II Powiatowy Konkurs Matematyczny dla uczniów gimnazjum organizowany przez II LO im. Marii Skłodowskiej-Curie w Końskich

Wielkość: px
Rozpocząć pokaz od strony:

Download "II Powiatowy Konkurs Matematyczny dla uczniów gimnazjum organizowany przez II LO im. Marii Skłodowskiej-Curie w Końskich"

Transkrypt

1 II Powiatowy Konkurs Matematyczny dla uczniów gimnazjum organizowany przez II LO im. Marii Skłodowskiej-Curie w Końskich Rozwiązania zadań konkursowych 14 czerwca 2013 r. Zadanie 1. Rozłóż na czynniki pierwsze liczbę (90000 należy zapisać w postaci iloczynu lub iloczynu potęg liczb pierwszych). Sposób I Wykorzystujemy tradycyjną metodę szukania rozkładu liczby na czynniki pierwsze Z tego wynika, że = Sposób II Zauważmy, że = = = 3 2 (2 5) 4 = Zadanie 2. Ile różnych ciężarów można zważyć na wadze szalkowej mając do dyspozycji po jednym odważniku o masach 1,3,9? Uwaga: odważniki można kłaść po dwóch stronach wagi szalkowej. Pokażemy, że mając do dyspozycji te odważniki można zważyć każdą masę od 1 do 13 włącznie. Lewa strona Prawa strona x (zważona masa) x 1 x=1 x+1 3 x=3-1=2 x 3 x=3 x 1+3 x=1+3=4 x x=9-1-3=5

2 x+3 9 x=9-3=6 x x=1+9-3=7 x+1 9 x=9-1=8 x 9 x=9 x 9+1 x=9+1=10 x x=9+3-1=11 x 9+3 x=9+3=12 x x=9+3+1=13 Zadanie 3. Na podstawie AB trójkąta równoramiennego ABC wybrano punkt D, taki, że AD = DC i DB = CB. Oblicz kąty trójkąta ABC. C A D rys.1 B Najpierw oznaczmy miarę kąta DAC jako α. Trójkąt ABC jest równoramienny, przy czym AC = BC. Z tego wynika, że kąt DBC też ma miarę α. Z równości AD = DC wynika, że trójkąt ADC też jest równoramienny i miara kąta DAC równa się mierze kąta DCA. W takim razie miara kąta DCA także wynosi α. Z faktu, że suma miar w trójkącie wynosi 180, otrzymujemy, że miara kąta ADC jest równa 180-2α. Kąty ADC i BDC są przyległe, zatem ich suma wynosi 180. Ponieważ miara kąta ADC jest równa 180-2α. to miara kąta BDC musi wynosić 2α. Z faktu, że DB = CB, wnosimy, że trójkąt BDC jest równoramienny i miara kąta BDC jest równa mierze kąta BCD. Zatem miara kąta BCD także wynosi 2α. Miara kąta ACB jest równa sumie kątów ACD i BCD, czyli α+2α=3α. Zatem wiemy już, że miary kątów w trójkącie ABC wynoszą α, α i 3α. Pozostaje nam tylko wyliczyć wartość α. W tym celu wykorzystamy fakt, że suma miar kątów w trójkącie ABC wynosi 180. Otrzymamy wtedy równość: α+α+3α = 180 5α = 180 α=36 Odp. Miary kątów w trójkącie ABC wynoszą 36, 36, 108. Zadanie 4. Jaka jest wartość abc, jeżeli a 2 b = 2 7 oraz ab 2 c 3 = 2 8? W tym zadaniu należało zauważyć, że jeżeli pomnożymy obie równości stronami, to otrzymamy, że a 2 b ab 2 c 3 = a 3 b 3 c 3 = (abc) 3 = = 2 15 (abc) 3 = 2 15.

3 Po sześciennemu spierwiastkowaniu tej równości stronami otrzymujemy, że abc = 2 5. Zadanie 5. Na boku AC trójkąta ABC wybrano punkty K i L, takie, że AK : KL : LC = 1:2:2, oraz na boku BC punkty P i Q takie, że BP : PQ : QC = 1:2:2. Czy pole czworokąta KPQL jest większe od połowy pola trójkąta ABC? Odpowiedź uzasadnij. C L Q K P A rys. 2 B Wykorzystując podane w treści zadania stosunki odcinków można wywnioskować, że: KL = LC = 2AK; PQ = QC = 2 PB; AC = AK+KL+LC = 5AK; BC = BP+PQ+QC = 5BP. Następnie, z twierdzenia odwrotnego do twierdzenia Talesa wynika, że LQ KP i LQ AB, czyli LQ KP AB. Na podstawie tych równoległości możemy określić, że kąty CLQ, CKP i CAB są odpowiadające, czyli ich miary są równe. Odpowiadające są także kąty CQL, CPK i CBA. Z powyższych równości kątów wynika, że trójkąty CLQ, CKP i CAB są do siebie podobne. Trójkąty CKP i CAB są podobne w skali 4:5, a to dlatego, że CK:CA = (CL+CK):(CL+CK+AK) = (2AK+2AK):(2AK+2AK+AK) = 4AK:5AK = 4:5. Jeżeli trójkąty są podobne w skali 4:5, to stosunek ich pól jest równy skali podniesionej do kwadratu, czyli 16:25. W takim razie, jeśli oznaczymy pole trójkąta CAB jako S 1, to pole trójkąta CKP jest równe S 1 (16:25). Trójkąty CLQ i CAB są z kolei podobne w skali 2:5, z tego powodu, że CL:CA = 2AK:5AK = 2:5. W takim razie stosunek pól tych trójkątów wynosi 4:25, zatem pole trójkąta CLQ jest równe S 1 (4:25). Teraz oznaczmy pole czworokąta KPQL jako S 2. Pole tego czworokąta to nic innego jak pole trójkąta CKP pomniejszone o pole trójkąta CLQ. Otrzymujemy zatem, że: S 2 = S 1 (16:25) - S 1 (4:25) = S 1 (16:25 4:25) = S 1 12:25 < S 1 12,5:25 = S 1 :2. Odp.: Pole czworokąta KPQL jest mniejsze od połowy pola trójkąta ABC. Zadanie 6. Mając czarodziejską różdżkę, jeśli chcesz możesz z jednej czekolady uzyskać jedenaście czekolad lub sześć zamienić na jedną. Czy mając na początku jedną czekoladę możesz uzyskać 2013 czekolad? Odpowiedź uzasadnij.

