Wykorzystanie techniki bimodalnej do transportu kontenerów i pojemników wymiennych

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wykorzystanie techniki bimodalnej do transportu kontenerów i pojemników wymiennych"

Transkrypt

1 doc. dr inż. Marian Medwid mgr inż. Krzysztof Przepióra Instytut Pojazdów Szynowych TABO Wykorzystanie techniki bimodalnej do transportu kontenerów i pojemników wymiennych W artykule zaprezentowano możliwości zastosowania bimodalnej techniki transportu kombinowanego do przewozu kontenerów i innych pojemników wymiennych. Przedstawiono przykładowe koncepcje rozwiązań taboru bimodalnego. Wykazano korzyści wynikające z zastosowania techniki bimodalnej w przewozach kombinowanych, kolejowo-drogowych. 1. Wstęp Zasadnicze zalety transportu bimodalnego na tle innych systemów transportu kombinowanego to zmniejszenie masy martwej w postaci platformy nośnej wagonu oraz zmniejszenie odległości między jednostkami ładunkowymi w składzie pociągu bimodalnego [1 i 2]. Te korzystne cechy transportu bimodalnego można wykorzystać również w transporcie odpowiednio przystosowanych pojemników wymiennych, a w szczególności kontenerów, przewożąc je nie jak dotychczas na platformach kontenerowych, a bezpośrednio na odpowiednich wózkach kolejowych. Dane statystyczne dotyczące przewozów kombinowanych wykazują, że w transporcie tym zdecydowanie dominują przewozy kontenerów na platformach kontenerowych, a wśród różnych gabarytów kontenerów eksploatowanych w Europie przeważają zdecydowanie kontenery 20' i 40', których liczbę szacuje się na kilka milionów. Wykorzystując do przewozu kontenerów technikę transportu bimodalnego, przy pionowym przeładunku kontenerów z taboru drogowego na kolejowy i odwrotnie, można osiągnąć szereg istotnych korzyści w postaci: zmniejszenia transportowanej masy martwej (masy taboru kolejowego), zmniejszenia nacisku zestawu kołowego na tor, zmniejszenia zużycia toru, zmniejszenia energii pobieranej przez lokomotywę, zmniejszenia zużycia elementów ciernych układu hamulcowego pociągu, zwiększenia ilości transportowanego ładunku. 2. Parametry pociągu Poniżej przedstawiono porównanie parametrów konstrukcyjnych tradycyjnego pociągu kontenerowego z pociągiem kontenerowym bimodalnym. Na rys.1 i 2 przedstawiono kontenery 40' ładowne, posadowione na dwuosiowych platformach kontenerowych i wózkach bimodalnych. ys.1. Kontenery 40' z ładunkiem na platformach kontenerowych m k = 34 t masa kontenera z ładunkiem, m w = min 10 t masa platformy kontenerowej, Q = 220 kn nacisk zestawu kołowego na tor, L 50 = ~ 674 m długość pociągu dla 50 ciu kontenerów. ys.2. Kontenery 40' z ładunkiem na wózkach bimodalnych m k = 34 t masa kontenera z ładunkiem, m p = 3 t masa półwózka z zestawem kołowym, Q = 200 kn nacisk zestawu kołowego na tor, L 50 = ~ 630 m długość pociągu dla 50 ciu kontenerów. 1

2 ys.3. Przeładunek pionowy kontenera na wózki bimodalne Celem spełnienia warunków bezpieczeństwa ruchu dla wagonów towarowych dwuosiowych określono w załączniku B.2.1. karty UIC 432 [3] minimalną masę wagonu 10 ton dla ruchu SS (120 km/h) i w załączniku A ton dla ruchu S (100 km/h). Z minimalnej masy wagonu wynika najmniejszy dopuszczalny nacisk zestawu kołowego na tor, przy którym spełnione są jeszcze warunki bezpieczeństwa ruchu. Nacisk dla ruchu SS wynosi ~50 kn/oś, a dla ruchu S ~45 kn/oś. W przypadku transportu próżnych kontenerów na wózkach bimodalnych warunek ten jest również spełniony, ponieważ nacisk minimalny zestawu na tor w tym przypadku wynosi: mkp + 2mp 5t + 2 3t = = 5,5t 55kN / oś 2 2 gdzie: m kp = 5t masa kontenera próżnego, m p = 3t masa półwózka. Z przedstawionego porównania wynika, że przy tej samej ilości transportowanego towaru, kontenerowy pociąg bimodalny jest o około 44 m krótszy i 200 ton lżejszy w stanie załadowanym, od tradycyjnego pociągu kontenerowego złożonego z pięćdziesięciu czterdziestostopowych kontenerów. Z przeprowadzonego porównania wynikają również wymienione w pkt 1 korzyści z wykorzystania taboru bimodalnego do transportu kontenerów. Mniejsza masa martwa ma wpływ na zmniejszenie nacisku zestawu kołowego na tor z 220 kn na 200 kn, co winno zaowocować mniejszym zużyciem kół zestawów kołowych oraz szyn toru i podtorza. Winny pojawić się również oszczędności z tytułu kosztów utrzymania torów. Mniejsza o 200 ton masa pociągu zmniejsza zapotrzebowanie na energię pobieraną przez lokomotywę, a hamowanie mniejszej masy wpłynie na mniejsze zużycie klocków hamulcowych i powierzchni tocznej kół. W przypadku uformowania kontenerowego pociągu bimodalnego o długości zbliżonej do pociągu tradycyjnego, w pociągu bimodalnym można ilość transportowanych kontenerów zwiększyć o ~ 3 kontenery, przy mniejszej o 80 t masie pociągu bimodalnego, w porównaniu z tradycyjnym 50-cio wagonowym. Przewidywane korzyści wskazują jednoznacznie na uzasadnioną celowość rozwoju przedstawionej koncepcji transportu kontenerów, a istniejąca sieć terminali ułatwi szybkie wdrożenie systemu do eksploatacji. ys. 3 przedstawia technikę przeładunku kontenera z pojazdu drogowego, lub placu składowania, na wózki pociągu bimodalnego. 3. Wózki bimodalne bezadapterowe do transportu kontenerów Na rys. 4 pokazano kontenery na wózkach środkowych oraz układ wózka środkowego. Konstrukcja wózka środkowego jest zbliżona do wózka przeznaczonego do transportu naczep drogowych w systemie bimodalnym, przy poziomym przeładunku naczep. Zasadnicza różnica, to sposób oparcia i ryglowania kontenera w ramie półwózka. ys.4. Kontenery na wózku środkowym Kontener 1 opiera się na ramach półwózków 2 na ośmiu wspornikach 3 wyposażonych w trzpienie nasadowe 4 o budowie i zasadzie mocowania kontenera na ramie półwózka, podobnej jak dla typowych, dotychczas eksploatowanych kontenerów. Na rys. 5 pokazano kontener zamocowany na wózku końcowym. Sposób oparcia i zamocowania kontenera na ramie wózka jest identyczny jak dla wózka środkowego. Typowy kontener jest zaopatrzony w osiem punktów mocowania na platformie wagonu lub ramie ciągnika drogowego, rozmieszczonych na narożach ramy kontenera. 2

3 Aby przystosować typowy kontener do transportu na bimodalnych półwózkach kolejowych, należy go dodatkowo wyposażyć w cztery miejsca mocowania, rozstawione tak jak trzpienie nasadowe 4 zlokalizowane na ramie półwózka. Standardowe kontenery ładunkowe serii 1 są zaopatrzone w znormalizowane naroża zaczepowe wykonane według wymagań normy PN-ISO 1161 [4]. Wymiary i maksymalne masy kontenerów ładunkowych serii 1 określono w normie PN-ISO 668 [5] ys.5. Kontener na wózku końcowym Kontenery ładunkowe serii 1 charakteryzują się jednakową szerokością 2438 mm i różnią się między sobą długością i wysokością w poszczególnych grupach klasyfikacji. W tej serii kontenerów znajdują się kontenery 40', 30', 20' i 10', których długości podano w tabeli 1. Długość kontenerów serii 1 Tabela 1 Kontener 40' 30' 20' 10' Długość mm Kontenery ładunkowe serii 2 sklasyfikowane wg karty UIC [6] mają długości takie jak kontenery serii 1, natomiast maksymalna szerokość kontenerów w każdej klasie (10', 20', 30', 40') nie może być większa niż 2600 mm, a maksymalna wysokość nie może przekroczyć 2600 mm. ozstaw osi zestawów kołowych dla pociągu złożonego z kontenerów 40' wynosi 9120 mm, a dla pociągu z kontenerami 30', 6053 mm. Z tego względu, jak również z uwagi na optymalizację ilości wózków w kontenerowym pociągu bimodalnym, należy założyć, że w systemie bimodalnym byłby opłacalny transport kontenerów najdłuższych to znaczy 40 stopowych. Na rys.6 pokazano pociąg bimodalny złożony z kontenerów 40' i 30'. Wymagania karty UIC 597 [7] w punkcie określają minimalną wytrzymałość konstrukcji naczepy bimodalnej, które to przepisy muszą być również spełnione w przypadku transportu kontenerów na wózkach bimodalnych. Przepisy te dotyczą przede wszystkim wytrzymałości konstrukcji na siły wzdłużne oraz dopuszczalnej strzałki ugięcia kontenera w stanie obciążonym w uformowaniu kolejowym. Minimalna siła wzdłużna, jaką winna wytrzymać konstrukcja nośna kontenera oraz elementy łączące kontener z ramą półwózka, wynosi 850 kn. Zaleca się, aby konstrukcja kontenera wytrzymała siły wzdłużne 1000 kn. W systemie oparcia kontenera na ramie półwózka przewidziano cztery punkty mocowania kontenera na ramie każdego półwózka. Z uwagi na możliwe wykonanie z określoną tolerancją rozstawów wzdłużnych trzpieni nasadowych na ramie półwózka jak i rozstawów wzdłużnych naroży zaczepowych wykonanych w ramie kontenera, należy założyć, że siły wzdłużne będą przenoszone z ramy półwózka na ramę kontenera przez dwa trzpienie nasadowe współpracujące z dwoma narożami zaczepowymi. Według wymagań normy PN-ISO 1161 dwa naroża zaczepowe kontenera są przystosowane do przeniesienia siły wzdłużnej obliczonej wg wzoru P=2g 1 gdzie: P siła wzdłużna przenoszona przez dwa naroża zaczepowe kontenera, g przyspieszenie ziemskie, masa kontenera brutto. Masa brutto kontenera 40' wynosi kg wg PN- ISO 668. Karta UIC dopuszcza dla kontenerów 20, 30 i 40 stopowych zwiększenie masy maksymalnej do kg. Tak więc maksymalna siła wzdłużna, jaka może być dopuszczona dla naroży zaczepowych kontenerów standardowych przy masie max kg wynosi: P= 2 9, ,1 0, kn Z przeprowadzonej analizy wynika, że standardowe kontenery nie spełniają wymagań karty UIC 597 w zakresie zdolności do przenoszenia sił wzdłużnych, jakie występują w eksploatacji pociągu bimodalnego. Dla adaptacji istniejących kontenerów do transportu bimodalnego należy je wyposażyć dodatkowo w cztery miejsca mocowania oraz dokonać zmiany konstrukcji naroży zaczepowych i konstrukcji ramy nośnej kontenera, aby ich wytrzymałość umożliwiała przejęcie sił wzdłużnych o wartości minimum ±1000 kn. 4. Wózki bimodalne adapterowe do transportu kontenerów Przeprowadzona analiza konstrukcyjna wykazała możliwość wykorzystania również taboru bimodalnego adapterowego do transportu kontenerów. Zastosowanie adapterowej techniki bimodalnej do przewozów kontenerów wymaga odpowiedniego przystosowania konstrukcji adapterów i kontenerów, do pionowego załadunku na wózki kolejowe wyposażone w adaptery. Na rys.7. pokazano adapterowe wózki bimodalne załadowane kontenerami 40 stopowymi. 3

4 ys.6. Kontenery 40' i 30' na bezadapterowych wózkach bimodalnych ys.7. Kontenerowy pociąg bimodalny na wózkach wyposażonych w adaptery Adapterowe wózki bimodalne środkowy i końcowy przedstawiono w rzucie poziomym na rys. 8. a. b. ys.8. Adapterowe wózki bimodalne: a wózek środkowy, b wózek końcowy Wózek środkowy ma symetryczny adapter górny 1 i dolny 2, który opiera się na wózku kolejowym na czopie skrętu oraz czterech ślizgach bocznych, w sposób identyczny jak w rozwiązaniu dla taboru bimodalnego do transportu naczep drogowych z poziomym przeładunkiem naczep. Adapter górny i dolny składa się z poprzecznej belki nośnej 3 oraz belki podłużnej 4 zakończonej dyszlem 5. Na obu końcach poprzecznej belki 3 górnego i dolnego adaptera umieszczono odpowiednio rozstawione trzpienie nasadowe 6. Na rys.9 przedstawiono przykład możliwego rozwiązania oparcia i zamocowania kontenera na adapterze wózka środkowego. 4

5 ys.9. Oparcie i zamocowanie kontenera na adapterze wózka środkowego ( ) 40 ( ) 30 ( 6058 ) ' ys.10. Kontener do transportu bimodalnego na wózkach wyposażonych w adaptery 5

