Równoległe symulacje Monte Carlo na współdzielonej sieci

Wielkość: px
Rozpocząć pokaz od strony:

Download "Równoległe symulacje Monte Carlo na współdzielonej sieci"

Transkrypt

1 Równoległe symulacje Monte Carlo na współdzielonej sieci Szymon Murawski, Grzegorz Musiał, Grzegorz Pawłowski Wydział Fizyki, Uniwersytet im. Adama Mickiewicza 12 maja 2015 S. Murawski, G. Musiał, G. Pawłowski (WF UAM) Równoległe symulacje Monte Carlo 12 maja / 16

2 Spis treści 1 Wstęp Cel badań Badany model Symulacje Monte Carlo Podział sieci Komunikacja MPI 2 Wyniki Podział na paski Podział na bloki Komunikacja w standardzie MPI-1 Równoległe symulacje w wielkim rozkładzie kanonicznym 3 Podsumowanie S. Murawski, G. Musiał, G. Pawłowski (WF UAM) Równoległe symulacje Monte Carlo 12 maja / 16

3 Wstęp Cel badań Cel badań Zwiększenie wydajności symulacji Monte Carlo poprzez zastosowanie przetwarzania równoległego Porównanie różnych metod komunikacji biblioteki MPI S. Murawski, G. Musiał, G. Pawłowski (WF UAM) Równoległe symulacje Monte Carlo 12 maja / 16

4 Wstęp Badany model Rozszerzony model Hubbarda Model U-J H = U n i n i 2J s i s j µ n i i <i,j> i U - oddz. kulombowskie, J - oddz. magnetyczne, s i - spin, n i - ilość cząstek, µ -potencjał chemiczny. Krok Monte Carlo: create, move, destroy. Limit: n = 1, U, sieć kwadratowa S. Murawski, G. Musiał, G. Pawłowski (WF UAM) Równoległe symulacje Monte Carlo 12 maja / 16

5 Wstęp Badany model Rozszerzony model Hubbarda Model U-J H = U n i n i 2J s i s j µ n i i <i,j> i U - oddz. kulombowskie, J - oddz. magnetyczne, s i - spin, n i - ilość cząstek, µ -potencjał chemiczny. Krok Monte Carlo: create, move, destroy. Limit: n = 1, U, sieć kwadratowa Model Isinga H = J <i,j> s i s j Jeden spin na węzeł sieci, tylko oddziaływanie magnetyczne Spin przyjmuje tylko dwie wartości s = ±1 Krok Monte Carlo: obrót jednego spinu S. Murawski, G. Musiał, G. Pawłowski (WF UAM) Równoległe symulacje Monte Carlo 12 maja / 16

6 Wstęp Symulacje Monte Carlo Symulacje Monte Carlo Procedura Monte Carlo 1 Ustal wartości parametrów oddziaływania, wielkość sieci itp. 2 Ustal stan początkowy x 3 Utwórz próbną konfigurację x (obracając spin) 4 Jeśli E < 0 exp( E/k B T ) < random(0, 1) x = x, jeśli nie x = x 5 mcs + +, wróć do 3. 6 Powtarzaj do ustalonej wcześniej wartości mcs Część wygenerowanych stanów odrzucamy termalizacja. Jakoś wyników zależy od ilości kroków oraz wielkości sieci. Czas obliczeń proporcjonalny do L 2, możemy badać tylko układy skończone. Wyniki dla różnych wielkości układu + teoria skalowania = rezultaty dla układów makroskopowych. Aktualizacje klastrowe zamiast lokalnych nie do zastosowania dla wielkiego rozkładu kanonicznego. S. Murawski, G. Musiał, G. Pawłowski (WF UAM) Równoległe symulacje Monte Carlo 12 maja / 16

7 Wstęp Podział sieci Podział sieci Podział na paski Sieć o wymiarach L L dzielimy na p procesów Każdy otrzymuje pasek o wielkości L L/p Na lokalnej sieci jest wykonywana standardowa procedura MC, potem wyniki są zbierane Dla stanów na krawędzi proces komunikuje się z sąsiadami Stała liczba sąsiadów: 2L S. Murawski, G. Musiał, G. Pawłowski (WF UAM) Równoległe symulacje Monte Carlo 12 maja / 16