4 Zauważmy, że jeżeli zamieniamy jedną czekoladę na jedenaście, to ich liczba wzrasta o 11-1 = 10. Natomiast jeżeli zamieniamy sześć czekolad na jedną, to ich liczba zmniejsza się o 6-1 = 5. Widzimy zatem, że liczba czekolad, które mamy, zmienia się zawsze o liczbę podzielną przez 5. Z tego wnioskujemy, że reszta z dzielenia liczby czekolad przez pięć jest stała i wynosi 1, gdyż na początku mieliśmy jedną czekoladę. Natomiast liczba 2013 daje resztę 3 z dzielenia przez 5. Otrzymaliśmy sprzeczność, która dowodzi, że w ten sposób, mając na początku jedną czekoladę, nie można uzyskać ich Zadanie 7. Prostokąt o bokach 70 i 100 podzielono na 7000 kwadratów jednostkowych. Przez ile wnętrz kwadratów przechodzi przekątna prostokąta? Najpierw zauważmy, że największy wspólny dzielnik liczb 70 i 100 to 10. Z tego wynika, że przekątna prostokąta 70 na 100 przechodzi przez punkt kratowy co prostokąt 7x10. Ponieważ NWD(70,100) = 10, to przekątna prostokąta 70x100 przechodzi przez 10 prostokątów 7x10. Pozostaje nam tylko zliczyć, przez ile wnętrz kwadratów jednostkowych przechodzi przekątna prostokąta 7x10 i pomnożyć tę liczbę przez 10. Łatwo liczymy, że przekątna prostokąta 7x10 przechodzi przez 16 wnętrz kwadratów, zatem przekątna prostokąta 70x100 przechodzi przez = 160 wnętrz kwadratów jednostkowych. Zadanie 8. Jaka jest ostatnia cyfra liczby Odpowiedź uzasadnij. Najpierw należy zauważyć, że jeżeli podnosimy liczbę całkowitą do potęgi naturalnej, to o ostatniej cyfrze tej potęgi decyduje cyfra jedności liczby podnoszonej do potęgi. Ostatnią cyfrą liczby podniesionej do pewnej potęgi n jest cyfra jedności liczby, która powstała poprzez podniesienie do potęgi n ostatniej cyfry liczby, która jest potęgowana. Z tego wynika, że ostatnia cyfra liczby jest taka sama jak ostatnia cyfra liczby , zaś cyfra jedności liczby jest równa cyfrze jedności liczby Teraz zauważmy, że cyfry jedności zarówno potęg liczby 2, jak i potęg liczby 3 powtarzają się co 4; dla 2 są to kolejno 2, 4, 8, 6, 2, 4, 8, 6, itd., zaś dla 3 są to 3, 9, 7, 1, 3, 9, 7, 1, itd. Pozostaje nam tylko sprawdzić, jakie reszty z dzielenia przez 4 dają wykładniki: 2013 i daje resztę 1 z dzielenia przez 4, czyli ostatnią cyfrą liczby jest 2, natomiast 2012 daje resztę 0 z dzielenia przez 4, czyli cyfrą jedności liczby jest 1. Ostatnia cyfra sumy jest cyfrą jedności sumy ostatnich cyfr składników tej sumy, w tym przypadku jest to 2+1, czyli 3. Odp.: Ostatnią cyfrą liczby jest 3. Zadanie 9. Jaś posiada pewną liczbę żołnierzyków. Wiadomo, że jeżeli ustawi je czwórkami, to zostaną mu trzy, a jeżeli ustawi trójkami to zostaną mu dwa żołnierzyki. Ile zostanie mu żołnierzyków jeżeli ustawi je dwunastkami? Uzasadnij odpowiedź.

5 Rozważmy reszty, jakie możemy otrzymać z dzielenia przez 12. Są to: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 i 11. Mamy informację, że jeśli Jaś ustawi żołnierzyki czwórkami, to zostają mu trzy figurki. Ponieważ liczba 12 i jej wielokrotności są podzielne przez 4, to liczba żołnierzyków daje taką resztę z dzielenia przez 12, która z kolei daje resztę 3 z dzielenia przez 4. Warunek ten spełniają liczby 3, 7 i 11. Liczba 12 i jej wielokrotności są także podzielne przez 3, natomiast liczba żołnierzyków daje resztę 2 z dzielenia przez 3. W takim razie reszta z dzielenia liczby żołnierzyków przez 12 daje resztę, która z kolei z dzielenia przez 3 daje resztę 2. Warunek ten spełniają liczby 2, 5, 8 i 11. Jak widać, jedyną resztą spełniającą oba te warunki jest 11. Otrzymujemy zatem, że jeżeli Jaś ustawi swoje żołnierzyki dwunastkami, to zostanie mu ich 11. Zadanie 10. W kwadracie o boku 2 wybrano pięć punktów. Udowodnij, że pewne dwa są odległe od siebie o co najwyżej 2. rys. 3 Podzielmy ten kwadrat na 4 kwadraty o boku 1, jak na powyższym rysunku. Teraz umieśćmy w każdym z nich po jednym punkcie w taki sposób, by każde dwa z nich były od siebie odległe o więcej niż 2. Pozostał nam do wybrania jeszcze jeden punkt. Musimy go umieścić w którymś z czterech kwadratów o boku 1, nie mamy innej opcji. Z tego wynika, że w którymś z małych kwadratów znajdują się dwa wybrane punkty. Najdłuższa odległość między dwoma punktami w kwadracie to przekątna. W takim razie punkty te mogą być od siebie odległe co najwyżej o długość przekątnej, która dla kwadratu o boku 1 jest równa 2. Zadanie 11. Na ile części podzielą przestrzeń cztery płaszczyzny zawierające ściany czworościanu foremnego? C D B A

6 Łatwo możemy zauważyć pierwszą część przestrzeni, które tworzą płaszczyzny ścian czworościanu foremnego, a mianowicie jest to przestrzeń wewnątrz czworościanu. Następnie wyobraźmy sobie, że krawędzie czworościanu wychodzące z punktu A przedłużamy w stronę przeciwną do wierzchołków B, C, i D, na zewnątrz czworościanu. Otrzymujemy wtedy trzy półproste, a każde dwie z nich wyznaczają jedną płaszczyznę, co daje nam kolejną część przestrzeni ograniczoną trzema płaszczyznami, znajdującą się przy wierzchołku A. Analogiczne rozumowanie przeprowadzamy dla kolejnych trzech wierzchołków, dzięki czemu uzyskujemy cztery części przestrzeni wychodzące z wierzchołków czworościanu. Teraz wyobraźmy sobie, że przedłużamy najpierw płaszczyznę ADC w kierunku przeciwnym do wierzchołka C oraz płaszczyznę ADB w kierunku przeciwnym do wierzchołka B, a później płaszczyzny ABC i DBC w kierunku przeciwnym do krawędzi BC. Wtedy przy krawędzi AD otrzymamy część przestrzeni ograniczoną czterema płaszczyznami: na górze i na dole są to odpowiednio ADB i ADC, a po bokach ABC i DBC. Rozumowanie takie przeprowadzamy dla każdej krawędzi, których mamy 6, co daje kolejne 6 części przestrzeni. Teraz przedłużmy płaszczyzny ADC, ABC i BDC w kierunku przeciwnym do wierzchołka C. Dzięki temu pod ścianą ABC otrzymujemy kolejną część przestrzeni, ograniczoną po bokach trzema płaszczyznami ADC, ABC i BDC. Takie rozumowanie przeprowadzamy dla wszystkich czterech ścian czworościanu, dzięki czemu otrzymamy ostatnie 4 cztery części przestrzeni. W sumie płaszczyzny czworościanu dzielą przestrzeń na = 15 części. Rozwiązania opracował: Aleksander Łyczek II LO Końskie, klasa I A1

VII Olimpiada Matematyczna Gimnazjalistów

VII Olimpiada Matematyczna Gimnazjalistów VII Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa, test próbny www.omg.edu.pl (wrzesień 2011 r.) Rozwiązania zadań testowych 1. Liczba krawędzi pewnego ostrosłupa jest o

Bardziej szczegółowo

VIII Olimpiada Matematyczna Gimnazjalistów

VIII Olimpiada Matematyczna Gimnazjalistów VIII Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa www.omg.edu.pl (18 października 01 r.) Rozwiązania zadań testowych 1. Miary α, β, γ kątów pewnego trójkąta spełniają warunek

Bardziej szczegółowo

VII Olimpiada Matematyczna Gimnazjalistów

VII Olimpiada Matematyczna Gimnazjalistów VII Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa www.omg.edu.pl (29 września 2011 r.) Rozwiązania zadań testowych 1. Istnieje taki graniastosłup, którego liczba krawędzi

Bardziej szczegółowo

XIII Olimpiada Matematyczna Juniorów

XIII Olimpiada Matematyczna Juniorów XIII Olimpiada Matematyczna Juniorów Zawody stopnia pierwszego część testowa (8 września 017 r.) Rozwiązania zadań testowych 1. W każdym z trzech lat 018, 019 i 00 pensja pana Antoniego będzie o 5% większa

Bardziej szczegółowo

Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 2017/2018.

Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 2017/2018. Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 017/018 19 grudnia 017 1 1 Klasy pierwsze - poziom podstawowy 1. Dane są zbiory

Bardziej szczegółowo

XIV Olimpiada Matematyczna Juniorów Zawody stopnia pierwszego część korespondencyjna (1 września 2018 r. 15 października 2018 r.)

XIV Olimpiada Matematyczna Juniorów Zawody stopnia pierwszego część korespondencyjna (1 września 2018 r. 15 października 2018 r.) XIV Olimpiada Matematyczna Juniorów Zawody stopnia pierwszego część korespondencyjna ( września 0 r. października 0 r.) Szkice rozwiązań zadań konkursowych. Liczbę naturalną n pomnożono przez, otrzymując

Bardziej szczegółowo

Bukiety matematyczne dla gimnazjum

Bukiety matematyczne dla gimnazjum Bukiety matematyczne dla gimnazjum http://www.mat.uni.torun.pl/~kolka/ 1 X 2002 Bukiet I Dany jest prostokąt o bokach wymiernych a, b, którego obwód O i pole P są całkowite. 1. Sprawdź, że zachodzi równość

Bardziej szczegółowo

IX Olimpiada Matematyczna Gimnazjalistów

IX Olimpiada Matematyczna Gimnazjalistów IX Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa www.omg.edu.pl (3 października 2013 r.) Rozwiązania zadań testowych 1. Liczba 3 9 3 27 jest a) niewymierna; b) równa 3 27;

Bardziej szczegółowo

XIV Olimpiada Matematyczna Juniorów

XIV Olimpiada Matematyczna Juniorów XIV Olimpiada Matematyczna Juniorów Zawody stopnia pierwszego część testowa (27 września 2018 r.) Rozwiązania zadań testowych 1. W sklepie U Bronka cena spodni była równa cenie sukienki. Cenę spodni najpierw

Bardziej szczegółowo

XII Olimpiada Matematyczna Juniorów Zawody stopnia pierwszego część korespondencyjna (1 września 2016 r. 17 października 2016 r.)

XII Olimpiada Matematyczna Juniorów Zawody stopnia pierwszego część korespondencyjna (1 września 2016 r. 17 października 2016 r.) XII Olimpiada Matematyczna Juniorów Zawody stopnia pierwszego część korespondencyjna ( września 06 r. 7 października 06 r.) Szkice rozwiązań zadań konkursowych. Liczby wymierne a, b, c spełniają równanie

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. rok szkolny 2016/2017. Etap III etap wojewódzki- klucz odpowiedzi

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. rok szkolny 2016/2017. Etap III etap wojewódzki- klucz odpowiedzi Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów rok szkolny 2016/2017 Etap III etap wojewódzki- klucz odpowiedzi W kluczu przedstawiono przykładowe rozwiązania oraz prawidłowe odpowiedzi. Za każdą

Bardziej szczegółowo

9. Funkcje trygonometryczne. Elementy geometrii: twierdzenie

9. Funkcje trygonometryczne. Elementy geometrii: twierdzenie 9. Funkcje trygonometryczne. Elementy geometrii: twierdzenie Pitagorasa i twierdzenie cosinusów, twierdzenie o kącie wpisanym i środkowym, okrąg wpisany i opisany na wielokącie, wielokąty foremne (c.d).

Bardziej szczegółowo

2. Wykaż, że dla dowolnej wartości zmiennej x wartość liczbowa wyrażenia (x 6)(x + 8) 2(x 25) jest dodatnia.

2. Wykaż, że dla dowolnej wartości zmiennej x wartość liczbowa wyrażenia (x 6)(x + 8) 2(x 25) jest dodatnia. 1. Wykaż, że liczba 2 2 jest odwrotnością liczby 1 2. 2. Wykaż, że dla dowolnej wartości zmiennej x wartość liczbowa wyrażenia (x 6)(x + 8) 2(x 25) jest dodatnia. 3. Wykaż, że dla każdej liczby całkowitej

Bardziej szczegółowo

XI Olimpiada Matematyczna Gimnazjalistów

XI Olimpiada Matematyczna Gimnazjalistów XI Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa www.omg.edu.pl (24 września 2015 r.) Rozwiązania zadań testowych 1. Dane są takie dodatnie liczby a i b, że 30% liczby a

Bardziej szczegółowo

Internetowe Kółko Matematyczne 2003/2004

Internetowe Kółko Matematyczne 2003/2004 Internetowe Kółko Matematyczne 2003/2004 http://www.mat.uni.torun.pl/~kolka/ Zadania dla gimnazjum Zestaw I (12 IX) Zadanie 1. Znajdź cyfry A, B, C, spełniające równość: a) AB A = BCB, b) AB A = CCB. Zadanie

Bardziej szczegółowo

Obóz Naukowy Olimpiady Matematycznej Gimnazjalistów

Obóz Naukowy Olimpiady Matematycznej Gimnazjalistów Obóz Naukowy Olimpiady Matematycznej Gimnazjalistów Liga zadaniowa 2012/2013 Seria X (kwiecień 2013) rozwiązania zadań 46. Na szachownicy 75 75 umieszczono 120 kwadratów 3 3 tak, że każdy pokrywa 9 pól.

Bardziej szczegółowo

XV WOJEWÓDZKI KONKURS Z MATEMATYKI

XV WOJEWÓDZKI KONKURS Z MATEMATYKI XV WOJEWÓDZKI KONKURS Z MATEMATYKI DLA UCZNIÓW DOTYCHCZASOWYCH GIMNAZJÓW ORAZ KLAS DOTYCHCZASOWYCH GIMNAZJÓW PROWADZONYCH W SZKOŁACH INNEGO TYPU WOJEWÓDZTWA ŚWIĘTOKRZYSKIEGO W ROKU SZKOLNYM 2017/2018 ETAP

Bardziej szczegółowo

Rozwiązanie: Zastosowanie twierdzenia o kątach naprzemianległych

Rozwiązanie: Zastosowanie twierdzenia o kątach naprzemianległych GEOMETRYCZNE 1) Dany jest prostokąt ABCD. Bok AB podzielono na trzy równe odcinki: AX, XY i YB. Wyznaczono trójkąty DAX, DXY i DYB. Uzasadnij, że wyznaczone trójkąty mają równe pola. Wizualizacja zadania

Bardziej szczegółowo

LXIII Olimpiada Matematyczna

LXIII Olimpiada Matematyczna 1 Zadanie 1. LXIII Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia drugiego 17 lutego 2012 r. (pierwszy dzień zawodów) Rozwiązać w liczbach rzeczywistych a, b, c, d układ równań a

