TEORETYCZNE PODSTAWY INFORMATYKI
|
|
- Piotr Tomaszewski
- 6 lat temu
- Przeglądów:
Transkrypt
1 1 TEORETYCZNE PODSTAWY INFORMATYKI WFAiS UJ, Informatyka Stosowana II stopień studiów
2 Wykład 13b 2 Eksploracja danych Co rozumiemy pod pojęciem eksploracja danych Algorytmy grupujące (klajstrujące)
3 Graficzna reprezentacja danych 3 Graficznie pokazujemy najistotniejsze charakterystyki danych Tabela ze statystycznym podsumowaniem Histogramy Box-ploty Scatter-ploty Mogą być wykonane bardzo szybko/łatwo, powinny pozwolić na pierwsze wrażenie co jest w danych Staramy się robić stosunkowo dużo rysunków, tabel sumarycznych w różny sposób grupując zmienne.
4 Przykład 4 Danie: zanieczyszczenie drobinkami materiałów powietrza na terenie USA. Dla poziomu zanieczyszczeń ustalona jest norma 12mg/m3 Zestawienie dzienne jest dostępne ze strony nloadaqsdata.htm Pytanie: czy są stany w USA w których ta norma jest przekraczana?
5 Dane: (przykłady kodu w języku R) 5 Tu są dane za okres Czy w jakiś stanach przekroczona jest ta norma?
6 6 Tabela sumaryczna, box plot, histogram
7 7 Tabela sumaryczna, box plot, histogram
8 8 Tabela sumaryczna, box plot, histogram
9 Multi-box plot, multi-histograms 9
10 Multiple scatter plots 10
11 Jak badać co się dzieje w danych 11 które są w wielu wymiarach Klastrowanie organizuje dane które są blisko w pewne grupy czyli klastry. Co to znaczy że dane są blisko Co to znaczy że grupujemy? Ja pokazać graficznie grupowanie? Jak interpretować grupowanie?
12 Grupowanie jest bardzo ważną techniką linkow
13 Hierarchiczne klastrowanie 13 Aglomeracyjne podejście (bottom-up) Znajdź dwa najbliżej położone punkty Połącz je ze sobą w super-punkt Znajdź kolejne najbliższe punkty (traktując już połączone jako jeden super-punkt) Parametry algorytmu definicję odległości punktów definicję łączenia punktów Wynik Prezentujemy jako pewne drzewo (dendogram)
14 Jak definiujemy odległość 14 Odległość: Ciągła: euklidesowa metryka Ciągła: stopień podobieństwa lub korelacji Dyskretna: Manhattan Wybieramy taka definicję która stosuje się do naszych danych
15 Jak definiujemy odległość 15 Euklidesowa metryka vs Manhattan metryka Naturalnie rozszerzalne do wielu wymiarów Musimy chodzić po ulicach
16 Przykład: media network 16
17 Problem 17 Mając daną chmurę punktów chcielibyśmy zrozumieć ich strukturę
18 Bardziej formalnie 18 Mając dany zbiór punktów pomiarowych oraz podaną miarę odległości pomiędzy punktami pogrupuj dane w klastry Punkty należące do tego samego klastra powinny być podobne do siebie Punkty należące do dwóch różnych klastrów powinny się istotnie od siebie różnić Zazwyczaj: Punkty są w przestrzeni wielowymiarowej Podobieństwo jest zdefiniowane jako miara odległości pomiędzy punktami Euklidesowa, Cosinus kąta, etc
19 Przykład klastrów 19
20 Problem jest nietrywialny 20
21 Gdzie jest trudność 21 Grupowanie w dwóch wymiarach jest na ogół łatwe Grupowanie małej ilości danych jest na ogół łatwe Wiele praktycznych zastosowań dotyczy problemów nie 2 ale 10 lub wymiarowych. W dużej ilości wymiarów trudność polega na fakcie że większość danych jest w tej samej odległości.
22 Przykład: grupowanie obiektów 22 widocznych na niebie: SkyCat Katalog 2 bilionów obiektów grupuje obiekty ze względu na częstości emisji promieniowania w 7 zakresach Powinien grupować obiekty tego samego typu, np. galaktyki, gwiazdy, kwazary, etc.
23 Przykład: grupowanie CD s 23 Intuicyjnie: muzyka może być klasyfikowana w kilka kategorii i kupujący na ogół preferują pewne kategorie. Na czym polegają te kategorie? A może grupować CD s ze względu na kategorię osób które je kupują? Podobne CD s mają podobną grupę kupujących i odwrotnie
24 Przykład: grupowanie dokumentów 24 Problem: pogrupuj razem dokumenty na ten sam temat. Dokumenty z podobnym zestawem słów prawdopodobnie są na ten sam temat. A może inaczej sformułować zadanie: temat to podobny zestaw słów który występuje w wielu dokumentach. Więc może należy grupować słowa w klastry i te klastry będą definiować tematy?
25 Miara odległości 25 Dokument: zbiór słów Jaccard odległość: podzbiór tych samych elementów Dokument: punkt w przestrzeni słów, (x 1,x 2,,x n ), gdzie x i = 1 jeżeli dane słowo występuje. Euklidesowa odległość Dokument: vector w przestrzeni słów (x 1,x 2,,x n ). Cosinus odległość: iloczyn skalarny unormowanych wektorów
26 Metody grupowania 26 Hierarchiczne: Bottom-up Początkowo każdy punkt jest klastrem Łączymy dwa klastry o najmniejszej odległości w jeden klaster Powtarzamy iteracyjnie Top-down Startujemy z jednego wielkiego klastra Dzielimy na dwa klastry jeżeli spełnione są pewne warunki Powtarzamy iteracyjnie aż osiągnięty inny warunek
27 Metody grupowania 27 K-means: Zakładamy na ile klastrów chcemy pogrupować dane. Wybieramy początkowe centra klastrów. Przeglądamy listę punktów, przypisujemy do najbliższego klastra. Powtarzamy iteracyjnie po każdej iteracji poprawiając położenie centrów klastrów.