8 Wstęp Podział sieci Podział sieci Podział na paski Sieć o wymiarach L L dzielimy na p procesów Każdy otrzymuje pasek o wielkości L L/p Na lokalnej sieci jest wykonywana standardowa procedura MC, potem wyniki są zbierane Dla stanów na krawędzi proces komunikuje się z sąsiadami Stała liczba sąsiadów: 2L Podział na bloki Sieć dzielona na bloki o najmniejszym obwodzie Jeśli p = x 2 kwadraty, jeśli p = liczba pierwsza paski, dla innych prostokąty Stosunek stanów brzegowych do wszystkich 4 p/l, przy 2(p + 1)/L dla podziałów na paski S. Murawski, G. Musiał, G. Pawłowski (WF UAM) Równoległe symulacje Monte Carlo 12 maja / 16

9 Wstęp Podział sieci Dystrybucja sieci na równoległe procesy S. Murawski, G. Musiał, G. Pawłowski (WF UAM) Równoległe symulacje Monte Carlo 12 maja / 16

10 Wstęp Podział sieci Ilość stanów na brzegach S. Murawski, G. Musiał, G. Pawłowski (WF UAM) Równoległe symulacje Monte Carlo 12 maja / 16

11 Wstęp Komunikacja MPI Komunikacja między procesami Komunikacja poprzez remote memory access biblioteki MPI. RMA jest nieblokujące, jednostronne, nie przerywa obliczeń u sąsiadów. S. Murawski, G. Musiał, G. Pawłowski (WF UAM) Równoległe symulacje Monte Carlo 12 maja / 16

12 Wyniki Podział na paski Podział na paski Speedup S = tseq /tpar, Efficiency E = S/p S. Murawski, G. Musiał, G. Pawłowski (WF UAM) Równoległe symulacje Monte Carlo 12 maja / 16

13 Wyniki Podział na bloki Podział na bloki Speedup S = tseq /tpar, Efficiency E = S/p S. Murawski, G. Musiał, G. Pawłowski (WF UAM) Równoległe symulacje Monte Carlo 12 maja / 16

14 Wyniki Komunikacja w standardzie MPI-1 Komunikacja w standardzie MPI-1 S. Murawski, G. Musiał, G. Pawłowski (WF UAM) Równoległe symulacje Monte Carlo 12 maja / 16

15 Wyniki Równoległe symulacje w wielkim rozkładzie kanonicznym Dystrybucja sieci w wielkim rozkładzie W WRK krok MC składa się z trzech procedur: tworzenia cząstki, usuwania cząstki oraz przesunięcia na sieci. Tworzenie i usuwanie są operacjami jednowęzłowymi nie ma żadnego problemu. Przesunięcie wymaga informacji o dwóch węzłach potrzeba dodatkowej warstwy komunikacyjnej... S. Murawski, G. Musiał, G. Pawłowski (WF UAM) Równoległe symulacje Monte Carlo 12 maja / 16

16 Wyniki Równoległe symulacje w wielkim rozkładzie kanonicznym Dystrybucja sieci w wielkim rozkładzie W WRK krok MC składa się z trzech procedur: tworzenia cząstki, usuwania cząstki oraz przesunięcia na sieci. Tworzenie i usuwanie są operacjami jednowęzłowymi nie ma żadnego problemu. Przesunięcie wymaga informacji o dwóch węzłach potrzeba dodatkowej warstwy komunikacyjnej... Albo zbadać jaki wpływ na wyniki ma wprowadzenie sztywnego ograniczenia ruchu elektronów. S. Murawski, G. Musiał, G. Pawłowski (WF UAM) Równoległe symulacje Monte Carlo 12 maja / 16

17 Wyniki Równoległe symulacje w wielkim rozkładzie kanonicznym Wpływ ograniczenia na jakoś wyników (a) obszar przejść pierwszego rodzaju, (b) drugiego. γ maksymalna odległość na jaką spin może się przemieścić. S. Murawski, G. Musiał, G. Pawłowski (WF UAM) Równoległe symulacje Monte Carlo 12 maja / 16