6 Kontener jest oparty i zamocowany na adapterze w trzech punktach, na dwóch siodłach trzpieni nasadowych 1 oraz na dyszlu 5 związanym z belką podłużną adaptera. Sposób oparcia i ryglowania kontenera na siodłach trzpieni nasadowych i na dyszlu adaptera pokazano na przekrojach A-A i B-B. Kontener oparty jest na belce poprzecznej adaptera na dwóch narożach zaczepowych 1, w których umieszczone są trzpienie nasadowe 2. Do zabezpieczenia kontenera na belce adaptera przewidziano sworznie 3. Dyszel adaptera jest umieszczony we wnęce prowadzącej 5 i jest oparty górną powierzchnią o podłogę 6 kontenera, a od dołu jest zaryglowany klinem 7. Klin 7 zamontowano w prowadnicy 8, w której mieści się po odryglowaniu dyszla. W prezentowanym przykładzie ryglowania kontenera na adapterze mechanizmy ryglujące są zabudowane w kontenerze. Zgodnie z zaleceniem karty UIC 597 należy dążyć do takiego rozwiązania konstrukcji docelowej, aby urządzenia ryglujące były zamontowane na adapterze ze względu na lepszą możliwość prowadzenia nadzoru stanu technicznego urządzeń ryglujących, które mają bezpośredni wpływ na bezpieczeństwo ruchu pociągu bimodalnego. Na rys.10 pokazano przykład kontenera przystosowanego do transportu bimodalnego w systemie adapterowym. 5. Podsumowanie W wyniku przeprowadzonej technicznej analizy wykazano, że w systemie bimodalnym bezadapterowym jak i adapterowym jest możliwy transport kontenerów i innych pojemników wymiennych, w tym naczep samochodowych, z zastosowaniem pionowego przeładunku jednostek ładunkowych ze środków transportu drogowego na szynowy i odwrotnie. Jednostki ładunkowe takie jak kontenery, naczepy samochodowe plandekowe, skrzyniowe i zbiornikowe oraz inne pojemniki muszą być przystosowane do ich połączenia z taborem kolejowym bimodalnym, jak również muszą spełniać wymagania wytrzymałościowe punktu karty UIC 597. Prostota konstrukcji taboru bimodalnego, zwłaszcza bezadapterowego, jak i spodziewane korzyści eksploatacyjne winny być wystarczająco mocnym argumentem dla podjęcia prac naukowo-badawczych nad wdrożeniem do eksploatacji proponowanych technologii transportu towarów w ruchu kombinowanym i bimodalnym. W pierwszym etapie prac należałoby opracować koncepcyjnie nowe rozwiązania techniczne i wykonać wstępną analizę ekonomiczną opłacalności wdrożenia proponowanych technologii transportu. Literatura: [1] Medwid M.:Zmodernizowany tabor do transportu bimodalnego przystosowany do prędkości 160 km/h. Pojazdy Szynowe 2/2002. [2] Medwid M.:Możliwości zastosowania bezadapterowego systemu transportu bimodalnego typu TABO II do przewozu naczep o powiększonej wysokości przestrzeni ładunkowej. Pojazdy Szynowe 1/2004 [3] Karta UIC 432 Wagony towarowe. Prędkości jazdy. Warunki techniczne, które należy spełnić. Wydanie r. [4] Polska Norma PN-ISO Kontenery ładunkowe serii 1. Naroża zaczepowe. Wymagania. Kwiecień 1999r. [5] Polska Norma PN-ISO 668. Kontenery ładunkowe serii 1. Klasyfikacja, wymiary i maksymalne masy brutto. Marzec 1999r. [6] Karta UIC Kontenery wielkie do przewozu na wagonach towarowych. Warunki techniczne dla kontenerów wielkich dopuszczonych do międzynarodowego przewozu ładunków. Wydanie r. [7] Karta UIC 597. System transportu kombinowanego szynowo drogowego. Naczepy wózkowe. Charakterystyki. Wyd. 1 nakład z

7 dr inż. Arkadiusz Barczak Politechnika Poznańska Podtorze jako regulator w układzie pojazd szynowy-tor W artykule przeprowadzono badania modelu układu pojazd-tor, przyjmując, że między wektorem wyjścia, którego składowe stanowią siły działające w elementach zawieszenia pojazdu, a wektorem wejścia, którego składowe stanowią przemieszczenia wynikające z nierówności toru, występuje sprzężenie zwrotne. Zatem w modelu oddziaływań między pojazdem a torem wprowadzono układ typu regulator. 1. Wprowadzenie Pojazd szynowy jest złożonym, dyskretno-ciągłym układem dynamicznym, który podlega podczas ruchu wielowymiarowym stanom obciążenia. Jego stany pracy wynikają w znacznym zakresie z oddziaływań toru. Tor jest złożonym, dyskretno-ciągłym układem dynamicznym, który jest poddany wielowymiarowym stanom obciążenia. Jego stany pracy zależą w decydującym stopniu od oddziaływań pojazdu. Fizyczne i matematyczne modele dynamiki pojazdu szynowego oraz toru prezentowano i analizowano w wielu pracach [2,4]. Podstawowe typy modeli toru to modele dyskretne jedno- i wielowarstwowe oraz modele ciągłe jedno- i wielowarstwowe. Na podstawie przeprowadzonych eksperymentów opracowano w dziedzinie częstotliwości modele analityczne charakteryzujące pracę toru [2]. W cytowanych opracowaniach przyjęto klasyczną metodę analizy układu badając zależności między wektorem wielkości wejściowych wymuszeń od toru, a wektorem wielkości wyjściowych odpowiedzi układu na kierunkach stopni swobody reprezentujących dynamikę pojazdu. W artykule przyjęto metodę badania modelu układu pojazdtor przyjmując, że między wektorem wyjścia, którego składowe stanowią siły działające w elementach zawieszenia pojazdu, a wektorem wejścia, którego składowe stanowią przemieszczenia wynikające z nierówności toru oraz podatności podtorza, występuje sprzężenie zwrotne. Zatem w modelu oddziaływań między pojazdem a torem wprowadzono układ typu regulator. Celem artykułu jest wyznaczenie charakterystyk sztywnościowych i tłumieniowych modelu podtorza, przy założeniu, że w układzie występuje sprzężenie zwrotne. 2. Wyznaczanie parametrów modelu podtorza dla zadanych charakterystyk własnych modelu układu Analizę modelu układu przeprowadzono w zakresie częstotliwości 0 30 Hz. Przyjęto, że uwzględnienie modelu podtorza wpływa w niewielkim stopniu na charakterystyki własne modelu pojazdu. Do opisu dynamiki układu wykorzystano formalizm transmitancji operatorowej oraz metodę przestrzeni stanu. Do wyznaczenia parametrów regulatora zastosowano metodę optymalizacji z kwadratowym wskaźnikiem jakości [1,3]. ównania ruchu dyskretnego, liniowego, stacjonarnego modelu układu o n stopniach swobody przedstawiono w postaci: M q& + Cq& + Kq = Gf (1) a równanie wyjść jako: y = Zq (2) gdzie: q, q&, q& & wektory przemieszczeń, prędkości i przyspieszeń uogólnionych, f wektor wymuszeń, y wektor wielkości wyjściowych, M, C, K macierze bezwładności, tłumienia i sztywności, G macierz wejść, Z macierz wyjść. Po przeprowadzeniu transformacji Laplace a równań (1) oraz (2) i przyjęciu zerowych warunków początkowych q &() 0 = q() 0 = 0, wyznaczono transmitancję operatorową modelu układu H(s) jako: () Z K C M 2 1 = ( + s + s ) G H s (3) gdzie: s jest zmienną operatorową. Dokonując podstawienia s = jω, gdzie ω jest częstotliwością kołową, a j jest jednostką urojoną, do zależności (3) uzyskano macierz transmitancji widmowej H(jω). Do oceny zjawisk zachodzących w układzie wykorzystano charakterystykę amplitudowo-częstotliwościową oraz fazowoczęstotliwościową [3]. W celu zastosowania w analizie metody przestrzeni stanu wprowadzono 2n-wymiarowy wektor stanu x, a równania (1) i (2) przedstawiono w postaci równania stanu: x & = Ax + Bu (4) gdzie macierz A jest nazywana macierzą stanu, macierz B macierzą wejść, a u wektorem wejść Wyznaczanie parametrów modelu podtorza dla zadanych charakterystyk własnych z wykorzystaniem transmitancji operatorowej Do badań przyjęto model układu, jak opisano równaniem (1) mq& ( t) + cq& ( t) + kq( t) = c & ξ ( t) + kξ ( t) (5) gdzie: m masa nadwozia, c stała tłumika w zawieszeniu nadwozia, k stała sprężyny w zawieszeniu nadwozia, q współrzędna uogólniona, ξ funkcja charakteryzująca nierówność toru. Przyjęto, że wejściem jest nierówność toru ξ(t), a wektor wyjścia stanowią: siła w sprężynie zawieszenia F S (t) oraz siła w tłumiku zawieszenia F T (t). Po przeprowadzeniu transformacji Laplace a równania (5) uzyskano: 2 ms q( s) + csq( s) + kq( s) = csξ ( s) + kξ ( s) (6) 7

8 Transmitancję operatorową między siłą w sprężynie zawieszenia a nierównością toru zapisano jako: [ q() s ξ () s ] ξ () s k H11 () s = (7) Transmitancję operatorową między siłą w tłumiku zawieszenia a nierównością toru zapisano jako: [ q() s ξ () s ] ξ() s cs H21 () s = (8) Po przeprowadzeniu odpowiednich przekształceń uzyskano transmitancję H 11 (s) w postaci: mks H () s = (9) 11 2 ms + cs + k oraz transmitancję H 21 (s) w postaci: mcs H () s = (10) 21 2 ms + cs + k Do badań przyjęto, że wyjściem jest siła F(t) jako suma sił F S (t) i F T (t). Transmitancję zastępczą układu przyjęto zatem w postaci: 3 2 mcs mks H O () s = (11) 2 ms + cs + k 3 2 elementu tłumieniowego o transmitancji: c 1 H () s = (13) c s elementu sprężysto-tłumieniowego o transmitancji: H () s = k 1 + c przedstawiono w zapisie operatorowym na rys. 2. s (14) Transmitancję zastępczą H z k () s dla wariantu układu z regulatorem H k () s wyznaczono w postaci: H k z () s kmcs kmks = 3 2 mcs + ( k m mk) s + k cs + k k 3 2 (15) Transmitancję zastępczą H c z () s dla wariantu układu z regulatorem H c () s wyznaczono w postaci: H c z () s mccs mkcs = 2 ( c m mc) s + ( c c mk) s + c k 3 2 (16) Transmitancję zastępczą H z () s dla wariantu układu z regulatorem H () s wyznaczono w postaci: co przedstawiono w zapisie operatorowym na rys. 1. H z () s mccs ( mkc + mkc) s mkks = 3 2 ( c m mc) s + ( k m + c c mk) s + ( k c + c k) s + kk (17) ys. 1. Schemat struktury badanego układu Przyjęto, że między wyjściem w postaci siły działającej w zawieszeniu, a wejściem w postaci przemieszczenia wynikającego z nierówności toru i podatności podtorza, występuje sprzężenie zwrotne. Transmitancję elementu występującego w pętli sprzężenia zwrotnego określono jako stosunek transformaty wyjścia w postaci przemieszczenia do transformaty wejścia w postaci siły. Schemat układu z pętlą sprzężenia zwrotnego przy wariantach regulatora w postaci: elementu sprężystego o transmitancji: H k () s 1 = (12) k W celu zbadania wpływu zależności między charakterystykami modelu pojazdu a charakterystykami modelu podtorza na charakterystyki własne układu, wprowadzono bezwymiarowy współczynnik V dla charakterystyk sztywnościowych: ki Vi = k (18) oraz bezwymiarowy współczynnik W dla charakterystyk tłumieniowych: cj W j = c (19) Transmitancję zastępczą (17) po wprowadzeniu współczynnika V zapisano wzorem: mcc 4 mc mc 3 2 s ( + V ) s mvs 2 V H k k k z = cm mc 3 m cc m 2 c c ( ) s + ( V + ) s + ( V + ) s + V k k k k k k k (20) Transmitancję zastępczą (17) po wprowadzeniu współczynnika W zapisano wzorem: H mws ( W + ) s s 2 W c c c z = m m 3 km mk 2 k k ( W ) s + ( + W ) s + ( + ) s c c c mk mk c mkk c W c kk 2 c (21) ys. 2. Schemat struktury układu z założonym sprzężeniem zwrotnym Analizę numeryczną przeprowadzono dla przyjętych danych charakteryzujących model pojazdu: 8

9 m = 2200 [kg] k = 920 [kn/m] c = 27 [kn s/m] Wartości własne modelu pojazdu wyznaczono znajdując pierwiastki mianownika transmitancji (11): λ 1,2 = -6,1364 ± j19,5071 Pierwiastkom tym odpowiada częstotliwość tłumionych drgań własnych: ω d = 20,45 [rad/s] Dla przyjętego modelu przeprowadzono badania w dziedzinie częstotliwości. Wyznaczone charakterystyki amplitudowo-częstotliwościowe odpowiadające transmitancji wyrażonej wzorami (9), (10) i (11) pokazano na rys. 3, a charakterystyki fazowo-częstotliwościowe na rys. 4. Transmitancja operatorowa H z k (s) modelu (15) świadczy o niestabilności układu (bieguny transmitancji leżą w dodatniej półpłaszczyźnie zespolonej). Jest to istotne stwierdzenie świadczące o tym, że w modelu podtorza oprócz elementu sprężystego konieczne jest przyjęcie elementu tłumieniowego. Dla przyjętych stałych c przeprowadzono analizę częstotliwościową modelu układu (16). Stwierdzono, że przyjęty model regulatora w postaci (13) nie umożliwia uzyskania charakterystyk własnych układu ze sprzężeniem zwrotnym o wartościach bliskich wartościom własnym modelu pojazdu. Zatem nie spełnia on przyjętego założenia, aby wartości własne modelu układu ze sprzężeniem zwrotnym były w przybliżeniu równe wartościom własnym modelu pojazdu. Przykładowe przebiegi charakterystyki amplitudowo-częstotliwościowej dla modelu (16) przedstawiono na rys. 5. ys. 3. Charakterystyki amplitudowo-częstotliwościowe dla modelu pojazdu ys. 5. Charakterystyki amplitudowo-częstotliwościowe dla modelu ze sprzężeniem zwrotnym opisanego transmitancją H z c s dla wybranych wariantów () ys. 4. Charakterystyki fazowo-częstotliwościowe dla modelu pojazdu Do analizy badanego układu przyjęto następujące wartości stałych k s : k 1 = 1, [N/m], c 1 = 0, [N s/m], k 2 = 0, [N/m], c 2 = 1, [N s/m], k 3 = 1, [N/m], c 3 = 1, [N s/m], k 4 = 2, [N/m], c 4 = 2, [N s/m], oraz wartości stałych c q : c 5 = 4, [N s/m]. Do dalszych badań przyjęto model podtorza jako układ o charakterystykach sprężystych i tłumieniowych. Badania przeprowadzono dla modelu o transmitancji H z (s) (17). Dla współczynnika V p przyjęto wartości: V 1 = 1, V 2 = 5, V 3 = 10, V 4 = 100, a dla współczynnika W r przyjęto wartości: W 1 = 1, W 2 = 5, W 3 = 10, W 4 = 50. Bieguny transmitancji (20) dla wybranych wartości współczynnika V zebrano w tabeli 1. 9