Bardziej szczegółowo

LX Olimpiada Matematyczna

LX Olimpiada Matematyczna LX Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia drugiego 13 lutego 2009 r. (pierwszy dzień zawodów) Zadanie 1. Liczby rzeczywiste a 1, a 2,..., a n (n 2) spełniają warunek a 1

Bardziej szczegółowo

Zadanie PP-GP-1 Punkty A, B, C, D i E leżą na okręgu (zob. rysunek). Wiadomo, że DBE = 10

Zadanie PP-GP-1 Punkty A, B, C, D i E leżą na okręgu (zob. rysunek). Wiadomo, że DBE = 10 Zadanie PP-GP-1 Punkty A, B, C, D i E leżą na okręgu (zob. rysunek). Wiadomo, że DBE = 10, ACE = 60, ADB = 40 i BEC = 20. Oblicz miarę kąta CAD. B C A D E Typ szkoły: LO LP T Czy jesteś w klasie z rozszerzonym

Bardziej szczegółowo

Bukiety matematyczne dla gimnazjum

Bukiety matematyczne dla gimnazjum Bukiety matematyczne dla gimnazjum http://www.mat.uni.torun.pl/~kolka/ 5 IX rok 2003/2004 Bukiet 1 1. W trójkącie ABC prosta równoległa do boku AB przecina boki AC i BC odpowiednio w punktach D i E. Zauważ,

Bardziej szczegółowo

Przykładowy zestaw zadań nr 2 z matematyki Odpowiedzi i schemat punktowania poziom rozszerzony

Przykładowy zestaw zadań nr 2 z matematyki Odpowiedzi i schemat punktowania poziom rozszerzony ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR POZIOM ROZSZERZONY Nr zadania Nr czynności Etapy rozwiązania zadania Liczba punktów Uwagi... Wprowadzenie oznaczeń: x, x, y poszukiwane liczby i zapisanie równania:

Bardziej szczegółowo

V Konkurs Matematyczny Politechniki Białostockiej

V Konkurs Matematyczny Politechniki Białostockiej V Konkurs Matematyczny Politechniki Białostockiej Rozwiązania - klasy drugie 1. Znaleźć wszystkie pary liczb całkowitych (x, y) spełniające nierówności x + 1 + y 4 x + y 4 5 x 4 + y 1 > 4. Ważne jest zauważenie,

Bardziej szczegółowo

Treści zadań Obozu Naukowego OMG

Treści zadań Obozu Naukowego OMG STOWARZYSZENIE NA RZECZ EDUKACJI MATEMATYCZNEJ KOMITET GŁÓWNY OLIMPIADY MATEMATYCZNEJ GIMNAZJALISTÓW Treści zadań Obozu Naukowego OMG Poziom OMG 2016 rok SZCZYRK 2016 Pierwsze zawody indywidualne Treści

Bardziej szczegółowo

Bukiety matematyczne dla szkoły podstawowej

Bukiety matematyczne dla szkoły podstawowej Bukiety matematyczne dla szkoły podstawowej http://www.mat.uni.torun.pl/~kolka/ 8 X 2002 Bukiet 1 Dany jest sześciokąt ABCDEF, którego wszystkie kąty są równe 120. Proste AB i CD przecinają się w punkcie

Bardziej szczegółowo

Małopolski Konkurs Matematyczny r. etap wojewódzki A B C D E

Małopolski Konkurs Matematyczny r. etap wojewódzki A B C D E SCHEMAT PUNKTOWANIA ZADAŃ Z KARTY ODPOWIEDZI Numer zadania SCHEMAT PUNKTOWANIA ZADAŃ TESTOWYCH Liczba punktów za zadanie Miejsce na odpowiedź ucznia A B C D E 1 X X X 4 X 5 X 6 X 7 X 8 X 9 X 10 X 11 X

Bardziej szczegółowo

WOJEWÓDZKI KONKURS MATEMATYCZNY dla uczniów gimnazjów i oddziałów gimnazjalnych województwa pomorskiego w roku szkolnym 2018/2019 etap wojewódzki

WOJEWÓDZKI KONKURS MATEMATYCZNY dla uczniów gimnazjów i oddziałów gimnazjalnych województwa pomorskiego w roku szkolnym 2018/2019 etap wojewódzki WOJEWÓDZKI KONKURS MATEMATYCZNY dla uczniów gimnazjów i oddziałów gimnazjalnych województwa pomorskiego w roku szkolnym 2018/2019 etap wojewódzki Zad.1. (0-3) PRZYKŁADOWE ROZWIĄZANIA I KRYTERIA OCENIANIA

Bardziej szczegółowo

Jednoznaczność rozkładu na czynniki pierwsze I

Jednoznaczność rozkładu na czynniki pierwsze I Jednoznaczność rozkładu na czynniki pierwsze I 1. W Biwerlandii w obiegu są monety o nominałach 5 eciepecie i 8 eciepecie. Jaką najmniejszą (dodatnią) kwotę można zapłacić za zakupy, jeżeli sprzedawca

Bardziej szczegółowo

Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej.

Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej. C Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej. Zad. 1 Oblicz pole trójkąta o bokach 13 cm, 14 cm, 15cm. Zad. 2 W trójkącie ABC rys. 1 kąty

Bardziej szczegółowo

Internetowe Ko³o M a t e m a t yc z n e

Internetowe Ko³o M a t e m a t yc z n e Internetowe Ko³o M a t e m a t yc z n e Stowarzyszenie na rzecz Edukacji Matematycznej Zestaw 2 szkice rozwiązań zadań 1. Dana jest taka liczba rzeczywista, której rozwinięcie dziesiętne jest nieskończone

Bardziej szczegółowo

Treści zadań Obozu Naukowego OMG

Treści zadań Obozu Naukowego OMG STOWARZYSZENIE NA RZECZ EDUKACJI MATEMATYCZNEJ KOMITET GŁÓWNY OLIMPIADY MATEMATYCZNEJ GIMNAZJALISTÓW Treści zadań Obozu Naukowego OMG Poziom OM 2015 rok SZCZYRK 2015 Pierwsze zawody indywidualne Treści

Bardziej szczegółowo

XI Olimpiada Matematyczna Gimnazjalistów

XI Olimpiada Matematyczna Gimnazjalistów www.omg.edu.pl I Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część korespondencyjna (1 września 2015 r. 12 października 2015 r.) Szkice rozwiązań zadań konkursowych 1. Wykaż, że istnieje

Bardziej szczegółowo

V Międzyszkolny Konkurs Matematyczny

V Międzyszkolny Konkurs Matematyczny V Międzyszkolny Konkurs Matematyczny im. Stefana Banacha dla uczniów szkół średnich Zespół Szkół Nr 1 im. Adama Mickiewicza w Lublińcu 42-700 Lubliniec, ul. Sobieskiego 22 18. kwiecień 2011 rok 1. W trapezie

Bardziej szczegółowo

Przykładowe zadania z teorii liczb

Przykładowe zadania z teorii liczb Przykładowe zadania z teorii liczb I. Podzielność liczb całkowitych. Liczba a = 346 przy dzieleniu przez pewną liczbę dodatnią całkowitą b daje iloraz k = 85 i resztę r. Znaleźć dzielnik b oraz resztę

Bardziej szczegółowo

Matematyka rozszerzona matura 2017

Matematyka rozszerzona matura 2017 Matematyka rozszerzona matura 017 Zadanie 1 Liczba ( 3 + 3) jest równa A. B. 4 C. 3 D. 3 ( 3 + 3) = 3 ( 3)( + 3) + + 3 = A. 3 4 3 + + 3 = 4 1 = 4 = Zadanie. Nieskończony ciąg liczbowy jest określony wzorem