28 28 Klastrowanie hierarchiczne Bottom-up klastrowanie
29 Klastrowanie hierarchiczne 29 Podstawowa operacja: iteracyjnie powtarzaj sklejanie dwóch klastrów w jeden. Podstawowe pytania: Jak reprezentować klaster który zawiera więcej niż jeden punkt? W jaki sposób zdefiniować dwa najbliższe klastry? Kiedy zatrzymać procedurę grupującą?
30 Metryka Euklidesowa 30 Jak reprezentować klaster który zawiera więcej niż jeden punkt? Reprezentujemy każdy klaster przez położenie jego środka ciężkości wg. wybranej metryki. Nazywamy go centroid, czyli centrum klastra nie jest jednym z punktów danych. W jaki sposób zdefiniować dwa najbliższe klastry? Mierzymy odległość pomiędzy centrami klastrów, wybieramy najbliższe.
31 Przykład: 31
32 Reprezentacja klastra 32 Jedyne położenia o których możemy mówić to punkty danych. Nie istnieje pojęcie średniej. Klaster reprezentowany jest przez jego punkt będący najbliżej wszystkich innych punktów. Najbliżej wg. zadanej metryki. Nazywamy go klastroid.
33 Reprezentacja klastra 33 Centroid: średnie położenie wszystkich punktów danych w tym klastrze. To jest sztuczny punkt. Jako taki nie istnieje w danych. Klastroid: istniejacy punkt danych który jest najblizszy do wszystkich innych w tym klastrze.
34 Reprezentacja klastra 34 Klastroid: punkt najbliższy do wszystkich innych. Co to znaczy najbliższy? Najmniejsza maksymalna odległość od wszystkich innych? Najmniejsza suma odległości od wszystkich innych? Najmniejsza suma kwadratów odległości od wszystkich innych?
35 Kiedy zakończyć klastrowanie 35 Jeżeli oczekujesz że dane powinny się grupować w k klastrów zakończ jeżeli pogrupujesz w k-klastry Zatrzymaj jeżeli kolejne klastrowanie doprowadza do klastrów o gorszej jakości: np. średnica (maksymalna odległość) większa niż wymagana granica Np. promień klastra większy niż wymagana granica Np. potęga promienia klastra większa niż wymagana granica.
36 Implementacja 36 Naiwna implementacja: w każdym kroku obliczaj odległość każdej pary klastrów a potem sklejaj: złożoność O(N 3 ) dla każdej iteracji Optymalna implementacja z wykorzystaniem kolejki priorytetowej: O(N 2 log N) Złożoność zbyt duża dla dużych zbiorów danych lub danych nie mieszczących się w pamięci.
37 37 Klastrowanie k-means
38 K-means algorytm 38 Zakłada metrykę euklidesową W pierwszym kroku wybieramy liczbę k-klastrów Wybieramy k- punktów danych będących reprezentantami tych klastrów. Na razie załóżmy że wybieramy je losowo. Przeglądamy listę punktów danych i przyporządkowujemy do klastrów Korygujemy położenie centrów klastrów wyliczając ich pozycję na podstawie punktów przypisanych do klastrów Powtarzamy operację przeglądania listy punktów, przypisujemy do najbliższych klastrów, punkty mogą migrować pomiędzy klastrami. Powtarzamy dopóki punkty nie przestają migrować
39 Przykład: k = 2 39
40 Przykład: przyporządkuj punkty 40
41 Przykład: popraw centra 41
42 W jaki sposób wybrać ilość k? 42 Spróbuj kilka różnych wartości, badaj jaka jest zmiana średniej odległości jak zwiększasz k
43 W jaki sposób wybrać ilość k? 43 Spróbuj kilka różnych wartości, badaj jaka jest zmiana średniej odległości jak zwiększasz k
44 W jaki sposób wybrać ilość k? 44 Spróbuj kilka różnych wartości, badaj jaka jest zmiana średniej odległości jak zwiększasz k
45 W jaki sposób wybrać ilość k? 45 Spróbuj kilka różnych wartości, badaj jaka jest zmiana średniej odległości jak zwiększasz k
46 W jaki sposób wybieramy startowe punkty? 46 Na podstawie podzbioru danych: Wybierz podzbiór danych, przeprowadź klastrowanie hierarchiczne aby otrzymać k-klastrów. Wybierz dla każdego punkt najbliższe do środka klastra Użyj tych punktów jako punktów startowych Najbardziej odległe punkty: Wybierz pierwszy punkt losowo Jako następny wybierz najbardziej od niego odległy Powtarzaj zawsze wybierając najbardziej odległy od już wybranych punktów, aż wybierzesz k-punktów
47 Złożoność obliczeniowa 47 Za każdym razem przeglądamy pełna listę punktów aby przypisać punkt do jednego z k-centrów Każda iteracja dla N punktów i k-centrów to O(N k) Liczna wymaganych iteracji może być bardzo duża. Czy moglibyśmy ten algorytm zrealizować przeglądając dane tylko raz?
48 48 Klastrowanie Algorytm BFR (Bradley- Fayyard-Reina)
49 Algorytm BFR 49 To jest wersja algorytmu k-means dla bardzo dużych zbiorów danych. Zakłada euklidesowa metrykę. Zakłada że dane w klastrze mają rozkład normalny względem centrum klastra i każdego wymiaru
50 BFR klastry 50 Z założenia o normalności rozkładu wynika że klastry wyglądają jak elipsy o osiach równoległych do kierunków wymiarów.