10 Bieguny transmitancji H V z (s) dla wybranych wartości współczynnika V Tabela 1 Wariant Bieguny transmitancji V p c q λ 1 λ 2 λ 3 V 2 c 3-68,06-7,11-7,11 +j20,2 -j20,2 V 3 c 3-368,8-6,34-6,34 +j19,59 -j19,59 V 4 c 3-742,9-6,24-6,24 +j19,55 -j19,55 V 2 c 4-48,04-7,01-7,01 +j20,34 -j20,34 V 3 c 4-262,09-6,34-6,34 +j19,6 -j19,6 V 4 c 4-528,19-6,24-6,24 +j19,55 -j19,55 Bieguny transmitancji (21) dla wybranych wartości współczynnika W zebrano w tabeli 2. Bieguny transmitancji H W z (s) dla wybranych wartości współczynnika W Tabela 2 Wariant Bieguny transmitancji W r k s λ 1 λ 2 λ 3 W 2 k 2-457,14-6,32-6,32 +j19,58 -j19,58 W 3 k 2-202,97-6,32-6,32 +j19,6 -j19,6 W 4 k 2-37,1-6,26-6,26 +j19,6 -j19,6 W 2 k 3-920,29-6,23-6,23 +j19,54 -j19,54 W 3 k 3-408,91-6,23-6,23 +j19,55 -j19,55 W 4 k 3-74,97-6,22-6,22 +j19,57 -j19,57 Przebiegi przykładowych charakterystyk amplitudowoczęstotliwościowych dla modelu (20) przedstawiono na rys. 6 oraz rys.7. ys. 7. Charakterystyki amplitudowo-częstotliwościowe dla modelu ze sprzężeniem zwrotnym opisanego transmitancją H V z () s dla wybranych wariantów Przebiegi przykładowych charakterystyk amplitudowoczęstotliwościowych dla modelu (21) przedstawiono na rys. 8 oraz rys. 9. ys. 8. Charakterystyki amplitudowo-częstotliwościowe dla modelu ze sprzężeniem zwrotnym opisanego transmitancją H W z () s dla wybranych wariantów ys. 6. Charakterystyki amplitudowo-częstotliwościowe dla modelu ze sprzężeniem zwrotnym opisanego transmitancją H V z s dla wybranych wariantów () ys. 9. Charakterystyki amplitudowo-częstotliwościowe dla modelu ze sprzężeniem zwrotnym opisanego transmitancją H W z () s dla wybranych wariantów 10

11 Na podstawie przeprowadzonej analizy wyznaczonych charakterystyk częstotliwościowych wybrano te wartości współczynników k oraz c charakteryzujących transmitancję układu ze sprzężeniem zwrotnym H z (s) (17), dla których spełniony jest warunek podobieństwa charakterystyk własnych modelu układu ze sprzężeniem zwrotnym i modelu pojazdu. Przebiegi przykładowych charakterystyk amplitudowoczęstotliwościowych dla modelu (17) dla wybranych wartości współczynników k oraz c przedstawiono na rys. 10 oraz rys. 12, a odpowiadające im charakterystyki fazowoczęstotliwościowe odpowiednio na rys. 11 oraz rys. 13. ys. 12. Charakterystyki amplitudowo-częstotliwościowe dla modelu ze sprzężeniem zwrotnym opisanego transmitancją H z () s dla wybranych wariantów ys. 10. Charakterystyki amplitudowo-częstotliwościowe dla modelu ze sprzężeniem zwrotnym opisanego transmitancją H z s dla wybranych wariantów () ys. 13. Charakterystyki fazowo-częstotliwościowe dla modelu ze sprzężeniem zwrotnym opisanego transmitancją H z () s dla wybranych wariantów Na podstawie przeprowadzonej analizy wyników stwierdzono, że spełnienie warunku nie wpływania charakterystyk podtorza na charakterystyki własne modelu pojazdu jest możliwe przy przyjęciu współczynnika k równego 1, [N/m]. Stwierdzono również, że wpływ wartości współczynnika c jest niewielki, jeśli współczynnik k przyjmuje odpowiednio duże wartości Wyznaczanie parametrów modelu podtorza dla zadanych charakterystyk własnych z zastosowaniem metody przestrzeni stanu Do badań przyjęto model układu jak opisano równaniem (4). Przyjęto wektor stanu x, którego składowymi są siła w sprężynie x 1 : ys. 11. Charakterystyki fazowo-częstotliwościowe dla modelu ze sprzężeniem zwrotnym opisanego transmitancją H z () s dla wybranych wariantów oraz siła w tłumiku x 2 : x () t = k( q( t) ξ ( )) (22) 1 t x () t = c( q& ( t) & ξ ( )) (23) 2 t 11

12 Odpowiednie pochodne uzyskane po przekształceniach przedstawiono zależnościami: k x & 1() t = x2( t) c (24) c c x& () x t x t c & ξ 2 t = 1( ) 2( ) m m (25) Macierz stanu A ma zatem postać: a macierz wejść B: k 0 A = c (26) c c m m 0 B = (27) c Związek między wektorem wyjścia a wektorem stanu zapisano w postaci: y = Dx (28) 1 0 gdzie macierz D jest macierzą diagonalną D =. 0 1 Przyjęto, że podtorze pełni funkcję regulatora K w układzie ze sprzężeniem zwrotnym, przy czym wyjście z regulatora u (t) zależy liniowo od wektora stanu x(t). () t u ( t) = K x (29) Schemat struktury układu opisanego równaniami od (22) do (29) przedstawiono na rys. 14. ys. 14. Schemat struktury układu z regulatorem proporcjonalnym jako modelem podtorza w pętli sprzężenia zwrotnego Do wyznaczenia wartości K zastosowano metodę optymalizacji z kwadratowym wskaźnikiem jakości [1,3] w postaci: J = 0 ( x T Qx + u Lu ) dt (30) gdzie Q jest rzeczywistą macierzą symetryczną, a L jest wielkością rzeczywistą. W wyniku podstawienia (29) do wzoru (4) uzyskano: x & = A BK ) x (31) ( Po podstawieniu równania (29) do (30) otrzymano zależność: T J = x ( Q + K LK ) xdt (32) 0 ównanie opisujące wyjścia z regulatora uzyskane metodą optymalizacji z zastosowaniem wskaźnika kwadratowego przyjmie postać: 1 T u ( t) = L B Px( t) (33) gdzie macierz P jest rozwiązaniem zredukowanego równania iccati ego T T A P + PA PBL 1 B P + Q = 0 (34) Po przeprowadzeniu wstępnych analiz, do obliczeń przyjęto macierze Q v w postaci macierzy diagonalnych o wartościach na przekątnej równych: Q 1 = diag[1, ], Q 2 = diag[1, ], Q 3 = diag[1, ], Q 4 = diag[1, ], Q 5 = diag[1, ], oraz wartości współczynnika L w : L 1 = 1, L 2 = 10, L 3 = 100, L 4 = 200. Dla przyjętych wartości Q i L wyznaczono [5] wartości stałych regulatora K oraz wartości własne układu ze sprzężeniem zwrotnym. Wartości stałych regulatora K dla wybranych wariantów wartości Q v i L w zebrano w tabeli 3. Wartości stałych regulatora K Tabela 3 Wariant Stałe regulatora Q v L w k vw1 k vw2 Q 2 L 1-0,992e-4-0,291e-3 Q 2 L 4-0,550e-6-0,207e-5 Q 3 L 3-0,110e-6-0,415e-6 Q 3 L 4-0,550e-7-0,207e-6 Q 4 L 2-0,110e-6-0,415e-6 Q 4 L 3-0,110e-7-0,415e-7 Q 5 L 1-0,110e-6-0,415e-6 Q 5 L 2-0,110e-7-0,415e-7 Wartości własne układu z regulatorem w pętli sprzężenia zwrotnego Tabela 4 Wariant Bieguny transmitancji Q v L w λ 1 λ 2 Q 2 L 1-10,075-10,075 +j20,197 -j20,197 Q 2 L 4-6,164-6,164 +j19,507 -j19,507 Q 3 L 3-6,142-6,142 +j19,507 -j19,507 Q 3 L 4-6,139-6,139 +j19,507 -j19,507 Q 4 L 2-6,142-6,142 +j19,508 -j19,508 Q 4 L 3-6,137-6,137 +j19,507 -j19,507 Q 5 L 1-6,142-6,142 +j19,508 -j19,508 Q 5 L 2-6,137-6,137 +j19,507 -j19,507 12

13 Wartości własne układu z regulatorem K w pętli sprzężenia zwrotnego dla wybranych wariantów Q v i L w zebrano w tabeli 4. Odpowiednim współczynnikom regulatora K (tabela 3) przypisano fizyczną interpretację jako: współczynnik sztywności podtorza k i współczynnik tłumienia podtorza c. Wartości współczynników k i c zebrano w tabeli 5. Współczynniki sztywności i tłumienia podtorza odpowiadające współczynnikom regulatora K Tabela 5 Wariant Parametry podtorza Q v L w k [N/m] c [N s/m] Q 2 L 1 1,008e4 0,342e4 Q 2 L 4 1,819e6 0,482e6 Q 3 L 3 9,092e6 2,408e6 Q 3 L 4 1,818e7 0,481e7 Q 4 L 2 9,092e6 2,408e6 Q 4 L 3 9,091e7 2,407e7 Q 5 L 1 9,092e6 2,408e6 Q 5 L 2 9,091e7 2,407e7 ys. 16. Przebiegi sił w sprężynie zawieszenia (F S ) oraz sił w tłumiku zawieszenia (F T ) dla wymuszenia o częstotliwości 20 rad/s dla wybranych wariantów Dla wybranych wariantów macierzy Q oraz współczynnika L przeprowadzono badania symulacyjne [5], przyjmując wymuszenie w postaci nierówności toru o charakterze sinusoidalnym: ξ ( t) = 0,005sin( ωt) (35) Do badań przyjęto wymuszenia o częstotliwości ω 1 = 10 [rad/s], ω 2 = 20 [rad/s], ω 3 = 50 [rad/s], ω 4 = 100 [rad/s]. Przebiegi siły w sprężynie zawieszenia F S (t) i siły w tłumiku zawieszenia F T (t) dla wybranych wariantów Q i L przy wymuszeniu o częstotliwości 10 rad/s przedstawiono na rys. 15, o częstotliwości 20 rad/s na rys. 16, o częstotliwości 50 rad/s na rys. 17, a o częstotliwości 100 rad/s na rys. 18. ys. 17. Przebiegi sił w sprężynie zawieszenia (F S ) oraz sił w tłumiku zawieszenia (F T ) dla wymuszenia o częstotliwości 50 rad/s dla wybranych wariantów ys. 15. Przebiegi sił w sprężynie zawieszenia (F S ) oraz sił w tłumiku zawieszenia (F T ) dla wymuszenia o częstotliwości 10 rad/s dla wybranych wariantów ys. 18. Przebiegi sił w sprężynie zawieszenia (F S ) oraz sił w tłumiku zawieszenia (F T ) dla wymuszenia o częstotliwości 100 rad/s dla wybranych wariantów 13

14 Przebiegi wymuszenia ξ(t) oraz przemieszczeń u (t), stanowiących wyjście z regulatora, dla wybranych wariantów Q i L przy wymuszeniu o częstotliwości 10 rad/s oraz 20 rad/s przedstawiono na rys. 19 i rys. 20, o częstotliwości 50 rad/s na rys. 21, a o częstotliwości 100 rad/s na rys. 22. ys. 19. Przebiegi wymuszenia ξ(t) oraz przemieszczeń u (t) przy wymuszeniu o częstotliwości 10 rad/s oraz 20 rad/s dla wybranych wariantów ys. 22. Przebiegi wymuszenia ξ(t) oraz przemieszczeń u (t) przy wymuszeniu o częstotliwości 100 rad/s dla wybranych wariantów Przebiegi wyjścia z regulatora u (t), przy wymuszeniu o częstotliwościach 10 rad/s oraz 20 rad/s, uzyskane dla wybranych wartości macierzy Q i współczynnika L przedstawiono na rys. 23. ys. 20. Przebiegi wymuszenia ξ(t) oraz przemieszczeń u (t) przy wymuszeniu o częstotliwości 10 rad/s oraz 20 rad/s dla wybranych wariantów ys. 23. Przebiegi przemieszczenia u (t) przy wymuszeniu o częstotliwościach 10 rad/s oraz 20 rad/s dla wybranych wariantów ys. 21. Przebiegi wymuszenia ξ(t) oraz przemieszczeń u (t) przy wymuszeniu o częstotliwości 50 rad/s dla wybranych wariantów Wyznaczone wartości współczynników regulatora determinują zmianę funkcji wymuszającej badany układ. Przebiegi wejścia u O (t) do układu (rys. 14), jako wynik sumowania przemieszczenia wynikającego z nierówności toru ξ(t) oraz przemieszczenia u (t) wywołanego działaniem sił w zawieszeniu pojazdu F(t) działających w układzie ze sprzężeniem zwrotnym, dla wybranych wariantów wymuszeń o częstotliwości 10 rad/s oraz 20 rad/s przedstawiono na rys. 24, a o częstotliwości 50 rad/s oraz 100 rad/s na rys. 25 i rys