Bardziej szczegółowo

Szkoła Podstawowa. Uczymy się dowodzić. Opracowała: Ewa Ślubowska. ewa.slubowska@wp.pl

Szkoła Podstawowa. Uczymy się dowodzić. Opracowała: Ewa Ślubowska. ewa.slubowska@wp.pl Szkoła Podstawowa Uczymy się dowodzić Opracowała: Ewa Ślubowska ewa.slubowska@wp.pl PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA II etap edukacyjny: klasy IV VI I. Sprawność rachunkowa. Uczeń wykonuje proste

Bardziej szczegółowo

LI Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 3 kwietnia 2000 r. (pierwszy dzień zawodów)

LI Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 3 kwietnia 2000 r. (pierwszy dzień zawodów) LI Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 3 kwietnia 2000 r. (pierwszy dzień zawodów) Zadanie 1. Dana jest liczba całkowita n 2. Wyznaczyć liczbę rozwiązań (x 1,x

Bardziej szczegółowo

Zadania otwarte krótkiej odpowiedzi na dowodzenie

Zadania otwarte krótkiej odpowiedzi na dowodzenie Zadania otwarte krótkiej odpowiedzi na dowodzenie Zadanie 1. Na bokach trójkąta równobocznego ABC tak wybrano punkty E, F oraz D, że AE = BF = CD = 1 AB (rysunek obok). a) Udowodnij, że trójkąt EFD jest

Bardziej szczegółowo

LXI Olimpiada Matematyczna

LXI Olimpiada Matematyczna 1 Zadanie 1. LXI Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 21 kwietnia 2010 r. (pierwszy dzień zawodów) Dana jest liczba całkowita n > 1 i zbiór S {0,1,2,...,n 1}

Bardziej szczegółowo

MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY V

MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY V MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY V Na ocenę wyższą uczeń powinien opanować wiedzę i umiejętności na ocenę (oceny) niższą. Dział programowy: LICZBY NATURALNE podać przykład liczby naturalnej czytać

Bardziej szczegółowo

Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 11 Zadania planimetria

Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 11 Zadania planimetria 1 TEST WSTĘPNY 1. (1p) Wysokość rombu o boku długości 6 i kącie ostrym 60 o jest równa: A. 6 3 B. 6 C. 3 3 D. 3 2. (1p) W trójkącie równoramiennym długość ramienia wynosi 10 a podstawa 16. Wysokość opuszczona

Bardziej szczegółowo

LVII Olimpiada Matematyczna

LVII Olimpiada Matematyczna Zadanie 1. LVII Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 5 kwietnia 2006 r. (pierwszy dzień zawodów) Rozwiązać w liczbach rzeczywistych a, b, c, d, e układ równań

Bardziej szczegółowo

Bukiety matematyczne dla szkoły podstawowej http://www.mat.uni.torun.pl/~kolka/

Bukiety matematyczne dla szkoły podstawowej http://www.mat.uni.torun.pl/~kolka/ Bukiety matematyczne dla szkoły podstawowej http://www.mat.uni.torun.pl/~kolka/ 12 IX rok 2003/2004 Bukiet 1 O pewnych liczbach A, B i C wiadomo, że: A + B = 32, B + C = 40, C + A = 26. 1. Ile wynosi A

Bardziej szczegółowo

Treści zadań Obozu Naukowego OMJ

Treści zadań Obozu Naukowego OMJ STOWARZYSZENIE NA RZECZ EDUKACJI MATEMATYCZNEJ KOMITET GŁÓWNY OLIMPIADY MATEMATYCZNEJ JUNIORÓW Treści zadań Obozu Naukowego OMJ Poziom OM 2017 rok SZCZYRK 2017 Olimpiada Matematyczna Juniorów jest wspó³finansowana

Bardziej szczegółowo

Klasa 3. Trójkąty. 1. Trójkąt prostokątny ma przyprostokątne p i q oraz przeciwprostokątną r. Z twierdzenia Pitagorasa wynika równość:

Klasa 3. Trójkąty. 1. Trójkąt prostokątny ma przyprostokątne p i q oraz przeciwprostokątną r. Z twierdzenia Pitagorasa wynika równość: Klasa 3. Trójkąty. 1. Trójkąt prostokątny ma przyprostokątne p i q oraz przeciwprostokątną r. Z twierdzenia Pitagorasa wynika równość: A. r 2 + q 2 = p 2 B. p 2 + r 2 = q 2 C. p 2 + q 2 = r 2 D. p + q

Bardziej szczegółowo

XII Olimpiada Matematyczna Juniorów

XII Olimpiada Matematyczna Juniorów XII Olimpiada Matematyczna Juniorów Zawody stopnia pierwszego część testowa (29 września 2016 r.) Rozwiązania zadań testowych 1. odatnia liczba a powiększona o 50% jest równa dodatniej liczbie b pomniejszonej

Bardziej szczegółowo

V Konkurs Matematyczny Politechniki Białostockiej

V Konkurs Matematyczny Politechniki Białostockiej V Konkurs Matematyczny Politechniki iałostockiej Rozwiązania - klasy pierwsze 27 kwietnia 2013 r. 1. ane są cztery liczby dodatnie a b c d. Wykazać że przynajmniej jedna z liczb a + b + c d b + c + d a

Bardziej szczegółowo

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Etap Wojewódzki

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Etap Wojewódzki pieczątka WKK Kod ucznia - - Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Etap Wojewódzki Drogi Uczniu Witaj na III etapie konkursu matematycznego. Przeczytaj uważnie

Bardziej szczegółowo

zestaw DO ĆWICZEŃ z matematyki

zestaw DO ĆWICZEŃ z matematyki zestaw DO ĆWICZEŃ z matematyki poziom podstawowy rozumowanie i argumentacja karty pracy ZESTAW II Zadanie. Wiadomo, że,7 jest przybliżeniem liczby 0,5 z zaokrągleniem do miejsc po przecinku. Wyznacz przybliżenie

Bardziej szczegółowo

XV WOJEWÓDZKI KONKURS Z MATEMATYKI

XV WOJEWÓDZKI KONKURS Z MATEMATYKI XV WOJEWÓDZKI KONKURS Z MATEMATYKI DLA UCZNIÓW DOTYCHCZASOWYCH GIMNAZJÓW ORAZ KLAS DOTYCHCZASOWYCH GIMNAZJÓW PROWADZONYCH W SZKOŁACH INNEGO TYPU WOJEWÓDZTWA ŚWIĘTOKRZYSKIEGO W ROKU SZKOLNYM 2017/2018 ETAP

Bardziej szczegółowo

ZADANIA PRZED EGZAMINEM KLASA I LICEUM

ZADANIA PRZED EGZAMINEM KLASA I LICEUM ZADANIA PRZED EGZAMINEM KLASA I LICEUM + 7. Równanie = 0 : + A. ma tylko jedno rozwiązanie równe 7 B. ma tylko jedno rozwiązania równe 7 C. ma tylko jedno rozwiązanie równe D. nie ma rozwiązań.. Do przedziału,

Bardziej szczegółowo

ETAP REJONOWY DLA UCZNIÓW GIMNAZJUM W ROKU SZKOLNYM 2018/

ETAP REJONOWY DLA UCZNIÓW GIMNAZJUM W ROKU SZKOLNYM 2018/ WOJEWÓDZKIE KONKURSY RZEDMIOTOWE 08/09 GIMNAZJUM WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM W ROKU SZKOLNYM 08/09 Schemat punktowania zadania zamknięte Za każdą poprawną odpowiedź uczeń otrzymuje