51 BFR algorytm 51
52 BFR algorytm 52 Punkty danych przeglądane są tylko raz, każdorazowo w pamięci znajduje się tylko podzbiór danych Informacja dotycząca rozkładu większości z punktów z każdej partii przechowywana w postaci kilku sumarycznych wielkości statystycznych. Na początku, z pierwszej partii punktów wybieramy k-centrów wg. jednej z poznanych wcześniej metod.
53 Trzy klasy punktów 53 Odrzucone punkty (discarded set DS): punkty będące blisko centrów klastrów tak że wystarczy zapisanie informacji sumarycznej Punkty w mini-klastrach (compression set CS): punkty które są blisko siebie ale nie wystarczająco blisko żadnego z centrów, zapisujemy tylko informację sumaryczną Punkty izolowane (retained set RS): przechowujemy izolowane punkty do następnego etapu.
54 Trzy klasy punktów 54
55 Sumaryczna informacja 55 Dla każdego klastra (DS) i każdego mini-klastra (CS) przechowywana jest informacja sumaryczna: Liczba punktów N Wektor d-wymiarowy SUM: każda współrzędna to suma odległości punktów klastra od centrum w danym wymiarze Wektor d-wymiarowy SUMSQ: każda współrzędna to suma kwadratów odległości punktów klastra od centrum w danym wymiarze
56 Sumaryczna informacja 56 2d + 1 wartości reprezentuje każdy klaster i miniklaster Średnia w każdym wymiarze (centroid) może być przeliczona jako SUM i /N Wariancja w każdym wymiarze może być przeliczona jako (SUMSQ i /N) (SUM i /N) 2
57 Procesowanie podzbioru danych 57 Sprawdź czy punkt jest wystarczająco blisko do DS lub CS klastra, wybierz najbliższy, dodaj do sumarycznej informacji a następnie usuń punkt z pamięci. Jeżeli punkt nie był wystarczająco blisko sprawdź czy możesz utworzyć nowy CS klaster przeglądając RS punkty. Jeżeli nie, zapamiętaj ten punkt jako nowy RS punkt. Po analizie ostatniego podzbioru posklejaj wszystkie CS i RS do najbliższych DS. Ostatecznie utworzone zostanie tylko k klastrów.
58 Mahalanobis odległość 58 Co to znaczy że punkt jest wystarczająco blisko? Klaster C ma centroid w (c 1, c 2,, c d ) i odchylenie standardowe (s 1, s 2,, s d ) Rozważany punkt P = (x 1, x 2,, x d ) Znormalizowana odległość: y i = (x i c i ) /s i MD punktu P od klastra C:
59 Mahalanobis warunek 59 Przypuśćmy że punkt P jest w odległości jednego odchylenia standardowego od centrum w każdym wymiarze. Każdy y i = 1 i wówczas MD = sqrt(d) Akceptuj punkt P do klastra C jeżeli np. wartość MD < 3 sqrt(d)
60 Kiedy sklejać dwa CS 60 Policz wariancję dla sklejonych klastrów, sklej jeżeli wariancja poniżej wartości granicznej. Możliwe inne warunki: Gęstość klastra Odległości mogą mieć inną wagę dla każdej współrzędnej Itd..
61 61 Algorytm CURE
62 Ograniczenia algorytmu BFR 62 Silne założenia: Normalny rozkład punktów w każdym wymiarze Osie wzdłuż osi współrzędnych
63 Algorytm CURE 63 CURE ( Clustering Using REpresentatives): Zakłada metrykę Euklidesową Dopuszcza klastry różnych kształtów Używa podzbiór punktów do reprezentowania klastra
64 Przykład: płace w Standford 64
65 Algorytm CURE 65 Pierwsze przejrzenie danych Wybierz podzbiór danych który mieści się w pamięci Przeprowadź klastrowanie hierarchiczne tego podzbioru danych. Wybierz k-punkty reprezentujące klaster (np. k=4), jak najbardziej od siebie odległe Utwórz sztuczne punkty przez przesunięcie wybranych k punktów np. o 20% w stronę centrum klastra, to będą reprezentanci klastra
66 Przykład: początkowe klastry 66
67 67 Przykład: wybór reprezentatywnych punktów
68 68 Przykład: wybór reprezentatywnych punktów
69 Algorytm CURE 69 Drugie przejrzenie danych Teraz przejrzyj całość danych Przypisz punkty w najbliższych klastrze: do określenia najbliższy użyj dla każdego klastra reprezentatywnych punktów I to już jest koniec procesowania algorytmu!
ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH
1 ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH WFAiS UJ, Informatyka Stosowana II stopień studiów 2 Eksploracja danych Algorytmy klastujące Problem 3 Mając daną chmurę punktów chcielibyśmy zrozumieć ich
ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH
1 ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH WFAiS UJ, Informatyka Stosowana II stopień studiów 2 Eksploracja danych Co to znaczy eksploracja danych Klastrowanie (grupowanie) hierarchiczne Klastrowanie
Data Mining Wykład 9. Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster. Plan wykładu. Sformułowanie problemu
Data Mining Wykład 9 Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster Plan wykładu Wprowadzanie Definicja problemu Klasyfikacja metod grupowania Grupowanie hierarchiczne Sformułowanie problemu
Hierarchiczna analiza skupień
Hierarchiczna analiza skupień Cel analizy Analiza skupień ma na celu wykrycie w zbiorze obserwacji klastrów, czyli rozłącznych podzbiorów obserwacji, wewnątrz których obserwacje są sobie w jakimś określonym
Grupowanie Witold Andrzejewski, Politechnika Poznańska, Wydział Informatyki 201/633
Grupowanie Grupowanie 7 6 5 4 y 3 2 1 0-3 -2-1 0 1 2 3 4 5-1 -2-3 -4 x Witold Andrzejewski, Politechnika Poznańska, Wydział Informatyki 201/633 Wprowadzenie Celem procesu grupowania jest podział zbioru
Analiza skupień. Analiza Skupień W sztucznej inteligencji istotną rolę ogrywają algorytmy grupowania
Analiza skupień W sztucznej inteligencji istotną rolę ogrywają algorytmy grupowania Analiza Skupień Elementy składowe procesu grupowania obiekt Ekstrakcja cech Sprzężenie zwrotne Grupowanie klastry Reprezentacja
Eksploracja danych. Grupowanie. Wprowadzanie Definicja problemu Klasyfikacja metod grupowania Grupowanie hierarchiczne. Grupowanie wykład 1
Grupowanie Wprowadzanie Definicja problemu Klasyfikacja metod grupowania Grupowanie hierarchiczne Grupowanie wykład 1 Sformułowanie problemu Dany jest zbiór obiektów (rekordów). Znajdź naturalne pogrupowanie
Sieci Kohonena Grupowanie
Sieci Kohonena Grupowanie http://zajecia.jakubw.pl/nai UCZENIE SIĘ BEZ NADZORU Załóżmy, że mamy za zadanie pogrupować następujące słowa: cup, roulette, unbelievable, cut, put, launderette, loveable Nie
Elementy statystyki wielowymiarowej
Wnioskowanie_Statystyczne_-_wykład Spis treści 1 Elementy statystyki wielowymiarowej 1.1 Kowariancja i współczynnik korelacji 1.2 Macierz kowariancji 1.3 Dwumianowy rozkład normalny 1.4 Analiza składowych
Agnieszka Nowak Brzezińska
Agnieszka Nowak Brzezińska jeden z algorytmów regresji nieparametrycznej używanych w statystyce do prognozowania wartości pewnej zmiennej losowej. Może również byd używany do klasyfikacji. - Założenia
CLUSTERING. Metody grupowania danych
CLUSTERING Metody grupowania danych Plan wykładu Wprowadzenie Dziedziny zastosowania Co to jest problem klastrowania? Problem wyszukiwania optymalnych klastrów Metody generowania: k centroidów (k - means
ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH
1 ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH WFAiS UJ, Informatyka Stosowana II stopień studiów 2 Wnioskowanie statystyczne Czyli jak bardzo jesteśmy pewni że parametr oceniony na podstawie próbki jest
Agnieszka Nowak Brzezińska Wykład III
Agnieszka Nowak Brzezińska Wykład III Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną niezależność zmiennych niezależnych (tu naiwność) Bardziej opisowe
Algorytm grupowania danych typu kwantyzacji wektorów
Algorytm grupowania danych typu kwantyzacji wektorów Wstęp Definicja problemu: Typowe, rozważane dotychczas problemy koncentrowały się na nauczeniu na podstawie zbioru treningowego i zbioru etykiet klasyfikacji
Klasyfikatory: k-nn oraz naiwny Bayesa. Agnieszka Nowak Brzezińska Wykład IV
Klasyfikatory: k-nn oraz naiwny Bayesa Agnieszka Nowak Brzezińska Wykład IV Naiwny klasyfikator Bayesa Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną
Wykład 4. Plan: 1. Aproksymacja rozkładu dwumianowego rozkładem normalnym. 2. Rozkłady próbkowe. 3. Centralne twierdzenie graniczne
Wykład 4 Plan: 1. Aproksymacja rozkładu dwumianowego rozkładem normalnym 2. Rozkłady próbkowe 3. Centralne twierdzenie graniczne Przybliżenie rozkładu dwumianowego rozkładem normalnym Niech Y ma rozkład
METODY CHEMOMETRYCZNE W IDENTYFIKACJI ŹRÓDEŁ POCHODZENIA
METODY CHEMOMETRYCZNE W IDENTYFIKACJI ŹRÓDEŁ POCHODZENIA AMFETAMINY Waldemar S. Krawczyk Centralne Laboratorium Kryminalistyczne Komendy Głównej Policji, Warszawa (praca obroniona na Wydziale Chemii Uniwersytetu
TEORETYCZNE PODSTAWY INFORMATYKI
1 TEORETYCZNE PODSTAWY INFORMATYKI WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Wykład 16 2 Data Science: Uczenie maszynowe Uczenie maszynowe: co to znaczy? Metody Regresja Klasyfikacja Klastering
ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH
1 ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH WFAiS UJ, Informatyka Stosowana II stopień studiów 2 Wnioskowanie statystyczne dla zmiennych numerycznych Porównywanie dwóch średnich Boot-strapping Analiza
Agnieszka Nowak Brzezińska Wykład III
Agnieszka Nowak Brzezińska Wykład III Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną niezależność zmiennych niezależnych (tu naiwność) Bardziej opisowe
0 + 0 = 0, = 1, = 1, = 0.
5 Kody liniowe Jak już wiemy, w celu przesłania zakodowanego tekstu dzielimy go na bloki i do każdego z bloków dodajemy tak zwane bity sprawdzające. Bity te są w ścisłej zależności z bitami informacyjnymi,
ALGORYTMY. 1. Podstawowe definicje Schemat blokowy
ALGORYTMY 1. Podstawowe definicje Algorytm (definicja nieformalna) to sposób postępowania (przepis) umożliwiający rozwiązanie określonego zadania (klasy zadań), podany w postaci skończonego zestawu czynności
Kompresja danych Streszczenie Studia Dzienne Wykład 10,
1 Kwantyzacja wektorowa Kompresja danych Streszczenie Studia Dzienne Wykład 10, 28.04.2006 Kwantyzacja wektorowa: dane dzielone na bloki (wektory), każdy blok kwantyzowany jako jeden element danych. Ogólny
Analiza składowych głównych. Wprowadzenie
Wprowadzenie jest techniką redukcji wymiaru. Składowe główne zostały po raz pierwszy zaproponowane przez Pearsona(1901), a następnie rozwinięte przez Hotellinga (1933). jest zaliczana do systemów uczących
operacje porównania, a jeśli jest to konieczne ze względu na złe uporządkowanie porównywanych liczb zmieniamy ich kolejność, czyli przestawiamy je.