15 Na podstawie przeprowadzonej analizy wyników stwierdzono, że spełnienie warunku niewielkiego wpływu charakterystyk podtorza na charakterystyki własne modelu pojazdu jest możliwe przy przyjęciu do badań macierzy Q 4 oraz współczynnika L 3. Dla tego wariantu wyznaczony współczynnik sztywności podtorza k przyjmuje wartość 9, [N/m]. ys. 24. Przebiegi wejścia u O (t) do układu dla wymuszeń o częstotliwości 10 rad/s oraz częstotliwości 20 rad/s dla wybranych wariantów ys. 25. Przebiegi wejścia u O (t) do układu dla wymuszeń o częstotliwości 50 rad/s oraz częstotliwości 100 rad/s dla wybranych wariantów 3. Podsumowanie Celem artykułu było wyznaczenie sztywnościowych i tłumieniowych charakterystyk modelu podtorza przy założeniu, że w układzie występuje sprzężenie zwrotne. Do opisu dynamiki układu zastosowano formalizm transmitancji operatorowej oraz metodę przestrzeni stanu. Do wyznaczania parametrów modelu podtorza, przy przyjęciu podtorza w postaci regulatora proporcjonalnego, zastosowano optymalizację z kwadratowym wskaźnikiem jakości. Badania przeprowadzono w dziedzinie czasu i częstotliwości w zakresie częstotliwości 0 30 Hz. Jako kryterium przy wyznaczaniu parametrów modelu podtorza przyjęto założenie, że wartości własne układu ze sprzężeniem zwrotnym powinny być w przybliżeniu równe wartościom własnym modelu pojazdu. Wartości współczynnika sztywności i współczynnika tłumienności podtorza uzyskane w wyniku przeprowadzonej analizy numerycznej odpowiadają wartościom prezentowanym w literaturze fachowej. Wykonana analiza świadczy o celowości dalszego rozwijania zaproponowanej metody wyznaczania parametrów modelu podtorza w aspekcie jej wykorzystania w procesie projektowania pojazdów oraz przy prowadzeniu badań eksperymentalnych toru. Prowadzone są dalsze badania dla przestrzennego modelu pojazdu i toru. Literatura [1] Kaczorek T., Teoria sterowania i systemów, PWN, Warszawa 1993 [2] Knothe K., Wu Y., Gross-Thebing A., Simple semianalytical models for discrete-continuous railway track and their use for time domain solutions, Supplement to Vehicle System Dynamics, Band 24, Swets & Zeitlinger, 1995 [3] Ogata K., Modern Control Engineering, Prentice-Hall Inc., 1997 [4] Dynamika układu mechanicznego pojazd szynowy-tor, praca zbiorowa, PWN, Warszawa 1991 [5] MATLAB wersja 5 ys. 26. Przebiegi wejścia u O (t) do układu dla wymuszeń o częstotliwości 50 rad/s oraz częstotliwości 100 rad/s dla wybranych wariantów 15

16 dr inż. Bogusław Kasprzak prof. dr hab. inż. Franciszek Tomaszewski Politechnika Poznańska Zastosowanie modelu tribowibroakustycznego do wyboru punktów pomiarowych i symptomów wibroakustycznych silnika spalinowego lokomotyw W pracy przedstawiono sposób doboru punktów pomiaru sygnałów wibroakustycznych i wyboru informacyjnie efektywnych symptomów w oparciu o zbudowany model wibroakustyczny. Koncepcję zweryfikowano na przykładzie silnika spalinowego 2112SSF stosowanego do napędu lokomotyw spalinowych serii SP 45. Uzyskane wyniki wskazują na to, że proponowana koncepcja może być dobrym uzupełnieniem analizy korelacyjnej, stosowanej dotychczas do wyboru punktów pomiarowych. 1. Wprowadzenie W procesie diagnozowania stanu technicznego obiektów technicznych, zwłaszcza złożonych jakimi są niewątpliwe spalinowe silniki kolejowe, najbardziej istotne jest określenie stanu technicznego obiektu. W przypadku, kiedy silnik jest niesprawny, interesujące jest pytanie o przyczynę niesprawności, natomiast jeśli silnik jest sprawny, istotna jest prognoza horyzontu czasowego tego stanu. W diagnostyce obiektów technicznych stosuje się dwie grupy metod prognozowania. Pierwszą grupę stanowią metody prognozowania przy znanym modelu trendu symptomu diagnostycznego. Istota tych metod polega na tym, że znany jest model zmian symptomu (wyznaczony na podstawie danych eksperymentalnych), w oparciu o który szacuje się wartość symptomu dla zadanego horyzontu czasowego (przebiegu). Druga grupa metod dotyczy prognozowania, gdy model zmian symptomu nie jest znany. W takim przypadku prognozowanie polega na bieżącej budowie i ulepszaniu modelu trendu na podstawie kolejnych napływających danych o wartościach symptomu diagnostycznego. W artykule do wyboru punktów pomiarowych i symptomu wibroakustycznego w oparciu o wyniki prognozowania przyjęto metodę prognozowania przy znanym modelu zmian symptomu wibroakustycznego. Do prognozowania zasobu pracy do uszkodzenia zastosowano model tribowibroakustyczny zaproponowany przez Cempla [1], w którym rzeczywistą krzywą rozwoju unormowanego symptomu wibroakustycznego zastąpiono dwuparametrowym rozkładem teoretycznym. W oparciu o wyniki zawarte w pracy [2] przyjęto rozkład Frecheta. Celem pracy jest zastosowanie modelu tribowibroakustycznego do wyboru właściwego (właściwych) punktu pomiarowego i informacyjnie efektywnego symptomu wibroakustycznego na przykładzie kolejowego silnika spalinowego. 2. Sformułowanie i sformalizowanie problemu Model rozwoju symptomu tribowibroakustycznego dla silnika można zapisać w postaci ogólnej: - [ ( 1 - D ) ] S 1 = Φ (1) S 0 gdzie: Φ operator zależny od typu rozkładu krzywej ewolucji symptomu, S bieżąca wartość symptomu, S 0 początkowa wartość symptomu. W przypadku rozkładu Frecheta zależność (1) przyjmie postać: ( D) S -1 / = (- ln D) γ (2) So gdzie D jest operatorem będącym ilorazem wartości Θ, która jest miarą czasu lub przebiegu w chwili t, do wartości Θ b, która jest czasem lub przebiegiem w chwili uszkodzenia obiektu. Ponieważ wielkość Θ b nie jest znana na początku obserwacji, a w każdym razie - w początkowej jej fazie, wartość tę można przyjąć na podstawie znajomości przebiegu do naprawy określonego przepisami (dla obserwowanych silników wynosi ona 300 tys. km) maksymalnego przebiegu, jaki dany obiekt może zrealizować (teoretycznie) lub na podstawie wyników badań niezawodności. Badacz dysponuje zbiorem wyników pomiarów symptomów wibroakustycznych i odpowiadającym mu zbiorem zmiennych niezależnych D, przeto zadanie identyfikacji modelu sprowadzić można do poszukiwania takiej wartości współczynnika kształtu γ (współczynnik kształtu rozkładu), dla której błąd aproksymacji rzeczywistej krzywej S(D)/S o z założonym rozkładem teoretycznym będzie najmniejszy. Dla pierwszych dyskretnych wartości czasu obserwacji silnika (lub jego przebiegu) określa się wartości współczynnika kształtu γ dla przyjętej w wyniku badań (lub założonej) wartości czasu (przebiegu) do uszkodzenia Θ b, minimalizując odchylenie średniokwadratowe rozkładu Frecheta od krzywej symptomowej. Jeśli przyjąć hipotezę, że wraz ze wzrostem Θ wielkość γ będzie asymptotycznie dążyć do pewnej wartości (lub minimum) γ u, to po przyjęciu miary kryterium zbieżności można określić wartość Θ, która określa pierwszą fazę symptomowej krzywej życia. Z przebiegu zależności γ(θ) można wnioskować o przydatności informacji uzyskanej z określonego punktu pomiarowego dla wybranego symptomu wibroakustycznego. 16

17 3. Przykładowe wyniki badań wybranych silników spalinowych Do badań wybrano dwa silniki spalinowe typu 2112 SSF o numerach 28 i 128, dla których "czas" życia wyrażony przebiegiem do poważnego uszkodzenia układu korbowego był znany i wynosił odpowiednio 268,22 i 276,13 tys. km. Przeanalizowano rozwój trzech symptomów wibroakustycznych, a mianowicie: skutecznej wartości przyspieszeń drgań A sk, skutecznej wartości prędkości drgań V sk oraz szczytowej wartości prędkości drgań V sz, uzyskanych z różnych punktów pomiarowych, położonych na wysokości osi wału korbowego i zwrotu zewnętrznego tłoka (GMP). Na rysunku 1 przedstawiono schemat rozmieszczenia punktów pomiarowych sygnału drgań na badanych silnikach [3]. D4 D5 1 D Strona prądnicy ys. 1. Schemat rozmieszczenia punktów pomiarowych na silniku 2112 SSF Na rysunku 2 i 3 przedstawiono przykładowe zmiany skutecznej wartości przyspieszeń drgań zmierzone w punkcie pomiarowym D2 silnika nr 28 oraz szczytowej wartości prędkości drgań w punkcie D8 silnika nr 128 w funkcji przebiegu lokomotywy [3]. Ask [m/s 2 ] D1 D7 Silnik nr 28 - punkt pomiarowy D D2 D D9 D Przebieg [km] ys. 2. Zmiany skutecznej wartości przyspieszeń drgań w punkcie D2 silnika nr 28 Vsz [cm/s] 3,5 4 2,5 3 1,5 2 0, Silnik nr punkt pomiarowy D Przebieg [km] ys. 3. Zmiany szczytowej wartości prędkości drgań w punkcie D8 silnika nr 128 Wybrane wyniki przeprowadzonych obliczeń szacowania zmian współczynnika kształtu γ przedstawiono na rysunkach 4 do 7. Do analizy współczynnika γ przyjęto Θ b = 300 tys. km, co jest przebiegiem do naprawy silnika oraz Θ b = 500 tys. km, co jest przebiegiem teoretycznym możliwym do uzyskania przez badane silniki. Gamma Ask Ask 300 tys. Silnik 28 punkt pomiarowy D2 Ask 500 tys Przebieg [km] ys. 4. Zmiana współczynnika kształtu γ w funkcji wartości skutecznej przyspieszenia drgań dla różnych oczekiwanych wartości przebiegu silnika do uszkodzenia (punkt pomiarowy D2) Wartość współczynnika γ po przebiegu około 60 tys. km (rys. 4) nie ulega już istotnym wahaniom, ale trudno mówić o stabilizacji. Ponadto wartości γ zależą od przyjętej wstępnie wartości przebiegu do uszkodzenia. Oznacza to, że punkt D2 mógłby być dobrym punktem odbioru sygnału wibroakustycznego, ale skuteczna wartość przyspieszenia drgań nie jest dobrym symptomem wibroakustycznym. Na rys. 5 przedstawiono przebieg zmienności współczynnika γ dla tego samego punktu pomiarowego i skutecznej wartości prędkości drgań. Wartości oczekiwane przebiegu do uszkodzenia przyjęto tak jak poprzednio na poziomie 300 tys. i 500 tys. km. Gamma Vsk Silnik 28 punkt pomiarowy D2 Vsk 300 tys. Vsk 500 tys Przebieg [km] ys. 5. Zmiana współczynnika kształtu γ w funkcji wartości skutecznej prędkości drgań dla różnych oczekiwanych wartości przebiegu silnika do uszkodzenia (punkt pomiarowy D2) Z rysunku 5 wynika, że skuteczna wartość prędkości drgań nie jest właściwym symptomem, a ponadto stabilizacja wartości współczynnika γ następuje po dłuższym przebiegu niż w przypadku skutecznej wartości przyspieszeń drgań. Przebieg współczynnika γ dla szczytowej wartości prędkości drgań i punktu pomiarowego D2 przedstawiono na rysunku 6. 17

18 Gamma Vsz Vsz 300 tys. Silnik 28 punkt pomiarowy D2 Vsz 500tys Przebieg [km] Przebieg zmian współczynnika γ dla różnych punktów pomiarowych potwierdził, że wybór punktu pomiarowego jest istotny i powinien być poprzedzony staranną analizą. Dla obu badanych silników najlepszymi punktami odbioru sygnału diagnostycznego okazały się: punkt D2 leżący na wysokości zwrotu zewnętrznego tłoka (GMP) 10 cylindra i punkt D8 znajdujący się na wysokości osi wału korbowego 8 cylindra (rys. 1). 4. Podsumowanie ys. 6. Zmiana współczynnika kształtu γ w funkcji wartości szczytowej prędkości drgań dla różnych oczekiwanych wartości przebiegu silnika do uszkodzenia (punkt pomiarowy D2) Z przedstawionych rysunków wynika, że z rozpatrywanych symptomów wibroakustycznych najlepiej wybrać szczytową prędkość drgań. Spostrzeżenie to dotyczy jedynie wybranego punktu pomiarowego drgań D2, leżącego na wysokości zwrotu zewnętrznego tłoka (GMP) 10 cylindra (rys. 1) silnika nr 28. Badania przebiegu współczynnika γ w funkcji przebiegu wykonano dla ośmiu punktów pomiarowych, trzech symptomów diagnostycznych i dwóch silników. Potwierdziły one wyżej przedstawione spostrzeżenie. Dowodem przyjęcia symptomu szczytowej wartości prędkości drgań jako najlepszego symptomu oraz punktu pomiarowego D8 jest przebieg współczynnika γ dla symptomu szczytowej wartości prędkości drgań silnika nr 128. przedstawionego na rysunku 7. Przedstawione rozważania wykazały, że zastosowanie modelu tribowibroakustycznego do wyboru symptomu diagnostycznego i punktu odbioru tego symptomu jest możliwe. Z przebiegu współczynnika kształtu γ krzywej symptomowej w pierwszej fazie jej rozwoju można wysnuć wnioski o trafności wyboru zarówno punktu pomiarowego jak i symptomu. Im ta krzywa jest bardziej stroma, tym lepiej odzwierciedla ona rozwój procesu destrukcyjnego silnika w krzywej symptomowej. O trafności doboru symptomu i punktu pomiarowego można również wnioskować na podstawie wartości miary pracy silnika do "ustabilizowania" się wartości współczynnika kształtu γ krzywej symptomowej oraz na podstawie wrażliwości tej krzywej na założony przebieg silnika do uszkodzenia. Przedstawione wyniki i analizy dotyczące wyboru punktów pomiarowych oraz symptomów sygnału drganiowego znalazły praktyczne zastosowanie przy opracowaniu metody diagnozowania silników spalinowych 2112 SSF lokomotyw SP45. Metoda ta została zastosowana w Zakładzie Taboru w Poznaniu. Gamma Vsz Vsz 300 tys. Silnik 128 punkt pomiarowy D8 Vsz 500 tys Przebieg [km] ys. 7. Zmiana współczynnika kształtu γ w funkcji wartości szczytowej prędkości drgań dla różnych oczekiwanych wartości przebiegu silnika do uszkodzenia (punkt pomiarowy D8) Literatura [1] Cempel C., Diagnostyka wibroakustyczna maszyn, WPP Poznań, [2] Kasprzak B., Zastosowanie modelu tribowibroakustycznego do oceny zasobu pracy silnika. Zeszyty Naukowe Politechniki Poznańskiej, WPP Poznań, [3] Tomaszewski F., Zagadnienia wyznaczania stanu technicznego złożonego obiektu mechanicznego za pomocą sygnału wibroakustycznego. Politechnika Poznańska 1998 Seria ozprawy nr