Bardziej szczegółowo

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH Kod ucznia - - Dzień Miesiąc Rok pieczątka WKK DATA URODZENIA UCZNIA KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH ETAP REJONOWY Drogi Uczniu, witaj na II etapie konkursu matematycznego. Przeczytaj

Bardziej szczegółowo

XIII Konkurs Matematyczny o Puchar Dyrektora V LO w Bielsku-Białej

XIII Konkurs Matematyczny o Puchar Dyrektora V LO w Bielsku-Białej XIII Konkurs Matematyczny o Puchar Dyrektora V LO w Bielsku-Białej 2 grudnia 2010 r. eliminacje czas: 90 minut Przed Tobą test składający się z 27 zadań. Do każdego zadania podano cztery odpowiedzi, z

Bardziej szczegółowo

Matematyka Dyskretna Zestaw 2

Matematyka Dyskretna Zestaw 2 Materiały dydaktyczne Matematyka Dyskretna (Zestaw ) Matematyka Dyskretna Zestaw 1. Wykazać, że nie istnieje liczba naturalna, która przy dzieleniu przez 18 daje resztę 13, a przy dzieleniu przez 1 daje

Bardziej szczegółowo

LICZBY POWTÓRKA I (0, 2) 10 II (2, 5) 5 III 25 IV Liczba (0, 4) 5 jest równa liczbom A) I i III B) II i IV C) II i III D) I i II E) III i IV

LICZBY POWTÓRKA I (0, 2) 10 II (2, 5) 5 III 25 IV Liczba (0, 4) 5 jest równa liczbom A) I i III B) II i IV C) II i III D) I i II E) III i IV LICZBY POWTÓRKA ZADANIE (3 PKT) W tabeli zapisano cztery liczby. I (0, 2) 0 II (2, 5) 5 ( III 25 ) 2 ( 25 ) 3 IV 2 5 5 Liczba (0, 4) 5 jest równa liczbom A) I i III B) II i IV C) II i III D) I i II E)

Bardziej szczegółowo

Jarosław Wróblewski Matematyka Elementarna, zima 2011/12

Jarosław Wróblewski Matematyka Elementarna, zima 2011/12 168. Uporządkować podane liczby w kolejności niemalejącej. sin50, cos80, sin170, cos200, sin250, cos280. 169. Naszkicować wykres funkcji f zdefiniowanej wzorem a) f(x) = sin2x b) f(x) = cos3x c) f(x) =

Bardziej szczegółowo

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Etap Rejonowy

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Etap Rejonowy pieczątka WKK Kod ucznia - - Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Etap Rejonowy Drogi Uczniu Witaj na II etapie konkursu matematycznego. Przeczytaj uważnie

Bardziej szczegółowo

MAŁOPOLSKI KONKURS MATEMATYCZNY dla gimnazjalistów Rok szkolny 2010 / 2011 ETAP SZKOLNY - 7 października 2010 roku

MAŁOPOLSKI KONKURS MATEMATYCZNY dla gimnazjalistów Rok szkolny 2010 / 2011 ETAP SZKOLNY - 7 października 2010 roku Kod ucznia... MAŁOPOLSKI KONKURS MATEMATYCZNY dla gimnazjalistów Rok szkolny 200 / 20 ETAP SZKOLNY - 7 października 200 roku. Przed Tobą zestaw 20 zadań konkursowych. 2. Na ich rozwiązanie masz 90 minut.

Bardziej szczegółowo

Internetowe Kółko Matematyczne 2003/2004

Internetowe Kółko Matematyczne 2003/2004 Internetowe Kółko Matematyczne 003/004 http://www.mat.uni.torun.pl/~kolka/ Zadania dla szkoły średniej Zestaw I (5 IX) Zadanie 1. Które liczby całkowite można przedstawić w postaci różnicy kwadratów dwóch

Bardziej szczegółowo

Sprawdzian całoroczny kl. II Gr. A x

Sprawdzian całoroczny kl. II Gr. A x . Oblicz: a) (,5) 8 c) ( ) : ( ). Oblicz: Sprawdzian całoroczny kl. II Gr. A [ ] d) 6 a) ( : ) 5 6 6 8 50. Usuń niewymierność z mianownika: a). Oblicz obwód koła o polu,π dm. 5. Podane wyrażenia przedstaw

Bardziej szczegółowo

Obóz Naukowy Olimpiady Matematycznej Gimnazjalistów

Obóz Naukowy Olimpiady Matematycznej Gimnazjalistów Obóz Naukowy Olimpiady Matematycznej Gimnazjalistów Liga zadaniowa 202/203 Seria VI (grudzień 202) rozwiązania zadań 26. Udowodnij, że istnieje 0 00 kolejnych liczb całkowitych dodatnich nie większych

Bardziej szczegółowo

PRZYKŁADOWE ZADANIA Z MATEMATYKI NA POZIOMIE PODSTAWOWYM

PRZYKŁADOWE ZADANIA Z MATEMATYKI NA POZIOMIE PODSTAWOWYM PRZYKŁADOWE ZADANIA Z MATEMATYKI NA POZIOMIE PODSTAWOWYM Zad.1. (0-1) Liczba 3 8 3 3 9 2 A. 3 3 Zad.2. (0-1) jest równa: Liczba log24 jest równa: B. 3 32 9 C. 3 4 D. 3 5 A. 2log2 + log20 B. log6 + 2log2

Bardziej szczegółowo

Dla każdej własności zaznacz litery przyporządkowane trójkątom posiadającym tę własność. (rysunek powyżej) A/ B/ C/ D

Dla każdej własności zaznacz litery przyporządkowane trójkątom posiadającym tę własność. (rysunek powyżej) A/ B/ C/ D A B C D 4 4 9 9 4 5 6 2 4 5 4 Zad. 1. (4 pkt.) Dla każdej własności zaznacz litery przyporządkowane trójkątom posiadającym tę własność. (rysunek powyżej) Ma oś symetrii Obwód wynosi 12 Ma środek symetrii

Bardziej szczegółowo

Treści zadań Obozu Naukowego OMG

Treści zadań Obozu Naukowego OMG STOWARZYSZENIE NA RZECZ EDUKACJI MATEMATYCZNEJ KOMITET GŁÓWNY OLIMPIADY MATEMATYCZNEJ GIMNAZJALISTÓW Treści zadań Obozu Naukowego OMG Poziom OMG 2015 rok SZCZYRK 2015 Treści zadań Pierwsze zawody indywidualne

Bardziej szczegółowo

Test, dzień pierwszy, grupa młodsza

Test, dzień pierwszy, grupa młodsza Test, dzień pierwszy, grupa młodsza 1. Na połowinkach 60 procent wszystkich uczniów to dziewczyny. Impreza jest kiepska, bo tylko 40 procent wszystkich uczniów chce się tańczyć. Sytuacja poprawia sie odrobinę,

Bardziej szczegółowo

GEOMETRIA ELEMENTARNA

GEOMETRIA ELEMENTARNA Bardo, 7 11 XII A. D. 2016 I Uniwersytecki Obóz Olimpiady Matematycznej GEOMETRIA ELEMENTARNA materiały przygotował Antoni Kamiński na podstawie zbiorów zadań: Przygotowanie do olimpiad matematycznych