18 Podsumowanie Podsumowanie Przedstawiono metodę zmniejszenia czasu symulacji poprzez podział sieci. Efektywność metody rośnie wraz z wielkością sieci, jest odwrotnie proporcjonalna do ilości węzłów brzegowych. Lepszą metodą jest podział na bloki, większy narzut na komunikację jest równoważony znacznie mniejszą ilość stanów brzegowych. Użycie kooperatywnych procedur komunikacji zamiast komunikacji jednostronnej nie prowadzi do zwiększenia efektywności. Wprowadzenie ograniczenia na ruch elektronu na sieci nie zmienia znacząco wyników symulacji. S. Murawski, G. Musiał, G. Pawłowski (WF UAM) Równoległe symulacje Monte Carlo 12 maja / 16

19 Podsumowanie Koniec 1 Wstęp Cel badań Badany model Symulacje Monte Carlo Podział sieci Komunikacja MPI 2 Wyniki Podział na paski Podział na bloki Komunikacja w standardzie MPI-1 Równoległe symulacje w wielkim rozkładzie kanonicznym 3 Podsumowanie S. Murawski, G. Musiał, G. Pawłowski (WF UAM) Równoległe symulacje Monte Carlo 12 maja / 16

Co to jest model Isinga?

Co to jest model Isinga? Co to jest model Isinga? Fakty eksperymentalne W pewnych metalach (np. Fe, Ni) następuje spontaniczne ustawianie się spinów wzdłuż pewnego kierunku, powodując powstanie makroskopowego pola magnetycznego.

Bardziej szczegółowo

Program MC. Obliczyć radialną funkcję korelacji. Zrobić jej wykres. Odczytać z wykresu wartość radialnej funkcji korelacji w punkcie r=

Program MC. Obliczyć radialną funkcję korelacji. Zrobić jej wykres. Odczytać z wykresu wartość radialnej funkcji korelacji w punkcie r= Program MC Napisać program symulujący twarde kule w zespole kanonicznym. Dla N > 100 twardych kul. Gęstość liczbowa 0.1 < N/V < 0.4. Zrobić obliczenia dla 2,3 różnych wartości gęstości. Obliczyć radialną

Bardziej szczegółowo

e E Z = P = 1 Z e E Kanoniczna suma stanów Prawdopodobieństwo wystąpienia mikrostanu U E = =Z 1 Wartość średnia energii

e E Z = P = 1 Z e E Kanoniczna suma stanów Prawdopodobieństwo wystąpienia mikrostanu U E = =Z 1 Wartość średnia energii Metoda Metropolisa Z = e E P = 1 Z e E Kanoniczna suma stanów Prawdopodobieństwo wystąpienia mikrostanu U E = P E =Z 1 E e E Wartość średnia energii Średnia wartość A = d r N A r N exp[ U r N ] d r N exp[

Bardziej szczegółowo

61 Topologie wirtualne

61 Topologie wirtualne 61 Topologie wirtualne pozwalają opisać dystrybucję procesów w przestrzeni z uwzględnieniem struktury komunikowania się procesów aplikacji między sobą, umożliwiają łatwą odpowiedź na pytanie: kto jest

Bardziej szczegółowo

Wykładnicze grafy przypadkowe: teoria i przykłady zastosowań do analizy rzeczywistych sieci złożonych

Wykładnicze grafy przypadkowe: teoria i przykłady zastosowań do analizy rzeczywistych sieci złożonych Gdańsk, Warsztaty pt. Układy Złożone (8 10 maja 2014) Agata Fronczak Zakład Fizyki Układów Złożonych Wydział Fizyki Politechniki Warszawskiej Wykładnicze grafy przypadkowe: teoria i przykłady zastosowań

Bardziej szczegółowo

model isinga 2d ab 10 grudnia 2016

model isinga 2d ab 10 grudnia 2016 model isinga 2d ab 10 grudnia 2016 tematyka Model spinów Isinga Hamiltonian i suma statystyczna modelu Metoda Monte-Carlo. Algorytm Metropolisa. Obserwable Modelowanie: Model Isinga 1 hamiltonian I Hamiltonian,

Bardziej szczegółowo

Własności jąder w stanie podstawowym

Własności jąder w stanie podstawowym Własności jąder w stanie podstawowym Najważniejsze liczby kwantowe charakteryzujące jądro: A liczba masowa = liczbie nukleonów (l. barionów) Z liczba atomowa = liczbie protonów (ładunek) N liczba neutronów