19 dr inż. Adam Kadziński Politechnika Poznańska mgr inż. Michał Kowalski Instytut Pojazdów Szynowych TABO Problematyka badań niezawodności wagonów osobowych na tle stanu badań niezawodności pojazdów szynowych w Polsce W pracy przedstawiono ocenę stanu badań niezawodności (w systemie eksploatacji technicznej) pojazdów szynowych, ze szczególnym uwzględnieniem problematyki niezawodności wagonów osobowych. Ocenie poddano prace drukowane na łamach wybranych czasopism oraz w materiałach wybranych konferencji naukowych w latach Zestawiono prace wzięte do analizy. Podano charakterystykę materiału badawczego. Wskazano na zainteresowania w badaniach niezawodności kolejnymi fazami życia pojazdów szynowych. Dokonano przeglądu prac i przeprowadzono syntetyczną ocenę ich treści. Przedstawiono charakterystykę autorów prac poddanych analizie. 1. Wprowadzenie W latach 50-tych XX wieku zgodzono się, że obiekty, procesy, systemy oprócz wielu cech ilościowych mają cechę (właściwość), która nazywa się: niezawodność ( reliability po angielsku, Zuverlässigkeit po niemiecku, fiabilité po francusku, nadiożnost po rosyjsku). Na początku lat siedemdziesiątych zaczyna gruntować swoją pozycję teoria niezawodności. Dziś po ponad trzydziestu latach aplikacji teorii niezawodności w różnych dziedzinach życia i na różnych etapach istnienia obiektów / systemów technicznych, zasadnym jest podjęcie próby oceny stanu badań niezawodności obiektów / systemów funkcjonujących w ramach systemu eksploatacji technicznej pojazdów szynowych (SETPSz). W skład systemu eksploatacji technicznej pojazdów szynowych wchodzi m.in. system eksploatacji technicznej wagonów osobowych (SE- TWO). System eksploatacji technicznej pojazdów szynowych jest częścią systemu transportu kolejowego. Celem niniejszego opracowania jest prezentacja zainteresowania problemami niezawodności wagonów osobowych na tle stanu badań niezawodności pojazdów szynowych w Polsce. 2. Metodyka dokonywania oceny Ocenę stanu badań niezawodności obiektów SETPSz i SETWO oparto na pracach opublikowanych w czasopismach: Pojazdy Szynowe, Zagadnienia Eksploatacji Maszyn, Problemy Kolejnictwa, Trakcja i Wagony, Technika Transportu Szynowego, Przegląd Kolejowy, Zeszyty Naukowe Politechniki Poznańskiej, seria MiT, oraz na referatach opublikowanych w materiałach następujących konferencji: Pojazdy Szynowe, Problemy Niezawodności Transportu, Zimowa Szkoła Niezawodności, Konferencja Bezpieczeństwa i Niezawodności. Czasopismo Pojazdy Szynowe zainicjowane zostało numerem specjalnym w 1975 roku. Od 1976 roku do czerwca 1981 Pojazdy Szynowe ukazywały się systematycznie. Po kilkuletniej przerwie, w roku 1998 czasopismo to zaczęło się ponownie ukazywać. Wydawcą Pojazdów Szynowych jest Instytut Pojazdów Szynowych TABO w Poznaniu. Kwartalnik Polskiej Akademii Nauk Zagadnienia Eksploatacji Maszyn zaczął się ukazywać w 1966 roku. Do roku 1973 kwartalnik ten wydawany był pod nazwą Zagadnienia Tarcia, Zużycia i Smarowania. Wydawcą Zagadnień Eksploatacji Maszyn są Państwowe Wydawnictwa Naukowe. W 1956 roku Centralny Ośrodek Badań i ozwoju Techniki Kolejnictwa wydał pierwszy numer czasopisma Problemy Kolejnictwa. Do końca roku 2003 ukazało się 135 zeszytów Problemów Kolejnictwa. Kolejnym czasopismem, z którego materiałów skorzystano w niniejszej pracy jest miesięcznik wydawany przez Wydawnictwa Komunikacji i Łączności pod nazwą Trakcja i Wagony. Pierwszy numer tego czasopisma ukazał się w 1978 roku. Czasopismo przestało ukazywać się w 1991 roku. Kontynuacją Trakcji i Wagonów jest miesięcznik Przegląd Kolejowy. Ukazywał się on od lipca 1992 roku do marca 2001 roku nakładem Kolejowej Oficyny Wydawniczej Spółka z o. o.. Czasopismo Technika Transportu Szynowego (TTS) stanowi m.in. forum dla prezentacji problemów produkcji i eksploatacji pojazdów szynowych. Pierwszy numer tego czasopisma ukazał się w czerwcu 1994 roku. Patronat nad TTS sprawuje Stowarzyszenie Inżynierów i Techników Komunikacji P (SITK) członek Unii Europejskich Stowarzyszeń Inżynierów Kolejowych UEEIV. Zeszyty Naukowe Politechniki Poznańskiej, seria MiT ukazują się od 1956 roku. Do roku 1969 ukazywały się pod nazwą Mechanizacja i Elektryfikacja olnictwa, następnie pod nazwą Zeszyty Naukowe Politechniki Poznańskiej, seria MiP. Do końca roku 2003 ukazało się 57 zeszytów. 19

20 Konferencje Pojazdy Szynowe zostały zainicjowane w 1973 roku. Do końca 2003 roku środowiska naukowoprzemysłowe, którym bliskie są zagadnienia szeroko pojętego projektowania, wytwarzania i eksploatacji pojazdów szynowych zorganizowały piętnaście edycji tej konferencji. Na sesjach naukowych Problemów Niezawodności Transportu prezentowane były zagadnienia niezawodności transportu lotniczego, samochodowego, kolejowego i morskiego. Początek tych sesji przypada na rok W roku 1997 odbyła się ostatnia edycja Problemów Niezawodności Transportu. Konferencję Bezpieczeństwa i Niezawodności (KONBiN) zainicjowano w 1999 roku. Jest ona spadkobiercą połączonej problematyki konferencji Problemy Niezawodności Transportu i Bezpieczeństwo Systemów. Organizatorem Zimowych Szkół Niezawodności jest Zespół Niezawodności Sekcji Podstaw Eksploatacji Komitetu Budowy Maszyn PAN. Spotkania z tego cyklu rozpoczęto w 1972 roku. W styczniu 2003 roku odbyła się XXXI Zimowa Szkoła Niezawodności. Problematyka Szkół dotyczy niezawodności elementów zespołów, maszyn, urządzeń i pojazdów, parków maszynowych i dużych systemów technicznych. W wymienionych czasopismach i w materiałach wskazanych tu konferencji, zagadnieniom niezawodności obiektów / systemów, związanych z systemem eksploatacji technicznej pojazdów szynowych poświęcono 120 prac. Dziewiętnaście z nich związanych jest z zagadnieniami niezawodności wagonów osobowych. Oceny prezentowanych w tych pracach zagadnień dokonano za pomocą specjalnego arkusza badawczego. Układ i prezentację graficzną arkusza badawczego przedstawiono na rys. 1 i 2. Za pomocą tego arkusza dokonywano oceny prac przez udzielanie odpowiedzi na 12 pytań. Strukturę zbioru prac poddanych analizom przedstawiono na rys. 3. W następnej kolejności informacje zgromadzone w arkuszach badawczych wprowadzono do specjalnie stworzonej bazy danych. Na podstawie zapytań (kwerend) przygotowanych do bazy danych wygenerowano wyniki oceny. W dalszej części niniejszego opracowania przedstawiono wybrane wyniki oceny badań obiektów / systemów, funkcjonujących w ramach systemu eksploatacji technicznej pojazdów szynowych. Nr pracy: INFOMACJA O PACY NIEZAWODNOŚCIOWEJ Tytuł pracy: Miejsce opublikowania: Konferencja Czasopismo Tytuł czasopisma: Nazwa i rodzaj konferencji: Nr i miejsce obrad konferencji: ok opublikowania: Nr zeszytu: Strony: Liczba autorów pracy: Nazwisko i Imię autora 1: Nazwisko i Imię autora 2: Kwalifikacje zawodowe * : Jednostka zatrudniająca ** : Kwalifikacje zawodowe * : Jednostka zatrudniająca ** : Nazwisko i Imię autora 3: Nazwisko i Imię autora 4: Kwalifikacje zawodowe * : Jednostka zatrudniająca ** : Kwalifikacje zawodowe * : Jednostka zatrudniająca ** : * Proszę wpisać odpowiednią grupę zawodową: 1. Brak danych 2. prof. dr hab. inż.; dr hab. inż.; doc. 3. dr inż.; dr 4. mgr inż.; mgr; inż. 5. technik i inni ** Proszę wpisać odpowiednią jednost. zatr.: 1. Brak danych 2. PAN 3. Wyższa uczelnia 4. Ośrodek badawczy Miejsce obiektu badań niezawodności w strukturze systemu transportu kolejowego: System transportu kolejowego ogólnie System eksploatacji technicznej pojazdów szynowych System eksploatacji technicznej dróg i mostów System eksploatacji tech. urządzeń. zasilania i sieci trakcyjnej System ekspl. tech. urządz. zabezp. ruchu pociągów i łączności System eksploatacji technicznej budynków i budowli System eksploatacji technicznej urządzeń stacyjnych Trudno określić Nie dotyczy ys. 1. Arkusz badawczy prac strona 1 20

1. Wykładzina gniazda skrętu dla wózków wagonów towarowych UIC Y25 2. Wykładzina ślizgu bocznego dla wózków wagonów towarowych UIC Y25.

1. Wykładzina gniazda skrętu dla wózków wagonów towarowych UIC Y25 2. Wykładzina ślizgu bocznego dla wózków wagonów towarowych UIC Y25. 1/8 realizowanych w ramach prób eksploatacyjnych typowego elementu pojazdu kolejowego 1. Wykładzina gniazda skrętu dla wózków wagonów towarowych UIC Y25 2. Wykładzina ślizgu bocznego dla wózków wagonów

Bardziej szczegółowo

Systemy. Krzysztof Patan

Systemy. Krzysztof Patan Systemy Krzysztof Patan Systemy z pamięcią System jest bez pamięci (statyczny), jeżeli dla dowolnej chwili t 0 wartość sygnału wyjściowego y(t 0 ) zależy wyłącznie od wartości sygnału wejściowego w tej

Bardziej szczegółowo

Jerzy UCIŃSKI, Sławomir HALUSIAK Politechnika Łódzka, jerzy.ucinski@p.lodz.pl, slawomir.halusiak@p.lodz.pl

Jerzy UCIŃSKI, Sławomir HALUSIAK Politechnika Łódzka, jerzy.ucinski@p.lodz.pl, slawomir.halusiak@p.lodz.pl Politechnika Łódzka, jerzy.ucinski@p.lodz.pl, slawomir.halusiak@p.lodz.pl ORGANIZACJA ZAŁADUNKU POCIĄGU INTERMODALNEGO S : W pracy przedstawiono metodę optymalnego formowania składu pociągu intermodalnego

Bardziej szczegółowo

Dwa w jednym teście. Badane parametry

Dwa w jednym teście. Badane parametry Dwa w jednym teście Rys. Jacek Kubiś, Wimad Schemat zawieszenia z zaznaczeniem wprowadzonych pojęć Urządzenia do kontroli zawieszeń metodą Boge badają ich działanie w przebiegach czasowych. Wyniki zależą

Bardziej szczegółowo

Wprowadzenie do technik regulacji automatycznej. prof nzw. dr hab. inż. Krzysztof Patan

Wprowadzenie do technik regulacji automatycznej. prof nzw. dr hab. inż. Krzysztof Patan Wprowadzenie do technik regulacji automatycznej prof nzw. dr hab. inż. Krzysztof Patan Czym jest AUTOMATYKA? Automatyka to dziedzina nauki i techniki zajmująca się teorią i praktycznym zastosowaniem urządzeń

Bardziej szczegółowo

Optymalizacja konstrukcji

Optymalizacja konstrukcji Optymalizacja konstrukcji Kształtowanie konstrukcyjne: nadanie właściwych cech konstrukcyjnych przeszłej maszynie określenie z jakiego punktu widzenia (wg jakiego kryterium oceny) będą oceniane alternatywne

Bardziej szczegółowo

Stabilność. Krzysztof Patan

Stabilność. Krzysztof Patan Stabilność Krzysztof Patan Pojęcie stabilności systemu Rozważmy obiekt znajdujący się w punkcie równowagi Po przyłożeniu do obiektu siły F zostanie on wypchnięty ze stanu równowagi Jeżeli po upłynięciu

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: ENERGETYKA Rodzaj przedmiotu: kierunkowy ogólny Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1. Zapoznanie studentów z własnościami

Bardziej szczegółowo

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie Politechnika Wrocławska, Wydział Informatyki i Zarządzania Modelowanie Zad Wyznacz transformaty Laplace a poniższych funkcji, korzystając z tabeli transformat: a) 8 3e 3t b) 4 sin 5t 2e 5t + 5 c) e5t e

Bardziej szczegółowo

(54) Sposób pomiaru cech geometrycznych obrzeża koła pojazdu szynowego i urządzenie do