Problem porządkowania zwanego również sortowaniem jest jednym z najważniejszych i najpopularniejszych zagadnień informatycznych. Dane: Liczba naturalna n i ciąg n liczb x 1, x 2,, x n. Wynik: Uporządkowanie
1. Grupowanie Algorytmy grupowania:
1. 1.1. 2. 3. 3.1. 3.2. Grupowanie...1 Algorytmy grupowania:...1 Grupowanie metodą k-średnich...3 Grupowanie z wykorzystaniem Oracle Data Miner i Rapid Miner...3 Grupowanie z wykorzystaniem algorytmu K-Means
Podstawowe definicje statystyczne
Podstawowe definicje statystyczne 1. Definicje podstawowych wskaźników statystycznych Do opisu wyników surowych (w punktach, w skali procentowej) stosuje się następujące wskaźniki statystyczne: wynik minimalny
Techniki grupowania danych w środowisku Matlab
Techniki grupowania danych w środowisku Matlab 1. Normalizacja danych. Jedne z metod normalizacji: = = ma ( y =, rσ ( = ( ma ( = min = (1 + e, min ( = σ wartość średnia, r współczynnik, σ odchylenie standardowe
ALGORYTMY. 1. Podstawowe definicje Schemat blokowy
ALGORYTMY 1. Podstawowe definicje Algorytm (definicja nieformalna) to sposób postępowania (przepis) umożliwiający rozwiązanie określonego zadania (klasy zadań), podany w postaci skończonego zestawu czynności
Algorytm grupowania danych typu kwantyzacji wektorów
Algorytm grupowania danych typu kwantyzacji wektorów Wstęp Definicja problemu: Typowe, problemem często spotykanym w zagadnieniach eksploracji danych (ang. data mining) jest zagadnienie grupowania danych
ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH
1 ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH WFAiS UJ, Informatyka Stosowana II stopień studiów 2 Regresja liniowa Korelacja Modelowanie Analiza modelu Wnioskowanie Korelacja 3 Korelacja R: charakteryzuje
Wykład 10 Skalowanie wielowymiarowe
Wykład 10 Skalowanie wielowymiarowe Wrocław, 30.05.2018r Skalowanie wielowymiarowe (Multidimensional Scaling (MDS)) Główne cele MDS: przedstawienie struktury badanych obiektów przez określenie treści wymiarów
TEORETYCZNE PODSTAWY INFORMATYKI
1 TEORETYCZNE PODSTAWY INFORMATYKI WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Wykład 2 2 Problemy algorytmiczne Klasy problemów algorytmicznych Liczby Fibonacciego Przeszukiwanie tablic Największy
Ważne rozkłady i twierdzenia
Ważne rozkłady i twierdzenia Rozkład dwumianowy i wielomianowy Częstość. Prawo wielkich liczb Rozkład hipergeometryczny Rozkład Poissona Rozkład normalny i rozkład Gaussa Centralne twierdzenie graniczne
SPOTKANIE 6: Klasteryzacja: K-Means, Expectation Maximization
Wrocław University of Technology SPOTKANIE 6: Klasteryzacja: K-Means, Expectation Maximization Jakub M. Tomczak Studenckie Koło Naukowe Estymator jakub.tomczak@pwr.wroc.pl 4.1.213 Klasteryzacja Zmienne
dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;
Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia
Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć
Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie podstawowym. Klasa 3 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego
Co to jest grupowanie
Grupowanie danych Co to jest grupowanie 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Szukanie grup, obszarów stanowiących lokalne gromady punktów Co to jest grupowanie
Narodowe Centrum Badań Jądrowych Dział Edukacji i Szkoleń ul. Andrzeja Sołtana 7, Otwock-Świerk
Narodowe Centrum Badań Jądrowych Dział Edukacji i Szkoleń ul. Andrzeja Sołtana 7, 05-400 Otwock-Świerk ĆWICZENIE L A B O R A T O R I U M F I Z Y K I A T O M O W E J I J Ą D R O W E J Zastosowanie pojęć
ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II
ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II POZIOM ROZSZERZONY Równania i nierówności z wartością bezwzględną. rozwiązuje równania i nierówności
Szkoła z przyszłością. Zastosowanie pojęć analizy statystycznej do opracowania pomiarów promieniowania jonizującego
Szkoła z przyszłością szkolenie współfinansowane przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Narodowe Centrum Badań Jądrowych, ul. Andrzeja Sołtana 7, 05-400 Otwock-Świerk ĆWICZENIE
Przestrzeń algorytmów klastrowania
20 listopada 2008 Plan prezentacji 1 Podstawowe pojęcia Przykłady algorytmów klastrowania 2 Odległość algorytmów klastrowania Odległość podziałów 3 Dane wejściowe Eksperymenty Praca źródłowa Podstawowe
TEORETYCZNE PODSTAWY INFORMATYKI
1 TEORETYCZNE PODSTAWY INFORMATYKI WFAiS UJ, Informatyka Stosowana II stopień studiów Wykład 13a 2 Eksploracja danych Co to są dane W jaki sposób zbieramy dane W jaki sposób reprezentujemy dane W jaki
PętlaforwOctave. Roman Putanowicz 13 kwietnia 2008
PętlaforwOctave Roman Putanowicz kwietnia 008 Zakresyioperator : Zakresy(ang. ranges) są wygodnym sposobem definiowania wektorów reprezentujących ciągi arytmetyczne, czyli ciągi w których różnica pomiędzy
Deska Galtona. Adam Osękowski. Instytut Matematyki, Wydział Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski
a schemat Bernoulliego Instytut Matematyki, Wydział Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski XV Festiwal Nauki, 21 września 2011r. a schemat Bernoulliego Schemat Bernoulliego B(n, p)
Algorytmy decyzyjne będące alternatywą dla sieci neuronowych
Algorytmy decyzyjne będące alternatywą dla sieci neuronowych Piotr Dalka Przykładowe algorytmy decyzyjne Sztuczne sieci neuronowe Algorytm k najbliższych sąsiadów Kaskada klasyfikatorów AdaBoost Naiwny
Ważne rozkłady i twierdzenia c.d.
