkościach bliskich c. Zastosowania 1. Ogólne wyrażenia na aberrację światła. Rozpad cząstki o masie M na dwie cząstki o masach m 1 i m 3. Rozpraszanie fotonów z lasera GaAs
I. Przedmiot i metodologia fizyki
I. Przedmiot i metodologia fizyki Rodowód fizyki współczesnej Świat zjawisk fizycznych: wielkości fizyczne, rzędy wielkości, uniwersalność praw Oddziaływania fundamentalne i poszukiwanie Teorii Ostatecznej
Podstawy fizyki subatomowej. 3 kwietnia 2019 r.
Podstawy fizyki subatomowej Wykład 7 3 kwietnia 2019 r. Atomy, nuklidy, jądra atomowe Atomy obiekt zbudowany z jądra atomowego, w którym skupiona jest prawie cała masa i krążących wokół niego elektronów.
WYKŁAD Prawdopodobieństwo procesów dla bardzo dużych energii, konieczność istnienia cząstki Higgsa
Wszechświat cząstek elementarnych WYKŁAD 10 29.04 29.04.2009.2009 1 Prawdopodobieństwo procesów dla bardzo dużych energii, konieczność istnienia cząstki Higgsa Cząstki fundamentalne w Modelu Standardowym