(54) Sposób pomiaru cech geometrycznych obrzeża koła pojazdu szynowego i urządzenie do RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19)PL (11)167818 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 2 9 3 7 2 5 (22) Data zgłoszenia: 0 6.0 3.1 9 9 2 (51) Intcl6: B61K9/12

Bardziej szczegółowo

WYBRANE ZAGADNIENIA OPTYMALIZACJI PRZEGLĄDÓW OKRESOWYCH URZĄDZEŃ ELEKTRONICZNYCH

WYBRANE ZAGADNIENIA OPTYMALIZACJI PRZEGLĄDÓW OKRESOWYCH URZĄDZEŃ ELEKTRONICZNYCH Problemy Kolejnictwa Zeszyt 149 89 Dr inż. Adam Rosiński Politechnika Warszawska WYBRANE ZAGADNIENIA OPTYMALIZACJI PRZEGLĄDÓW OKRESOWYCH URZĄDZEŃ ELEKTRONICZNYCH SPIS TREŚCI 1. Wstęp. Optymalizacja procesu

Bardziej szczegółowo

20. BADANIE SZTYWNOŚCI SKRĘTNEJ NADWOZIA. 20.1. Cel ćwiczenia. 20.2. Wprowadzenie

20. BADANIE SZTYWNOŚCI SKRĘTNEJ NADWOZIA. 20.1. Cel ćwiczenia. 20.2. Wprowadzenie 20. BADANIE SZTYWNOŚCI SKRĘTNEJ NADWOZIA 20.1. Cel ćwiczenia Celem ćwiczenia jest wykonanie pomiaru sztywności skrętnej nadwozia samochodu osobowego. 20.2. Wprowadzenie Sztywność skrętna jest jednym z

Bardziej szczegółowo

Ćwiczenie 6 IZOLACJA DRGAŃ MASZYNY. 1. Cel ćwiczenia

Ćwiczenie 6 IZOLACJA DRGAŃ MASZYNY. 1. Cel ćwiczenia Ćwiczenie 6 IZOLACJA DRGAŃ MASZYNY 1. Cel ćwiczenia Przeprowadzenie izolacji drgań przekładni zębatej oraz doświadczalne wyznaczenie współczynnika przenoszenia drgań urządzenia na fundament.. Wprowadzenie

Bardziej szczegółowo

Przedstawiamy Państwu ofertę na sprzedaż części do wagonów towarowych.

Przedstawiamy Państwu ofertę na sprzedaż części do wagonów towarowych. Przedsiębiorstwo Handlowo Usługowe TOM-KOL ul. Słoneczna 17 Powiercie Kol. 62-600 Koło tel.: 601428961 fax: +48 63 26 15 809 e-mail: estrada1@op.pl Przedstawiamy Państwu ofertę na sprzedaż części do wagonów

Bardziej szczegółowo

WARUNKI WYKONANIA I ODBIORU ROBÓT BUDOWLANYCH M.20.02.01. Próbne obciążenie obiektu mostowego

WARUNKI WYKONANIA I ODBIORU ROBÓT BUDOWLANYCH M.20.02.01. Próbne obciążenie obiektu mostowego WARUNKI WYKONANIA I ODBIORU ROBÓT BUDOWLANYCH Próbne obciążenie obiektu mostowego 1. WSTĘP 1.1. Przedmiot Warunków wykonania i odbioru robót budowlanych Przedmiotem niniejszych Warunków wykonania i odbioru

Bardziej szczegółowo

POLITECHNIKA ŁÓDZKA INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN. Ćwiczenie D - 4. Zastosowanie teoretycznej analizy modalnej w dynamice maszyn

POLITECHNIKA ŁÓDZKA INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN. Ćwiczenie D - 4. Zastosowanie teoretycznej analizy modalnej w dynamice maszyn POLITECHNIKA ŁÓDZKA INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN Ćwiczenie D - 4 Temat: Zastosowanie teoretycznej analizy modalnej w dynamice maszyn Opracowanie: mgr inż. Sebastian Bojanowski Zatwierdził:

Bardziej szczegółowo

Podstawy Automatyki. wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak. Politechnika Wrocławska. Instytut Technologii Maszyn i Automatyzacji (I-24)

Podstawy Automatyki. wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak. Politechnika Wrocławska. Instytut Technologii Maszyn i Automatyzacji (I-24) Podstawy Automatyki wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak Politechnika Wrocławska Instytut Technologii Maszyn i Automatyzacji (I-24) Laboratorium Podstaw Automatyzacji (L6) 105/2 B1 Sprawy organizacyjne

Bardziej szczegółowo

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 150

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 150 ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 150 wydany przez POLSKIE CENTRUM AKREDYTACJI 01-382 Warszawa, ul. Szczotkarska 42 Wydanie nr 9 Data wydania: 29 sierpnia 2013 r. Nazwa i adres AB 150 WOJSKOWY

Bardziej szczegółowo

ROZPORZĄDZENIE MINISTRA GOSPODARKI

ROZPORZĄDZENIE MINISTRA GOSPODARKI Dz.U.02.70.650 2003-05-01 zm. Dz.U.03.65.603 1 ROZPORZĄDZENIE MINISTRA GOSPODARKI z dnia 10 maja 2002 r. w sprawie bezpieczeństwa i higieny pracy przy użytkowaniu wózków jezdniowych z napędem silnikowym.

Bardziej szczegółowo

Automatyzacja. Ćwiczenie 9. Transformata Laplace a sygnałów w układach automatycznej regulacji

Automatyzacja. Ćwiczenie 9. Transformata Laplace a sygnałów w układach automatycznej regulacji Automatyzacja Ćwiczenie 9 Transformata Laplace a sygnałów w układach automatycznej regulacji Rodzaje elementów w układach automatyki Blok: prostokąt ze strzałkami reprezentującymi jego sygnał wejściowy

Bardziej szczegółowo

Rys. 1. Obudowa zmechanizowana Glinik 15/32 Poz [1]: 1 stropnica, 2 stojaki, 3 spągnica

Rys. 1. Obudowa zmechanizowana Glinik 15/32 Poz [1]: 1 stropnica, 2 stojaki, 3 spągnica Górnictwo i Geoinżynieria Rok 30 Zeszyt 1 2006 Sławomir Badura*, Dariusz Bańdo*, Katarzyna Migacz** ANALIZA WYTRZYMAŁOŚCIOWA MES SPĄGNICY OBUDOWY ZMECHANIZOWANEJ GLINIK 15/32 POZ 1. Wstęp Obudowy podporowo-osłonowe

Bardziej szczegółowo

Metoda elementów skończonych

Metoda elementów skończonych Metoda elementów skończonych Wraz z rozwojem elektronicznych maszyn obliczeniowych jakimi są komputery zaczęły pojawiać się różne numeryczne metody do obliczeń wytrzymałości różnych konstrukcji. Jedną

Bardziej szczegółowo

Projekt współfinansowany ze środków Europejskiego Funduszu Rozwoju Regionalnego w ramach Programu Operacyjnego Innowacyjna Gospodarka

Projekt współfinansowany ze środków Europejskiego Funduszu Rozwoju Regionalnego w ramach Programu Operacyjnego Innowacyjna Gospodarka Projekt współfinansowany ze środków Europejskiego Funduszu Rozwoju Regionalnego w ramach Programu Operacyjnego Innowacyjna Gospodarka Poznań, 16.05.2012r. Raport z promocji projektu Nowa generacja energooszczędnych

Bardziej szczegółowo

17. 17. Modele materiałów

17. 17. Modele materiałów 7. MODELE MATERIAŁÓW 7. 7. Modele materiałów 7.. Wprowadzenie Podstawowym modelem w mechanice jest model ośrodka ciągłego. Przyjmuje się, że materia wypełnia przestrzeń w sposób ciągły. Możliwe jest wyznaczenie

Bardziej szczegółowo

DRGANIA ELEMENTÓW KONSTRUKCJI

DRGANIA ELEMENTÓW KONSTRUKCJI DRGANIA ELEMENTÓW KONSTRUKCJI (Wprowadzenie) Drgania elementów konstrukcji (prętów, wałów, belek) jak i całych konstrukcji należą do ważnych zagadnień dynamiki konstrukcji Przyczyna: nawet niewielkie drgania

Bardziej szczegółowo

Lista zagadnień kierunkowych pomocniczych w przygotowaniu do egzaminu dyplomowego magisterskiego Kierunek: Mechatronika

Lista zagadnień kierunkowych pomocniczych w przygotowaniu do egzaminu dyplomowego magisterskiego Kierunek: Mechatronika Lista zagadnień kierunkowych pomocniczych w przygotowaniu do Kierunek: Mechatronika 1. Materiały używane w budowie urządzeń precyzyjnych. 2. Rodzaje stali węglowych i stopowych, 3. Granica sprężystości

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący

Bardziej szczegółowo

MECHANIKA PŁYNÓW LABORATORIUM

MECHANIKA PŁYNÓW LABORATORIUM MECANIKA PŁYNÓW LABORATORIUM Ćwiczenie nr 4 Współpraca pompy z układem przewodów. Celem ćwiczenia jest sporządzenie charakterystyki pojedynczej pompy wirowej współpracującej z układem przewodów, przy różnych

Bardziej szczegółowo

Ciągniki siodłowe. Zalecenia. Rozstaw osi

Ciągniki siodłowe. Zalecenia. Rozstaw osi Ogólne informacje na temat ciągników siodłowych Ogólne informacje na temat ciągników siodłowych Ciągniki siodłowe są przeznaczone do ciągnięcia naczep. W związku z tym wyposażone są wsiodło, które umożliwia

Bardziej szczegółowo

Cysterny. Informacje ogólne na temat samochodów cystern. Konstrukcja. Nadwozia typu cysterna uważane są za bardzo sztywne skrętnie.

Cysterny. Informacje ogólne na temat samochodów cystern. Konstrukcja. Nadwozia typu cysterna uważane są za bardzo sztywne skrętnie. Informacje ogólne na temat samochodów cystern Informacje ogólne na temat samochodów cystern Nadwozia typu cysterna uważane są za bardzo sztywne skrętnie. Konstrukcja Rozstaw osi powinien być możliwie jak

Bardziej szczegółowo

'MAPOSTAW' Praca zespołowa: Sylwester Adamczyk Krzysztof Radzikowski. Promotor: prof. dr hab. inż. Bogdan Branowski

'MAPOSTAW' Praca zespołowa: Sylwester Adamczyk Krzysztof Radzikowski. Promotor: prof. dr hab. inż. Bogdan Branowski Mały pojazd miejski o napędzie spalinowym dla osób w starszym wieku i samotnych 'MAPOSTAW' Praca zespołowa: Sylwester Adamczyk Krzysztof Radzikowski Promotor: prof. dr hab. inż. Bogdan Branowski Cel pracy

Bardziej szczegółowo

Streszczenie. 3. Mechanizmy Zniszczenia Plastycznego

Streszczenie. 3. Mechanizmy Zniszczenia Plastycznego Streszczenie Dobór elementów struktury konstrukcyjnej z warunku ustalonej niezawodności, mierzonej wskaźnikiem niezawodności β. Przykład liczbowy dla ramy statycznie niewyznaczalnej. Leszek Chodor, Joanna

Bardziej szczegółowo

Warszawa, dnia 12 marca 2013 r. Poz. 337 ROZPORZĄDZENIE MINISTRA TRANSPORTU, BUDOWNICTWA I GOSPODARKI MORSKIEJ 1) z dnia 27 lutego 2013 r.

Warszawa, dnia 12 marca 2013 r. Poz. 337 ROZPORZĄDZENIE MINISTRA TRANSPORTU, BUDOWNICTWA I GOSPODARKI MORSKIEJ 1) z dnia 27 lutego 2013 r. DZIENNIK USTAW RZECZYPOSPOLITEJ POLSKIEJ Warszawa, dnia 12 marca 2013 r. Poz. 337 ROZPORZĄDZENIE MINISTRA TRANSPORTU, BUDOWNICTWA I GOSPODARKI MORSKIEJ 1) z dnia 27 lutego 2013 r. w sprawie badań co do

Bardziej szczegółowo

Zadanie 18. Współczynnik sprężystości (4 pkt) Masz do dyspozycji statyw, sprężynę, linijkę oraz ciężarek o znanej masie z uchwytem.

Zadanie 18. Współczynnik sprężystości (4 pkt) Masz do dyspozycji statyw, sprężynę, linijkę oraz ciężarek o znanej masie z uchwytem. Przykładowy zestaw zadań z fizyki i astronomii Poziom podstawowy 11 Zadanie 18. Współczynnik sprężystości (4 pkt) Masz do dyspozycji statyw, sprężynę, linijkę oraz ciężarek o znanej masie z uchwytem. 18.1

Bardziej szczegółowo

ROZPORZĄDZENIE MINISTRA INFRASTRUKTURY 1) z dnia 30 kwietnia 2004 r.

ROZPORZĄDZENIE MINISTRA INFRASTRUKTURY 1) z dnia 30 kwietnia 2004 r. Dz.U.2004.103.1085 ROZPORZĄDZENIE MINISTRA INFRASTRUKTURY 1) z dnia 30 kwietnia 2004 r. zmieniające rozporządzenie w sprawie warunków technicznych pojazdów oraz zakresu ich niezbędnego wyposażenia (Dz.

Bardziej szczegółowo

Tematyka egzaminu z Podstaw sterowania

Tematyka egzaminu z Podstaw sterowania Tematyka egzaminu z Podstaw sterowania Rafał Trójniak 6 września 2009 Spis treści 1 Rozwiązane tematy 1 1.1 Napisać równanie różniczkowe dla zbiornika z odpływem grawitacyjnym...............................

Bardziej szczegółowo

ROZPORZĄDZENIE MINISTRA INFRASTRUKTURY 1) z dnia... 2010 r.