Ważne rozkłady i twierdzenia c.d. Funkcja charakterystyczna rozkładu Wielowymiarowy rozkład normalny Elipsa kowariacji Sploty rozkładów Rozkłady jednostajne Sploty z rozkładem normalnym Pobieranie próby
6. Pętle while. Przykłady
6. Pętle while Przykłady 6.1. Napisz program, który, bez użycia rekurencji, wypisze na ekran liczby naturalne od pewnego danego n do 0 włącznie, w kolejności malejącej, po jednej liczbie na linię. Uwaga!
Statystyka hydrologiczna i prawdopodobieństwo zjawisk hydrologicznych.
Statystyka hydrologiczna i prawdopodobieństwo zjawisk hydrologicznych. Statystyka zajmuje się prawidłowościami zaistniałych zdarzeń. Teoria prawdopodobieństwa dotyczy przewidywania, jak często mogą zajść
Algorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta
Algorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta www.michalbereta.pl Sieci radialne zawsze posiadają jedną warstwę ukrytą, która składa się z neuronów radialnych. Warstwa wyjściowa składa
Kwantyzacja wektorowa. Kodowanie różnicowe.
Kwantyzacja wektorowa. Kodowanie różnicowe. Kodowanie i kompresja informacji - Wykład 7 12 kwietnia 2010 Kwantyzacja wektorowa wprowadzenie Zamiast kwantyzować pojedyncze elementy kwantyzujemy całe bloki
ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH
1 ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH WFAiS UJ, Informatyka Stosowana II stopień studiów 2 Map-Reduce system Single-node architektura 3 Przykład Googla 4 10 miliardów stron internetowych Średnia
S O M SELF-ORGANIZING MAPS. Przemysław Szczepańczyk Łukasz Myszor
S O M SELF-ORGANIZING MAPS Przemysław Szczepańczyk Łukasz Myszor Podstawy teoretyczne Map Samoorganizujących się stworzył prof. Teuvo Kohonen (1982 r.). SOM wywodzi się ze sztucznych sieci neuronowych.
Wymagania kl. 3. Zakres podstawowy i rozszerzony
Wymagania kl. 3 Zakres podstawowy i rozszerzony Temat lekcji Zakres treści Osiągnięcia ucznia 1. RACHUNEK PRAWDOPODOBIEŃSTWA 1. Reguła mnożenia reguła mnożenia ilustracja zbioru wyników doświadczenia za
WYKŁAD 10. kodem pierwotnym krzywej jest ciąg par współrzędnych x, y kolejnych punktów krzywej: (x 1, y 1 ), (x 2, y 2 ),...
WYKŁAD 10 Kompresja krzywych dyskretnych Kompresja krzywych dyskretnych KP SK = KW SK - stopień kompresji krzywej. KP [bajt] - obszar pamięci zajmowany przez kod pierwotny krzywej. KW [bajt] - obszar pamięci
Reprezentacja i analiza obszarów
Cechy kształtu Topologiczne Geometryczne spójność liczba otworów liczba Eulera szkielet obwód pole powierzchni środek ciężkości ułożenie przestrzenne momenty wyższych rzędów promienie max-min centryczność
Próbkowanie. Wykład 4 Próbkowanie i rozkłady próbkowe. Populacja a próba. Błędy w póbkowaniu, cd, Przykład 1 (Ochotnicy)
Wykład 4 Próbkowanie i rozkłady próbkowe µ = średnia w populacji, µ=ey, wartość oczekiwana zmiennej Y σ= odchylenie standardowe w populacji, σ =(Var Y) 1/2, pierwiastek kwadratowy wariancji zmiennej Y,
Wstęp do Informatyki zadania ze złożoności obliczeniowej z rozwiązaniami
Wstęp do Informatyki zadania ze złożoności obliczeniowej z rozwiązaniami Przykład 1. Napisz program, który dla podanej liczby n wypisze jej rozkład na czynniki pierwsze. Oblicz asymptotyczną złożoność
Zapisywanie algorytmów w języku programowania
Temat C5 Zapisywanie algorytmów w języku programowania Cele edukacyjne Zrozumienie, na czym polega programowanie. Poznanie sposobu zapisu algorytmu w postaci programu komputerowego. Zrozumienie, na czym
Podstawy działań na wektorach - dodawanie
Podstawy działań na wektorach - dodawanie Metody dodawania wektorów można podzielić na graficzne i analityczne (rachunkowe). 1. Graficzne (rysunkowe) dodawanie dwóch wektorów. Założenia: dane są dwa wektory
Wykład 2. Kinematyka. Podstawowe wielkości opisujące ruch. W tekście tym przedstawię podstawowe pojecia niezbędne do opiosu ruchu:
Wykład 2. Kinematyka. Aby prześledzić tok tego wykładu MUSISZ rozumieć pojęcie wektora, jego składowych w układzie kartezjańskim oraz w trakcie wykładu zrozumieć intuicyjnie pojęcie pochodnej funkcji jednej
Janusz Adamowski METODY OBLICZENIOWE FIZYKI Kwantowa wariacyjna metoda Monte Carlo. Problem własny dla stanu podstawowego układu N cząstek
Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdział 20 KWANTOWE METODY MONTE CARLO 20.1 Kwantowa wariacyjna metoda Monte Carlo Problem własny dla stanu podstawowego układu N cząstek (H E 0 )ψ 0 (r)
WYKŁAD 9 METODY ZMIENNEJ METRYKI
WYKŁAD 9 METODY ZMIENNEJ METRYKI Kierunki sprzężone. Metoda Newtona Raphsona daje dobre przybliżenie najlepszego kierunku poszukiwań, lecz jest to okupione znacznym kosztem obliczeniowym zwykle postać
TEORETYCZNE PODSTAWY INFORMATYKI