Bardziej szczegółowo

Nawi zanie do gimnazjum Planimetria Trójk Rysujemy Rysujemy Rysujemy Zapisujemy t zewn trzny trójk ta, Trójk ty ze wzgl du na miary k tów Trójk

Nawi zanie do gimnazjum Planimetria Trójk Rysujemy Rysujemy Rysujemy Zapisujemy t zewn trzny trójk ta, Trójk ty ze wzgl du na miary k tów Trójk PLANIMETRIA Lekcja 102-103. Miary kątów w trójkącie str. 222-224 Nawiązanie do gimnazjum Planimetria to., czy planimetria zajmuje się. (Dział geometrii, który zajmuje się badaniem płaskich figur geometrycznych)

Bardziej szczegółowo

9. Funkcje trygonometryczne. Elementy geometrii: twierdzenie

9. Funkcje trygonometryczne. Elementy geometrii: twierdzenie 9. Funkcje trygonometryczne. Elementy geometrii: twierdzenie Pitagorasa i twierdzenie cosinusów, twierdzenie o kącie wpisanym i środkowym, okrąg wpisany i opisany na wielokącie, wielokąty foremne (c.d).

Bardziej szczegółowo

WOJEWÓDZKI KONKURS MATEMATYCZNY

WOJEWÓDZKI KONKURS MATEMATYCZNY Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJÓW W ROKU SZKOLNYM 2017/2018 04.01.2018 1. Test konkursowy zawiera 20 zadań. Są to zadania zamknięte i otwarte. Na ich rozwiązanie

Bardziej szczegółowo

Uczeń. KONKURS OMNIBUS MATEMATYCZNY rok szkolny 2011/2012. 90 minut. Pracuj samodzielnie. Powodzenia! Finał 20 kwietnia 2012 roku

Uczeń. KONKURS OMNIBUS MATEMATYCZNY rok szkolny 2011/2012. 90 minut. Pracuj samodzielnie. Powodzenia! Finał 20 kwietnia 2012 roku KONKURS OMNIBUS MATEMATYCZNY rok szkolny 2011/2012 Finał 20 kwietnia 2012 roku Zestaw dla uczniów klas III Uczeń Liczba zdobytych punktów Drogi Uczniu, witaj na finale konkursu Omnibus Matematyczny. Przeczytaj

Bardziej szczegółowo

XV WOJEWÓDZKI KONKURS Z MATEMATYKI

XV WOJEWÓDZKI KONKURS Z MATEMATYKI XV WOJEWÓDZKI KONKURS Z MATEMATYKI DLA UCZNIÓW DOTYCHCZASOWYCH GIMNAZJÓW ORAZ KLAS DOTYCHCZASOWYCH GIMNAZJÓW PROWADZONYCH W SZKOŁACH INNEGO TYPU WOJEWÓDZTWA ŚWIĘTOKRZYSKIEGO W ROKU SZKOLNYM 2017/2018 ETAP

Bardziej szczegółowo

XII. GEOMETRIA PRZESTRZENNA GRANIASTOSŁUPY

XII. GEOMETRIA PRZESTRZENNA GRANIASTOSŁUPY pitagoras.d2.pl XII. GEOMETRIA PRZESTRZENNA GRANIASTOSŁUPY Graniastosłup to wielościan posiadający dwie identyczne i równoległe podstawy oraz ściany boczne będące równoległobokami. Jeśli podstawy graniastosłupa

Bardziej szczegółowo

Kurs ZDAJ MATURĘ Z MATEMATYKI - MODUŁ 11 Teoria planimetria

Kurs ZDAJ MATURĘ Z MATEMATYKI - MODUŁ 11 Teoria planimetria 1 Pomimo, że ten dział, to typowa geometria wydawałoby się trudny dział to paradoksalnie troszkę tu odpoczniemy, jeśli chodzi o teorię. Dlaczego? Otóż jak zapewne doskonale wiesz, na maturze otrzymasz

Bardziej szczegółowo

W. Guzicki Próbna matura, grudzień 2014 r. poziom rozszerzony 1

W. Guzicki Próbna matura, grudzień 2014 r. poziom rozszerzony 1 W. Guzicki Próbna matura, grudzień 01 r. poziom rozszerzony 1 Próbna matura rozszerzona (jesień 01 r.) Zadanie 18 kilka innych rozwiązań Wojciech Guzicki Zadanie 18. Okno na poddaszu ma mieć kształt trapezu

Bardziej szczegółowo

KONKURS MATEMATYCZNY. Model odpowiedzi i schematy punktowania

KONKURS MATEMATYCZNY. Model odpowiedzi i schematy punktowania KONKURS MTEMTYCZNY dla uczniów szkół podstawowych województwa mazowieckiego w roku szkolnym 2018/2019 Model odpowiedzi i schematy punktowania Za każde poprawne i pełne rozwiązanie, inne niż przewidziane

Bardziej szczegółowo

ZESTAW ZADAŃ KONKURSOWYCH Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2017/2018 ETAP TRZECI

ZESTAW ZADAŃ KONKURSOWYCH Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2017/2018 ETAP TRZECI Kuratorium Oświaty w Lublinie.. Imię i nazwisko ucznia Pełna nazwa szkoły ZESTAW ZADAŃ KONKURSOWYCH Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2017/2018 Instrukcja dla ucznia ETAP TRZECI 1. Zestaw

Bardziej szczegółowo

WOJEWÓDZKI KONKURS MATEMATYCZNY

WOJEWÓDZKI KONKURS MATEMATYCZNY Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJÓW W ROKU SZKOLNYM 2016/2017 11.01.2017 1. Test konkursowy zawiera 21 zadań. Są to zadania zamknięte i otwarte. Na ich rozwiązanie

Bardziej szczegółowo

LV Olimpiada Matematyczna

LV Olimpiada Matematyczna LV Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 15 kwietnia 004 r. (pierwszy dzień zawodów) Zadanie 1. Punkt D leży na boku AB trójkąta ABC. Okręgi styczne do prostych

Bardziej szczegółowo

Matematyka. Zadanie 1. Zadanie 2. Oblicz. Zadanie 3. Zadanie 4. Wykaż, że liczba. 2 2 jest podzielna przez 5. Zadanie 5.

Matematyka. Zadanie 1. Zadanie 2. Oblicz. Zadanie 3. Zadanie 4. Wykaż, że liczba. 2 2 jest podzielna przez 5. Zadanie 5. Matematyka Zadanie 1. Oblicz liczby Zadanie. Oblicz Zadanie 3. Wykaż, że liczba jest podzielna przez Zadanie 4. Wykaż, że liczba 30 0 jest podzielna przez 5. Zadanie 5. n 1 Uzasadnij, że prawdziwa jest

Bardziej szczegółowo

Zadania na dowodzenie Opracowała: Ewa Ślubowska

Zadania na dowodzenie Opracowała: Ewa Ślubowska Egzamin Gimnazjalny Zadania na dowodzenie Opracowała: Ewa Ślubowska W nauczaniu matematyki ważne jest rozwijanie różnych aktywności umysłu. Ma temu służyć min. rozwiązywanie jednego zadania czy dowodzenie

Bardziej szczegółowo

WOJEWÓDZKI KONKURS MATEMATYCZNY

WOJEWÓDZKI KONKURS MATEMATYCZNY WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM W ROKU SZKOLNYM 2018/2019 Schemat punktowania zadania zamknięte Za każdą poprawną odpowiedź uczeń otrzymuje 1 punkt. Numer zadania Poprawna odpowiedź