ROZPORZĄDZENIE MINISTRA INFRASTRUKTURY 1) z dnia... 2010 r. Projekt z dnia 6 września 2010 r. ROZPORZĄDZENIE MINISTRA INFRASTRUKTURY 1) z dnia... 2010 r. zmieniające rozporządzenie w sprawie warunków technicznych pojazdów oraz zakresu ich niezbędnego wyposażenia

Bardziej szczegółowo

Ruch drgający i falowy

Ruch drgający i falowy Ruch drgający i falowy 1. Ruch harmoniczny 1.1. Pojęcie ruchu harmonicznego Jednym z najbardziej rozpowszechnionych ruchów w mechanice jest ruch ciała drgającego. Przykładem takiego ruchu może być ruch

Bardziej szczegółowo

PRZEPISY PUBLIKACJA NR 19/P ANALIZA STREFOWEJ WYTRZYMAŁOŚCI KADŁUBA ZBIORNIKOWCA

PRZEPISY PUBLIKACJA NR 19/P ANALIZA STREFOWEJ WYTRZYMAŁOŚCI KADŁUBA ZBIORNIKOWCA PRZEPISY PUBLIKACJA NR 19/P ANALIZA STREFOWEJ WYTRZYMAŁOŚCI KADŁUBA ZBIORNIKOWCA 2010 Publikacje P (Przepisowe) wydawane przez Polski Rejestr Statków są uzupełnieniem lub rozszerzeniem Przepisów i stanowią

Bardziej szczegółowo

Tematy prac dyplomowych w Katedrze Awioniki i Sterowania Studia II stopnia (magisterskie)

Tematy prac dyplomowych w Katedrze Awioniki i Sterowania Studia II stopnia (magisterskie) Tematy prac dyplomowych w Katedrze Awioniki i Sterowania Studia II stopnia (magisterskie) Temat: Analiza właściwości pilotażowych samolotu Specjalność: Pilotaż lub Awionika 1. Analiza stosowanych kryteriów

Bardziej szczegółowo

CENNIK. 1. Stawki jednostkowe opłaty podstawowej za minimalny dostęp do infrastruktury kolejowej

CENNIK. 1. Stawki jednostkowe opłaty podstawowej za minimalny dostęp do infrastruktury kolejowej PROJEKT (w.2) CENNIK STAWEK JEDNOSTKOWYCH OPŁAT ZA KORZYSTANIE Z INFRASTRUKTURY KOLEJOWEJ ZARZĄDZANEJ PRZEZ PKP POLSKIE LINIE KOLEJOWE S.A. OBOWIĄZUJĄCY OD 15 GRUDNIA 2013 R. I. Stawki jednostkowe opłaty

Bardziej szczegółowo

DYREKTYWA KOMISJI 2013/8/UE

DYREKTYWA KOMISJI 2013/8/UE L 56/8 Dziennik Urzędowy Unii Europejskiej 28.2.2013 DYREKTYWY DYREKTYWA KOMISJI 2013/8/UE z dnia 26 lutego 2013 r. zmieniająca, w celu dostosowania jej przepisów technicznych, dyrektywę Parlamentu Europejskiego

Bardziej szczegółowo

MOBILNE STANOWISKO DO BADAŃ DYNAMIKI POJAZDÓW

MOBILNE STANOWISKO DO BADAŃ DYNAMIKI POJAZDÓW MOBILNE STANOWISKO DO BADAŃ DYNAMIKI POJAZDÓW ADAM GOŁASZEWSKI 1, TOMASZ SZYDŁOWSKI 2 Politechnika Łódzka Streszczenie Badania dynamiki ruchu pojazdów wpływają w istotny sposób na rozwój ogólnie rozumianej

Bardziej szczegółowo

KADD Metoda najmniejszych kwadratów funkcje nieliniowe

KADD Metoda najmniejszych kwadratów funkcje nieliniowe Metoda najmn. kwadr. - funkcje nieliniowe Metoda najmniejszych kwadratów Funkcje nieliniowe Procedura z redukcją kroku iteracji Przykłady zastosowań Dopasowanie funkcji wykładniczej Dopasowanie funkcji

Bardziej szczegółowo

METODY OBLICZENIOWE. Projekt nr 3.4. Dariusz Ostrowski, Wojciech Muła 2FD/L03

METODY OBLICZENIOWE. Projekt nr 3.4. Dariusz Ostrowski, Wojciech Muła 2FD/L03 METODY OBLICZENIOWE Projekt nr 3.4 Dariusz Ostrowski, Wojciech Muła 2FD/L03 Zadanie Nasze zadanie składało się z dwóch części: 1. Sformułowanie, przy użyciu metody Lagrange a II rodzaju, równania różniczkowego

Bardziej szczegółowo

Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej

Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej Dynamika ruchu postępowego 1. Balon opada ze stałą prędkością. Jaką masę balastu należy wyrzucić, aby balon

Bardziej szczegółowo

SCENARIUSZ LEKCJI. TEMAT LEKCJI: Zastosowanie średnich w statystyce i matematyce. Podstawowe pojęcia statystyczne. Streszczenie.

SCENARIUSZ LEKCJI. TEMAT LEKCJI: Zastosowanie średnich w statystyce i matematyce. Podstawowe pojęcia statystyczne. Streszczenie. SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH Autorzy scenariusza:

Bardziej szczegółowo

Projektowanie układów regulacji w dziedzinie częstotliwości. dr hab. inż. Krzysztof Patan, prof. PWSZ

Projektowanie układów regulacji w dziedzinie częstotliwości. dr hab. inż. Krzysztof Patan, prof. PWSZ Projektowanie układów regulacji w dziedzinie częstotliwości dr hab. inż. Krzysztof Patan, prof. PWSZ Wprowadzenie Metody projektowania w dziedzinie częstotliwości mają wiele zalet: stabilność i wymagania

Bardziej szczegółowo

BADANIA SYMULACYJNE PROCESU HAMOWANIA SAMOCHODU OSOBOWEGO W PROGRAMIE PC-CRASH

BADANIA SYMULACYJNE PROCESU HAMOWANIA SAMOCHODU OSOBOWEGO W PROGRAMIE PC-CRASH BADANIA SYMULACYJNE PROCESU HAMOWANIA SAMOCHODU OSOBOWEGO W PROGRAMIE PC-CRASH Dr inż. Artur JAWORSKI, Dr inż. Hubert KUSZEWSKI, Dr inż. Adam USTRZYCKI W artykule przedstawiono wyniki analizy symulacyjnej

Bardziej szczegółowo

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1.

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1. tel. 44 683 1 55 tel. kom. 64 566 811 e-mail: biuro@wszechwiedza.pl Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: gdzie: y t X t y t = 1 X 1

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: mechanika i budowa Maszyn Rodzaj przedmiotu: obowiązkowy na specjalności: Inżynieria cieplna i samochodowa Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU

Bardziej szczegółowo

ARKUSZ EGZAMINACYJNY ETAP PRAKTYCZNY EGZAMINU POTWIERDZAJĄCEGO KWALIFIKACJE ZAWODOWE CZERWIEC 2010

ARKUSZ EGZAMINACYJNY ETAP PRAKTYCZNY EGZAMINU POTWIERDZAJĄCEGO KWALIFIKACJE ZAWODOWE CZERWIEC 2010 Zawód: technik spedytor Symbol cyfrowy zawodu: 342[02] Numer zadania: 1 Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu 342[02]-01-102 Czas trwania egzaminu: 180 minut ARKUSZ

Bardziej szczegółowo

PRZEZNACZENIE I OPIS PROGRAMU

PRZEZNACZENIE I OPIS PROGRAMU PROGRAM WALL1 (10.92) Autor programu: Zbigniew Marek Michniowski Program do wyznaczania głębokości posadowienia ścianek szczelnych. PRZEZNACZENIE I OPIS PROGRAMU Program służy do wyznaczanie minimalnej

Bardziej szczegółowo

Dobór parametrów regulatora - symulacja komputerowa. Najprostszy układ automatycznej regulacji można przedstawić za pomocą

Dobór parametrów regulatora - symulacja komputerowa. Najprostszy układ automatycznej regulacji można przedstawić za pomocą Politechnika Świętokrzyska Wydział Mechatroniki i Budowy Maszyn Centrum Laserowych Technologii Metali PŚk i PAN Zakład Informatyki i Robotyki Przedmiot:Podstawy Automatyzacji - laboratorium, rok I, sem.

Bardziej szczegółowo

Metrologia: organizacja eksperymentu pomiarowego

Metrologia: organizacja eksperymentu pomiarowego Metrologia: organizacja eksperymentu pomiarowego (na podstawie: Żółtowski B. Podstawy diagnostyki maszyn, 1996) dr inż. Paweł Zalewski Akademia Morska w Szczecinie Teoria eksperymentu: Teoria eksperymentu

Bardziej szczegółowo

Załadunek zgodny z przepisami

Załadunek zgodny z przepisami Załadunek zgodny z przepisami Przepisy dotyczące mas i wymiarów pojazdów ciężkich na rok Spis treści Sieć drogowa...3 Mapy pokazują klasy nośności sieci drogowej...3 Przepisy dotyczące mas i wymiarów...4

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela

Statystyka w pracy badawczej nauczyciela Statystyka w pracy badawczej nauczyciela Wykład 1: Terminologia badań statystycznych dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka (1) Statystyka to nauka zajmująca się zbieraniem, badaniem

Bardziej szczegółowo

STRESZCZENIE PRACY MAGISTERSKIEJ

STRESZCZENIE PRACY MAGISTERSKIEJ WOJSKOWA AKADEMIA TECHNICZNA im. Jarosława Dąbrowskiego STRESZCZENIE PRACY MAGISTERSKIEJ MODELOWANIE D I BADANIA NUMERYCZNE BELKOWYCH MOSTÓW KOLEJOWYCH PODDANYCH DZIAŁANIU POCIĄGÓW SZYBKOBIEŻNYCH Paulina

Bardziej szczegółowo

Katedra Transportu Szynowego Politechnika Śląska Diagnostyka Pojazdów Szynowych

Katedra Transportu Szynowego Politechnika Śląska Diagnostyka Pojazdów Szynowych Katedra Transportu Szynowego Politechnika Śląska Diagnostyka Pojazdów Szynowych Praktyczne aspekty diagnozowania maszyn i systemów amortyzatory, łożyska, pojazdy mechanicznych, diagnozowanie pojazdów samochodowe,

Bardziej szczegółowo

Seria Jubileuszowa. Rozwiązania informatyczne. Sprężarki śrubowe Airpol PRM z przetwornicą częstotliwości. oszczędność energii. ochrona środowiska

Seria Jubileuszowa. Rozwiązania informatyczne. Sprężarki śrubowe Airpol PRM z przetwornicą częstotliwości. oszczędność energii. ochrona środowiska Sprężarki śrubowe Airpol PRM z przetwornicą częstotliwości Seria Jubileuszowa Każda sprężarka śrubowa z przetwornicą częstotliwości posiada regulację obrotów w zakresie od 50 do 100%. Jeżeli zużycie powietrza

Bardziej szczegółowo

ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska. 2 3x. 2. Sformułuj odpowiedź.

ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska. 2 3x. 2. Sformułuj odpowiedź. ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska Zad.1. (5 pkt) Sprawdź, czy funkcja określona wzorem x( x 1)( x ) x 3x dla x 1 i x dla x 1 f ( x) 1 3 dla

Bardziej szczegółowo

Rys. 1 Schemat układu L 2 R 2 E C 1. t(0+)

Rys. 1 Schemat układu L 2 R 2 E C 1. t(0+) Autor: Piotr Fabijański Koreferent: Paweł Fabijański Zadanie Obliczyć napięcie na stykach wyłącznika S zaraz po jego otwarciu, w chwili t = (0 + ) i w stanie ustalonym, gdy t. Do obliczeń przyjąć następujące

Bardziej szczegółowo

Wewnętrzny stan bryły

Wewnętrzny stan bryły Stany graniczne Wewnętrzny stan bryły Bryła (konstrukcja) jest w równowadze, jeżeli oddziaływania zewnętrzne i reakcje się równoważą. P α q P P Jednak drugim warunkiem równowagi jest przeniesienie przez

Bardziej szczegółowo

Rys. 1 Otwarty układ regulacji

Rys. 1 Otwarty układ regulacji Automatyka zajmuje się sterowaniem, czyli celowym oddziaływaniem na obiekt, w taki sposób, aby uzyskać jego pożądane właściwości. Sterowanie często nazywa się regulacją. y zd wartość zadana u sygnał sterujący

Bardziej szczegółowo

Ć W I C Z E N I E N R M-2

Ć W I C Z E N I E N R M-2 INSYU FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I ECHNOLOGII MAERIAŁÓW POLIECHNIKA CZĘSOCHOWSKA PRACOWNIA MECHANIKI Ć W I C Z E N I E N R M- ZALEŻNOŚĆ OKRESU DRGAŃ WAHADŁA OD AMPLIUDY Ćwiczenie M-: Zależność

Bardziej szczegółowo

Obsługa wózków jezdniowych

Obsługa wózków jezdniowych Obsługa wózków jezdniowych Ramowy program szkolenia Blok programowy A B C D E F G zagadnienia Minimalna liczba godzin dla poszczególnych rodzajów wózków jezdniowych Naładownych, ciągnikowych, unoszących

Bardziej szczegółowo

Temat: Wpływ właściwości paliwa na trwałość wtryskiwaczy silników jachtów motorowych

Temat: Wpływ właściwości paliwa na trwałość wtryskiwaczy silników jachtów motorowych 2013.01.30 Katedra Siłowni Morskich i Lądowych WOiO PG r.a. 2013/2014 Tematy prac dyplomowych studia stacjonarne I stopnia, Kierunki studiów: Oceanotechnika, Energetyka, Transport 1 Temat: Wpływ właściwości

Bardziej szczegółowo

Tematy prac dyplomowych w Katedrze Awioniki i Sterowania Studia I stopnia (inżynierskie)

Tematy prac dyplomowych w Katedrze Awioniki i Sterowania Studia I stopnia (inżynierskie) Tematy prac dyplomowych w Katedrze Awioniki i Sterowania Studia I stopnia (inżynierskie) Temat: Pomiar prędkości kątowych samolotu przy pomocy czujnika ziemskiego pola magnetycznego 1. Analiza właściwości

Bardziej szczegółowo

Stateczność ramy - wersja komputerowa

Stateczność ramy - wersja komputerowa Stateczność ramy - wersja komputerowa Cel ćwiczenia : - Obliczenie wartości obciążenia krytycznego i narysowanie postaci wyboczenia. utraty stateczności - Obliczenie przemieszczenia i sił przekrojowych