Bardziej szczegółowo

Symulacja Monte Carlo izotermy adsorpcji w układzie. ciało stałe-gaz

Symulacja Monte Carlo izotermy adsorpcji w układzie. ciało stałe-gaz Ćwiczenie nr 2 Symulacja Monte Carlo izotermy adsorpcji w układzie ciało stałe-gaz I. Cel ćwiczenia Celem ćwiczenia jest określenie wpływu parametrów takich jak temperatura, energia oddziaływania cząsteczka-powierzchnia

Bardziej szczegółowo

Janusz Adamowski METODY OBLICZENIOWE FIZYKI Kwantowa wariacyjna metoda Monte Carlo. Problem własny dla stanu podstawowego układu N cząstek

Janusz Adamowski METODY OBLICZENIOWE FIZYKI Kwantowa wariacyjna metoda Monte Carlo. Problem własny dla stanu podstawowego układu N cząstek Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdział 20 KWANTOWE METODY MONTE CARLO 20.1 Kwantowa wariacyjna metoda Monte Carlo Problem własny dla stanu podstawowego układu N cząstek (H E 0 )ψ 0 (r)

Bardziej szczegółowo

Równoległy algorytm wyznaczania bloków dla cyklicznego problemu przepływowego z przezbrojeniami

Równoległy algorytm wyznaczania bloków dla cyklicznego problemu przepływowego z przezbrojeniami Równoległy algorytm wyznaczania bloków dla cyklicznego problemu przepływowego z przezbrojeniami dr inż. Mariusz Uchroński Wrocławskie Centrum Sieciowo-Superkomputerowe Agenda Cykliczny problem przepływowy

Bardziej szczegółowo

Skalowalność obliczeń równoległych. Krzysztof Banaś Obliczenia Wysokiej Wydajności 1

Skalowalność obliczeń równoległych. Krzysztof Banaś Obliczenia Wysokiej Wydajności 1 Skalowalność obliczeń równoległych Krzysztof Banaś Obliczenia Wysokiej Wydajności 1 Skalowalność Przy rozważaniu wydajności przetwarzania (obliczeń, komunikacji itp.) często pojawia się pojęcie skalowalności

Bardziej szczegółowo

Atomowa budowa materii

Atomowa budowa materii Atomowa budowa materii Wszystkie obiekty materialne zbudowane są z tych samych elementów cząstek elementarnych Cząstki elementarne oddziałują tylko kilkoma sposobami oddziaływania wymieniając kwanty pól

Bardziej szczegółowo

Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne

Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne POLITECHNIKA POZNAŃSKA INSTYTUT INŻYNIERII ŚRODOWISKA PROWADZĄCY: mgr inż. Łukasz Amanowicz Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne 3 TEMAT ĆWICZENIA: Badanie składu pyłu za pomocą mikroskopu

Bardziej szczegółowo

Zespół kanoniczny N,V, T. acc o n =min {1, exp [ U n U o ] }

Zespół kanoniczny N,V, T. acc o n =min {1, exp [ U n U o ] } Zespół kanoniczny Zespół kanoniczny N,V, T acc o n =min {1, exp [ U n U o ] } Zespół izobaryczno-izotermiczny Zespół izobaryczno-izotermiczny N P T acc o n =min {1, exp [ U n U o ] } acc o n =min {1, exp[

Bardziej szczegółowo

CZAS I PRZESTRZEŃ EINSTEINA. Szczególna teoria względności. Spotkanie II ( marzec/kwiecień, 2013)

CZAS I PRZESTRZEŃ EINSTEINA. Szczególna teoria względności. Spotkanie II ( marzec/kwiecień, 2013) CZAS I PRZESTRZEŃ EINSTEINA Szczególna teoria względności Spotkanie II ( marzec/kwiecień, 013) u Masa w szczególnej teorii względności u Określenie relatywistycznego pędu u Wyprowadzenie wzoru Einsteina