Bardziej szczegółowo

I semestr WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA VI. Wymagania na ocenę dopuszczającą. Dział programu: Liczby naturalne

I semestr WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA VI. Wymagania na ocenę dopuszczającą. Dział programu: Liczby naturalne WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA VI Wymagania na ocenę dopuszczającą I semestr Dział programu: Liczby naturalne Oblicza różnice czasu proste Wymienia jednostki opisujące prędkość, drogę, czas. Rozwiązuje

Bardziej szczegółowo

ZBIÓR ZADAŃ - ROZUMOWANIE I ARGUMENTACJA

ZBIÓR ZADAŃ - ROZUMOWANIE I ARGUMENTACJA ZIÓR ZŃ - ROZUMOWNIE I RGUMENTJ 0--30 Strona ZIÓR ZO O WYMGNI EGZMINYJNEGO - ROZUMOWNIE I RGUMENTJ. Zapisz sumę trzech kolejnych liczb naturalnych, z których najmniejsza jest liczba n. zy suma ta jest

Bardziej szczegółowo

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH Etap Wojewódzki

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH Etap Wojewódzki Kod ucznia - - Dzień Miesiąc Rok pieczątka WKK DATA URODZENIA UCZNIA KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH Etap Wojewódzki Drogi Uczniu Witaj na III etapie konkursu matematycznego. Przeczytaj

Bardziej szczegółowo

Obozowa liga zadaniowa (seria I wskazówki)

Obozowa liga zadaniowa (seria I wskazówki) Obozowa liga zadaniowa (seria I wskazówki) 1. Rozstrzygnij, która liczba jest większa: 9 czy 3 1? 9 < 30 8 10 < 9 10 3 0 < 3 1.. Rozstrzygnij, która liczba jest większa: 81 czy 3 49? 81 > 80 56 10 > 43

Bardziej szczegółowo

Przykładowe rozwiązania

Przykładowe rozwiązania Przykładowe rozwiązania (E. Ludwikowska, M. Zygora, M. Walkowiak) Zadanie 1. Rozwiąż równanie: w przedziale. ( ) ( ) ( )( ) ( ) ( ) ( ) Uwzględniając, że x otrzymujemy lub lub lub. Zadanie. Dany jest czworokąt

Bardziej szczegółowo

Przykładowe rozwiązania

Przykładowe rozwiązania Przykładowe rozwiązania (E. Ludwikowska, M. Zygora, M. Walkowiak) Klucz odpowiedzi do zadań zamkniętych Zadanie 1 2 3 4 5 6 7 8 9 10 11 12 13 Odpowiedź D C B A C B C C D C C D A Zadanie 14 15 16 17 18

Bardziej szczegółowo

1. Liczby wymierne. x dla x 0 (wartością bezwzględną liczby nieujemnej jest ta sama liczba)

1. Liczby wymierne. x dla x 0 (wartością bezwzględną liczby nieujemnej jest ta sama liczba) 1. Liczby wymierne. - wartość bezwzględna liczby. dla 0 (wartością bezwzględną liczby nieujemnej jest ta sama liczba) - dla < 0 ( wartością bezwzględną liczby ujemnej jest liczba do niej przeciwna) W interpretacji

Bardziej szczegółowo

Warmińsko-Mazurskie Zawody Matematyczne Eliminacje cykl styczniowy Poziom: szkoły ponadgimnazjalne, 10 punktów za każde zadanie

Warmińsko-Mazurskie Zawody Matematyczne Eliminacje cykl styczniowy Poziom: szkoły ponadgimnazjalne, 10 punktów za każde zadanie Warmińsko-Mazurskie Zawody Matematyczne Eliminacje cykl styczniowy oziom: szkoły ponadgimnazjalne, 0 punktów za każde zadanie Zadanie Znajdź dwa dzielniki pierwsze liczby - Można skorzystać z artykułu

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap szkolny 4 listopada 2014 Rozwiązania zadań

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap szkolny 4 listopada 2014 Rozwiązania zadań Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap szkolny 4 listopada 014 Rozwiązania zadań ZADANIA ZAMKNIĘTE Zadanie 1. (1 punkt) Jaka jest cyfra jedności liczby 3 014 + 3 01? a) 0 b) 1 c) 3

Bardziej szczegółowo

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP WOJEWÓDZKI

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP WOJEWÓDZKI Kod ucznia - - pieczątka WKK Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP WOJEWÓDZKI Drogi Uczniu Witaj na III etapie konkursu matematycznego. Przeczytaj uważnie

Bardziej szczegółowo

KLASA I LO Poziom podstawowy (styczeń) Treści nauczania wymagania szczegółowe:

KLASA I LO Poziom podstawowy (styczeń) Treści nauczania wymagania szczegółowe: KLASA I LO Poziom podstawowy (styczeń) Treści nauczania wymagania szczegółowe: ZAKRES PODSTAWOWY 7. Planimetria. Uczeń: 1) rozpoznaje trójkąty podobne i wykorzystuje (także w kontekstach praktycznych)

Bardziej szczegółowo

WOJEWÓDZKI KONKURS MATEMATYCZNY

WOJEWÓDZKI KONKURS MATEMATYCZNY Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJÓW W ROKU SZKOLNYM 018/019 17.1.018 1. Test konkursowy zawiera zadania. Są to zadania zamknięte i otwarte. Na ich rozwiązanie

Bardziej szczegółowo

= a + 1. b + 1. b całkowita?

= a + 1. b + 1. b całkowita? 9 ALGEBRA Liczby wymierne Bukiet 1 1. Oblicz wartość wyrażenia 1+ 1 1+ 1 1+ 1 1. 2. Znajdź liczby naturalne a, b, c i d, dla których 151 115 = a + 1 b + 1. c + 1 d 3. W podobny sposób spróbuj przekształcić

Bardziej szczegółowo

KRYTERIA WYMAGAŃ NA POSZCZEGÓLNE OCENY SZKOLNE. Przedmiot: matematyka. Klasa: 5

KRYTERIA WYMAGAŃ NA POSZCZEGÓLNE OCENY SZKOLNE. Przedmiot: matematyka. Klasa: 5 KRYTERIA WYMAGAŃ NA POSZCZEGÓLNE OCENY SZKOLNE Przedmiot: matematyka Klasa: 5 OCENA CELUJĄCA Rozwiązuje nietypowe zadania tekstowe wielodziałaniowe. Proponuje własne metody szybkiego liczenia. Rozwiązuje

Bardziej szczegółowo

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH pieczątka WKK Kod ucznia - - Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH ETAP WOJEWÓDZKI Drogi Uczniu, witaj na III etapie konkursu matematycznego. Przeczytaj

Bardziej szczegółowo

1.2. Ostrosłupy. W tym temacie dowiesz się: jak obliczać długości odcinków zawartych w ostrosłupach, jakie są charakterystyczne kąty w ostrosłupach.

1.2. Ostrosłupy. W tym temacie dowiesz się: jak obliczać długości odcinków zawartych w ostrosłupach, jakie są charakterystyczne kąty w ostrosłupach. 12 Ostrosłupy W tym temacie dowiesz się: jak obliczać długości odcinków zawartych w ostrosłupach, jakie są charakterystyczne kąty w ostrosłupach Ostrosłup prosty to ostrosłup, który ma wszystkie krawędzie

Bardziej szczegółowo