Bardziej szczegółowo

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Optymalizacja

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Optymalizacja Politechnika Wrocławska, Wydział Informatyki i Zarządzania Optymalizacja Dla podanych niżej problemów decyzyjnych (zad.1 zad.5) należy sformułować zadania optymalizacji, tj.: określić postać zmiennych

Bardziej szczegółowo

3. Zadanie nr 21 z rozdziału 7. książki HRW

3. Zadanie nr 21 z rozdziału 7. książki HRW Lista 3. do kursu Fizyka; rok. ak. 2012/13 sem. letni W. Inż. Środ.; kierunek Inż. Środowiska Tabele wzorów matematycznych (http://www.if.pwr.wroc.pl/~wsalejda/mat-wzory.pdf) i fizycznych (http://www.if.pwr.wroc.pl/~wsalejda/wzf1.pdf;

Bardziej szczegółowo

Perspektywy rozwoju konstrukcji ram wózków pojazdów szynowych przy zachowaniu obecnych standardów bezpieczeństwa

Perspektywy rozwoju konstrukcji ram wózków pojazdów szynowych przy zachowaniu obecnych standardów bezpieczeństwa Problemy Kolejnictwa Zeszyt 165 (grudzień 2014) 65 Perspektywy rozwoju konstrukcji ram wózków pojazdów szynowych przy zachowaniu obecnych standardów bezpieczeństwa Dariusz KOWALCZYK 1, Robert BIŃKOWSKI

Bardziej szczegółowo

1. Obliczenia wytrzymałościowe elementów maszyn przy obciążeniu zmiennym PRZEDMOWA 11

1. Obliczenia wytrzymałościowe elementów maszyn przy obciążeniu zmiennym PRZEDMOWA 11 SPIS TREŚCI 1. Obliczenia wytrzymałościowe elementów maszyn przy obciążeniu zmiennym PRZEDMOWA 11 1. ZARYS DYNAMIKI MASZYN 13 1.1. Charakterystyka ogólna 13 1.2. Drgania mechaniczne 17 1.2.1. Pojęcia podstawowe

Bardziej szczegółowo

KARTA PRZEDMIOTU 1/5. Wydział Mechaniczny PWR

KARTA PRZEDMIOTU 1/5. Wydział Mechaniczny PWR Wydział Mechaniczny PWR KARTA PRZEDMIOTU Nazwa w języku polskim: Mechanika analityczna Nazwa w języku angielskim: Analytical Mechanics Kierunek studiów (jeśli dotyczy): Mechanika i Budowa Maszyn Specjalność

Bardziej szczegółowo

ROZPORZĄDZENIE MINISTRA INFRASTRUKTURY 1) z dnia 21 lutego 2011 r.

ROZPORZĄDZENIE MINISTRA INFRASTRUKTURY 1) z dnia 21 lutego 2011 r. Dziennik Ustaw Nr 47 3102 Poz. 242 242 ROZPORZĄDZENIE MINISTRA INFRASTRUKTURY 1) z dnia 21 lutego 2011 r. zmieniające rozporządzenie w sprawie warunków technicznych pojazdów oraz zakresu ich niezbędnego

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: KINEMATYKA I DYNAMIKA MANIPULATORÓW I ROBOTÓW Kierunek: Mechatronika Rodzaj przedmiotu: obowiązkowy na specjalności: Systemy sterowania Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU

Bardziej szczegółowo

WZORU UŻYTKOWEGO. d2)opis OCHRONNY. d9) PL (11)63056 EGZEMPLARZ ARCHIWALNY. Królik Wiesław, Warka, PL. Wiesław Królik, Warka, PL

WZORU UŻYTKOWEGO. d2)opis OCHRONNY. d9) PL (11)63056 EGZEMPLARZ ARCHIWALNY. Królik Wiesław, Warka, PL. Wiesław Królik, Warka, PL RZECZPOSPOLITA POLSKA Urząd Patentowy Rzeczypospolitej Polskiej d2)opis OCHRONNY WZORU UŻYTKOWEGO (21) Numer zgłoszenia: 114996 (22) Data zgłoszenia: 11.08.2004 EGZEMPLARZ ARCHIWALNY d9) PL (11)63056 (13)

Bardziej szczegółowo

Metody Ilościowe w Socjologii

Metody Ilościowe w Socjologii Metody Ilościowe w Socjologii wykład 4 BADANIA OPERACYJNE dr inż. Maciej Wolny AGENDA I. Badania operacyjne podstawowe definicje II. Metodologia badań operacyjnych III. Wybrane zagadnienia badań operacyjnych

Bardziej szczegółowo

Ćwiczenie 42 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ. Wprowadzenie teoretyczne.

Ćwiczenie 42 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ. Wprowadzenie teoretyczne. Ćwiczenie 4 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ Wprowadzenie teoretyczne. Soczewka jest obiektem izycznym wykonanym z materiału przezroczystego o zadanym kształcie i symetrii obrotowej. Interesować

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: mechanika i budowa maszyn Rodzaj przedmiotu: obowiązkowy na specjalności: Inżynieria cieplna i samochodowa Rodzaj zajęć: wykład, laboratorium Dynamika pojazdów Dynamics of vechicles

Bardziej szczegółowo

BADANIA GRUNTU W APARACIE RC/TS.

BADANIA GRUNTU W APARACIE RC/TS. Str.1 SZCZEGÓŁOWE WYPROWADZENIA WZORÓW DO PUBLIKACJI BADANIA GRUNTU W APARACIE RC/TS. Dyka I., Srokosz P.E., InŜynieria Morska i Geotechnika 6/2012, s.700-707 III. Wymuszone, cykliczne skręcanie Rozpatrujemy

Bardziej szczegółowo

Sterowanie wielkością zamówienia w Excelu - cz. 3

Sterowanie wielkością zamówienia w Excelu - cz. 3 Sterowanie wielkością zamówienia w Excelu - cz. 3 21.06.2005 r. 4. Planowanie eksperymentów symulacyjnych Podczas tego etapu ważne jest określenie typu rozkładu badanej charakterystyki. Dzięki tej informacji

Bardziej szczegółowo

Koleje podstawy. Wykład 1 Wprowadzenie. Pojęcia podstawowe. dr hab. inż. Danuta Bryja, prof. nadzw. PWr

Koleje podstawy. Wykład 1 Wprowadzenie. Pojęcia podstawowe. dr hab. inż. Danuta Bryja, prof. nadzw. PWr Koleje podstawy Wykład 1 Wprowadzenie. Pojęcia podstawowe dr hab. inż. Danuta Bryja, prof. nadzw. PWr Literatura 1. Dz. U. RP nr 151.: Rozporządzenie Ministra Infrastruktury i Rozwoju z dnia 5 czerwca

Bardziej szczegółowo

Tematy prac dyplomowych w Katedrze Awioniki i Sterowania. Studia: I stopnia (inżynierskie)

Tematy prac dyplomowych w Katedrze Awioniki i Sterowania. Studia: I stopnia (inżynierskie) Tematy prac dyplomowych w Katedrze Awioniki i Sterowania Studia I stopnia (inżynierskie) Temat: Skalowanie czujników prędkości kątowej i orientacji przestrzennej 1. Analiza właściwości czujników i układów

Bardziej szczegółowo

Przykłady wybranych fragmentów prac egzaminacyjnych z komentarzami Technik eksploatacji portów i terminali 342[03]

Przykłady wybranych fragmentów prac egzaminacyjnych z komentarzami Technik eksploatacji portów i terminali 342[03] Przykłady wybranych fragmentów prac egzaminacyjnych z komentarzami Technik eksploatacji portów i terminali 342[03] 1 2 3 4 5 6 Oceniane były następujące elementy pracy egzaminacyjnej: I. Tytuł pracy egzaminacyjnej.

Bardziej szczegółowo

Maksymalne wymiary i obciążenia pojazdów

Maksymalne wymiary i obciążenia pojazdów Maksymalne wymiary i obciążenia pojazdów Rumuńskie normy dotyczące maksymalnych wymiarów pojazdów są w dużej mierze zbieżne z europejską dyrektywą 96/53/WE z dnia 25.VII.1996 r. Różnice występują w dopuszczalnych

Bardziej szczegółowo

Wprowadzenie do analizy korelacji i regresji

Wprowadzenie do analizy korelacji i regresji Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących

Bardziej szczegółowo

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO ĆWICZENIE 53 PRAWO OHMA DLA PRĄDU PRZEMIENNEGO Cel ćwiczenia: wyznaczenie wartości indukcyjności cewek i pojemności kondensatorów przy wykorzystaniu prawa Ohma dla prądu przemiennego; sprawdzenie prawa

Bardziej szczegółowo

Maksymalne wymiary i obciążenia pojazdów 2015-10-13 13:49:37

Maksymalne wymiary i obciążenia pojazdów 2015-10-13 13:49:37 Maksymalne wymiary i obciążenia pojazdów 2015-10-13 13:49:37 2 Rumuńskie normy dotyczące maksymalnych wymiarów pojazdów Maksymalne wymiary i obciażenia pojazdów Rumuńskie normy dotyczące maksymalnych wymiarów

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Mechatronika Rodzaj przedmiotu: obowiązkowy na specjalności: systemy sterowania Rodzaj zajęć: wykład, laboratorium UKŁADY AUTOMATYKI PRZEMYSŁOWEJ Industrial Automatics Systems

Bardziej szczegółowo

LUZS-12 LISTWOWY UNIWERSALNY ZASILACZ SIECIOWY DOKUMENTACJA TECHNICZNO-RUCHOWA. Wrocław, kwiecień 1999 r.

LUZS-12 LISTWOWY UNIWERSALNY ZASILACZ SIECIOWY DOKUMENTACJA TECHNICZNO-RUCHOWA. Wrocław, kwiecień 1999 r. LISTWOWY UNIWERSALNY ZASILACZ SIECIOWY DOKUMENTACJA TECHNICZNO-RUCHOWA Wrocław, kwiecień 1999 r. 50-305 WROCŁAW TEL./FAX (+71) 373-52-27 ul. S. Jaracza 57-57a TEL. 602-62-32-71 str.2 SPIS TREŚCI 1.OPIS

Bardziej szczegółowo

Teoria treningu. Projektowanie. systemów treningowych. jako ciąg zadań optymalizacyjnych. Jan Kosendiak. Istota projektowania. systemów treningowych

Teoria treningu. Projektowanie. systemów treningowych. jako ciąg zadań optymalizacyjnych. Jan Kosendiak. Istota projektowania. systemów treningowych Teoria treningu 77 Projektowanie procesu treningowego jest jednym z podstawowych zadań trenera, a umiejętność ta należy do podstawowych wyznaczników jego wykształcenia. Projektowanie systemów treningowych

Bardziej szczegółowo

Zmiana punktu pracy wentylatorów dużej mocy z regulowaną prędkością obrotową w obiektach wytwarzających energię cieplną lub elektryczną

Zmiana punktu pracy wentylatorów dużej mocy z regulowaną prędkością obrotową w obiektach wytwarzających energię cieplną lub elektryczną Zmiana punktu pracy wentylatorów dużej mocy z regulowaną prędkością obrotową w obiektach wytwarzających energię cieplną lub elektryczną Zbigniew Szulc 1. Wstęp Wentylatory dużej mocy (powyżej 500 kw stosowane

Bardziej szczegółowo

Projektowanie elementów z tworzyw sztucznych

Projektowanie elementów z tworzyw sztucznych Projektowanie elementów z tworzyw sztucznych Wykorzystanie technik komputerowych w projektowaniu elementów z tworzyw sztucznych Tematyka wykładu Techniki komputerowe, Problemy występujące przy konstruowaniu

Bardziej szczegółowo

Tok postępowania przy projektowaniu fundamentu bezpośredniego obciążonego mimośrodowo wg wytycznych PN-EN 1997-1 Eurokod 7

Tok postępowania przy projektowaniu fundamentu bezpośredniego obciążonego mimośrodowo wg wytycznych PN-EN 1997-1 Eurokod 7 Tok postępowania przy projektowaniu fundamentu bezpośredniego obciążonego mimośrodowo wg wytycznych PN-EN 1997-1 Eurokod 7 I. Dane do projektowania - Obciążenia stałe charakterystyczne: V k = (pionowe)

Bardziej szczegółowo

Pojazdy kolejowe - proces dopuszczenia do eksploatacji typu pojazdu kolejowego

Pojazdy kolejowe - proces dopuszczenia do eksploatacji typu pojazdu kolejowego Ośrodek Certyfikacji Wyrobów IPS TABOR Jednostka ds. Certyfikacji tel. +48 61 6641420; +48 61 6641429; +48 61 6641434 fax. +48 61 6641420; +48 61 6534002 e-mail: certyfikacja@tabor.com.pl Instytut Pojazdów

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

WYZNACZENIE CHARAKTERYSTYK STATYCZNYCH PRZETWORNIKÓW POMIAROWYCH

WYZNACZENIE CHARAKTERYSTYK STATYCZNYCH PRZETWORNIKÓW POMIAROWYCH Zakład Metrologii i Systemów Pomiarowych P o l i t e c h n i k a P o z n ańska ul. Jana Pawła II 4 60-96 POZNAŃ (budynek Centrum Mechatroniki, Biomechaniki i Nanoinżynierii) www.zmisp.mt.put.poznan.pl

Bardziej szczegółowo

Aparaty słuchowe Hi-Fi z Multiphysics Modeling

Aparaty słuchowe Hi-Fi z Multiphysics Modeling Aparaty słuchowe Hi-Fi z Multiphysics Modeling POLITECHNIKA POZNAŃSKA Wydział Budowy Maszyn i Zarządzania Mechanika i Budowa Maszyn Technologia Przetwarzania Materiałów Prowadzący: dr hab. Tomasz Stręk

Bardziej szczegółowo

11. 11. OPTYMALIZACJA KONSTRUKCJI

11. 11. OPTYMALIZACJA KONSTRUKCJI 11. OPTYMALIZACJA KONSTRUKCJI 1 11. 11. OPTYMALIZACJA KONSTRUKCJI 11.1. Wprowadzenie 1. Optymalizacja potocznie i matematycznie 2. Przykład 3. Kryterium optymalizacji 4. Ograniczenia w zadaniach optymalizacji

Bardziej szczegółowo