1 TEORETYCZNE PODSTAWY INFORMATYKI 16/01/2017 WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Repetytorium złożoność obliczeniowa 2 Złożoność obliczeniowa Notacja wielkie 0 Notacja Ω i Θ Rozwiązywanie
Elementy modelowania matematycznego
Elementy modelowania matematycznego Modelowanie algorytmów klasyfikujących. Podejście probabilistyczne. Naiwny klasyfikator bayesowski. Modelowanie danych metodą najbliższych sąsiadów. Jakub Wróblewski
Wymagania edukacyjne z matematyki
Wymagania edukacyjne z matematyki Poziom podstawowy Klasa IIIb r.szk. 2014/2015 PLANIMETRIA(1) rozróżnia trójkąty: ostrokątne, prostokątne, rozwartokątne stosuje twierdzenie o sumie miar kątów w trójkącie
WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY CZWARTEJ H. zakres rozszerzony. Wiadomości i umiejętności
WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY CZWARTEJ H. zakres rozszerzony Funkcja wykładnicza i funkcja logarytmiczna. Stopień Wiadomości i umiejętności -definiować potęgę
Klasyfikacja w oparciu o metrykę budowaną poprzez dystrybuanty empiryczne na przestrzeni wzorców uczących
Klasyfikacja w oparciu o metrykę budowaną poprzez dystrybuanty empiryczne na przestrzeni wzorców uczących Cezary Dendek Wydział Matematyki i Nauk Informacyjnych PW Plan prezentacji Plan prezentacji Wprowadzenie
Rozkłady dwóch zmiennych losowych
Rozkłady dwóch zmiennych losowych Uogólnienie pojęć na rozkład dwóch zmiennych Dystrybuanta i gęstość prawdopodobieństwa Rozkład brzegowy Prawdopodobieństwo warunkowe Wartości średnie i odchylenia standardowe
R ozkład norm alny Bardzo często używany do modelowania symetrycznych rozkładów zmiennych losowych ciągłych
R ozkład norm alny Bardzo często używany do modelowania symetrycznych rozkładów zmiennych losowych ciągłych Przykłady: Błąd pomiarowy Wzrost, wydajność Temperatura ciała Zawartość różnych składników we
Analiza składowych głównych
Analiza składowych głównych Wprowadzenie (1) W przypadku regresji naszym celem jest predykcja wartości zmiennej wyjściowej za pomocą zmiennych wejściowych, wykrycie związku między wielkościami wejściowymi
Statystyka opisowa- cd.
12.03.2017 Wydział Inżynierii Produkcji I Logistyki Statystyka opisowa- cd. Wykład 4 Dr inż. Adam Deptuła HISTOGRAM UNORMOWANY Pole słupka = wysokość słupka x długość przedziału Pole słupka = n i n h h,
Metoda określania pozycji wodnicy statków na podstawie pomiarów odległości statku od głowic laserowych
inż. Marek Duczkowski Metoda określania pozycji wodnicy statków na podstawie pomiarów odległości statku od głowic laserowych słowa kluczowe: algorytm gradientowy, optymalizacja, określanie wodnicy W artykule
Zaawansowane metody numeryczne
Wykład 11 Ogólna postać metody iteracyjnej Definicja 11.1. (metoda iteracyjna rozwiązywania układów równań) Metodą iteracyjną rozwiązywania { układów równań liniowych nazywamy ciąg wektorów zdefiniowany
Definicja pochodnej cząstkowej
1 z 8 gdzie punkt wewnętrzny Definicja pochodnej cząstkowej JeŜeli iloraz ma granicę dla to granicę tę nazywamy pochodną cząstkową funkcji względem w punkcie. Oznaczenia: Pochodną cząstkową funkcji względem
KADD Minimalizacja funkcji
Minimalizacja funkcji n-wymiarowych Forma kwadratowa w n wymiarach Procedury minimalizacji Minimalizacja wzdłuż prostej w n-wymiarowej przestrzeni Metody minimalizacji wzdłuż osi współrzędnych wzdłuż kierunków
Algorytmy i struktury danych. Wykład 4
Wykład 4 Różne algorytmy - obliczenia 1. Obliczanie wartości wielomianu 2. Szybkie potęgowanie 3. Algorytm Euklidesa, liczby pierwsze, faktoryzacja liczby naturalnej 2017-11-24 Algorytmy i struktury danych
Lekcja 5: Sieć Kohonena i sieć ART
Lekcja 5: Sieć Kohonena i sieć ART S. Hoa Nguyen 1 Materiał Sieci Kohonena (Sieć samo-organizująca) Rysunek 1: Sieć Kohonena Charakterystyka sieci: Jednowarstwowa jednokierunkowa sieć. Na ogół neurony
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl
Wstęp do sieci neuronowych, wykład 07 Uczenie nienadzorowane cd.
Wstęp do sieci neuronowych, wykład 07 Uczenie nienadzorowane cd. M. Czoków, J. Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika w Toruniu 2013-11-26 Projekt pn. Wzmocnienie potencjału
Statystyka matematyczna i ekonometria
Statystyka matematyczna i ekonometria Wykład 5 dr inż. Anna Skowrońska-Szmer zima 2017/2018 Hipotezy 2 Hipoteza zerowa (H 0 )- hipoteza o wartości jednego (lub wielu) parametru populacji. Traktujemy ją
AKADEMIA GÓRNICZO-HUTNICZA Wydział Matematyki Stosowanej ROZKŁAD NORMALNY ROZKŁAD GAUSSA
AKADEMIA GÓRNICZO-HUTNICZA Wydział Matematyki Stosowanej KATEDRA MATEMATYKI TEMAT PRACY: ROZKŁAD NORMALNY ROZKŁAD GAUSSA AUTOR: BARBARA MARDOSZ Kraków, styczeń 2008 Spis treści 1 Wprowadzenie 2 2 Definicja
SCENARIUSZ LEKCJI. TEMAT LEKCJI: Zastosowanie średnich w statystyce i matematyce. Podstawowe pojęcia statystyczne. Streszczenie.
SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH Autorzy scenariusza:
Metody eksploracji danych w odkrywaniu wiedzy (MED) projekt, dokumentacja końcowa
Metody eksploracji danych w odkrywaniu wiedzy (MED) projekt, dokumentacja końcowa Konrad Miziński 14 stycznia 2015 1 Temat projektu Grupowanie hierarchiczne na podstawie algorytmu k-średnich. 2 Dokumenty
A,B M! v V ; A + v = B, (1.3) AB = v. (1.4)
Rozdział 1 Prosta i płaszczyzna 1.1 Przestrzeń afiniczna Przestrzeń afiniczna to matematyczny model przestrzeni jednorodnej, bez wyróżnionego punktu. Można w niej przesuwać punkty równolegle do zadanego
Plan wynikowy. Klasa III Technik pojazdów samochodowych/ Technik urządzeń i systemów energetyki odnawialnej. Kształcenie ogólne w zakresie podstawowym
Oznaczenia: wymagania konieczne, P wymagania podstawowe, R wymagania rozszerzające, D wymagania dopełniające, W wymagania wykraczające. Plan wynikowy lasa III Technik pojazdów samochodowych/ Technik urządzeń
Program MC. Obliczyć radialną funkcję korelacji. Zrobić jej wykres. Odczytać z wykresu wartość radialnej funkcji korelacji w punkcie r=
Program MC Napisać program symulujący twarde kule w zespole kanonicznym. Dla N > 100 twardych kul. Gęstość liczbowa 0.1 < N/V < 0.4. Zrobić obliczenia dla 2,3 różnych wartości gęstości. Obliczyć radialną
Układy stochastyczne
Instytut Informatyki Uniwersytetu Śląskiego 21 stycznia 2009 Definicja Definicja Proces stochastyczny to funkcja losowa, czyli funkcja matematyczna, której wartości leżą w przestrzeni zdarzeń losowych.
Materiały dla finalistów
Materiały dla finalistów Malachoviacus Informaticus 2016 11 kwietnia 2016 Wprowadzenie Poniższy dokument zawiera opisy zagadnień, które będą niezbędne do rozwiązania zadań w drugim etapie konkursu. Polecamy
TEORETYCZNE PODSTAWY INFORMATYKI
1 TEORETYCZNE PODSTAWY INFORMATYKI WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Wykład 14c 2 Definicje indukcyjne Twierdzenia dowodzone przez indukcje Definicje indukcyjne Definicja drzewa
Wykład 2. Statystyka opisowa - Miary rozkładu: Miary położenia
Wykład 2 Statystyka opisowa - Miary rozkładu: Miary położenia Podział miar Miary położenia (measures of location): 1. Miary tendencji centralnej (measures of central tendency, averages): Średnia arytmetyczna
Temperatura w atmosferze (czy innym ośrodku) jako funkcja dł. i szer. geogr. oraz wysokości.
Własności Odległości i normy w Będziemy się teraz zajmować funkcjami od zmiennych, tzn. określonymi na (iloczyn kartezja/nski egzemplarzy ). Punkt należący do będziemy oznaczać jako Przykł. Wysokość terenu
Kompresja danych DKDA (7)
Kompresja danych DKDA (7) Marcin Gogolewski marcing@wmi.amu.edu.pl Uniwersytet im. Adama Mickiewicza w Poznaniu Poznań, 22 listopada 2016 1 Kwantyzacja skalarna Wprowadzenie Analiza jakości Typy kwantyzatorów
LABORATORIUM 3. Jeśli p α, to hipotezę zerową odrzucamy Jeśli p > α, to nie mamy podstaw do odrzucenia hipotezy zerowej
LABORATORIUM 3 Przygotowanie pliku (nazwy zmiennych, export plików.xlsx, selekcja przypadków); Graficzna prezentacja danych: Histogramy (skategoryzowane) i 3-wymiarowe; Wykresy ramka wąsy; Wykresy powierzchniowe;
Plan wynikowy. Klasa III Technikum ekonomiczne. Kształcenie ogólne w zakresie rozszerzonym
Plan wynikowy lasa III Technikum ekonomiczne. ształcenie ogólne w zakresie rozszerzonym Oznaczenia: wymagania konieczne, P wymagania podstawowe, R wymagania rozszerzające, D wymagania dopełniające, W wymagania
Wprowadzenie do analizy korelacji i regresji
Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących
str 1 WYMAGANIA EDUKACYJNE ( ) - matematyka - poziom podstawowy Dariusz Drabczyk
str 1 WYMAGANIA EDUKACYJNE (2017-2018) - matematyka - poziom podstawowy Dariusz Drabczyk Klasa 3e: wpisy oznaczone jako: (T) TRYGONOMETRIA, (PII) PLANIMETRIA II, (RP) RACHUNEK PRAWDOPODOBIEŃSTWA, (ST)
Dwuczynnikowa ANOVA dla prób niezależnych w schemacie 2x2
Dwuczynnikowa ANOVA dla prób niezależnych w schemacie 2x2 Poniżej prezentujemy przykładowe pytania z rozwiązaniami dotyczącymi dwuczynnikowej analizy wariancji w schemacie 2x2. Wszystkie rozwiązania są
Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem.
1 Wektory Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem. 1.1 Dodawanie wektorów graficzne i algebraiczne. Graficzne - metoda równoległoboku. Sprowadzamy wektory