Bardziej szczegółowo

TERMODYNAMIKA MODELU FALICOVA KIMBALLA SYMULACJE MONTE CARLO

TERMODYNAMIKA MODELU FALICOVA KIMBALLA SYMULACJE MONTE CARLO TERMODYNAMIKA MODELU FALICOVA KIMBALLA SYMULACJE MONTE CARLO Katarzyna Czajka, Maciej M. Maśka Zakład Fizyki Teoretycznej, Instytut Fizyki Uniwersytet Ślaski Kazimierz 2005 PLAN Model Falicova-Kimballa

Bardziej szczegółowo

Symulacja grafenu na powierzchni miedzi. w pakiecie oprogramowania LAMMPS

Symulacja grafenu na powierzchni miedzi. w pakiecie oprogramowania LAMMPS Symulacja grafenu na powierzchni miedzi w pakiecie oprogramowania LAMMPS Szymon Romanowski Student 3-go roku Inżynierii Materiałowej Politechniki Warszawskiej szymon1874@gmail.com Praca wykonana we wrześniu

Bardziej szczegółowo

Programowanie współbieżne Wykład 2. Iwona Kochańska

Programowanie współbieżne Wykład 2. Iwona Kochańska Programowanie współbieżne Wykład 2 Iwona Kochańska Miary skalowalności algorytmu równoległego Przyspieszenie Stały rozmiar danych N T(1) - czas obliczeń dla najlepszego algorytmu sekwencyjnego T(p) - czas

Bardziej szczegółowo

Modelowanie sieci złożonych

Modelowanie sieci złożonych Modelowanie sieci złożonych B. Wacław Instytut Fizyki UJ Czym są sieci złożone? wiele układów ma strukturę sieci: Internet, WWW, sieć cytowań, sieci komunikacyjne, społeczne itd. sieć = graf: węzły połączone

Bardziej szczegółowo

Techniki optymalizacji

Techniki optymalizacji Techniki optymalizacji Symulowane wyżarzanie Maciej Hapke maciej.hapke at put.poznan.pl Wyżarzanie wzrost temperatury gorącej kąpieli do takiej wartości, w której ciało stałe topnieje powolne zmniejszanie

Bardziej szczegółowo

METODA SYMPLEKS. Maciej Patan. Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski

METODA SYMPLEKS. Maciej Patan. Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski METODA SYMPLEKS Maciej Patan Uniwersytet Zielonogórski WSTĘP Algorytm Sympleks najpotężniejsza metoda rozwiązywania programów liniowych Metoda generuje ciąg dopuszczalnych rozwiązań x k w taki sposób,

Bardziej szczegółowo

Wielki rozkład kanoniczny

Wielki rozkład kanoniczny , granica termodynamiczna i przejścia fazowe Instytut Fizyki 2015 Podukład otwarty Podukład otwarty S opisywany układ + rezerwuar R Podukład otwarty S opisywany układ + rezerwuar R układ S + R jest izolowany

Bardziej szczegółowo

16 Jednowymiarowy model Isinga

16 Jednowymiarowy model Isinga 16 Jednowymiarowy model Isinga Jest to liniowy łańcuch N spinów mogących przyjmować wartości ± 1. Mikrostanem układu jest zbiór zmiennych σ i = ±1, gdzie i = 1,,..., N (16.1) Określają one czy i-ty spin

Bardziej szczegółowo

Obliczenia inspirowane Naturą

Obliczenia inspirowane Naturą Obliczenia inspirowane Naturą Wykład 03 (uzupełnienie Wykładu 02) Jarosław Miszczak IITiS PAN Gliwice 31/03/2016 1 / 17 1 2 / 17 Dynamika populacji Równania Lotki-Voltery opisują model drapieżnik-ofiara.

Bardziej szczegółowo

Krytyczność, przejścia fazowe i symulacje Monte Carlo. Katarzyna Sznajd-Weron Physics of Complex System

Krytyczność, przejścia fazowe i symulacje Monte Carlo. Katarzyna Sznajd-Weron Physics of Complex System Krytyczność, przejścia fazowe i symulacje Monte Carlo Katarzyna Sznajd-Weron Physics of Complex System Przejścia fazowe wokół nas woda faza ciekła PUNKT KRYTYCZNY Lód faza stała para faza gazowa ciągłe

Bardziej szczegółowo

Wstęp do astrofizyki I

Wstęp do astrofizyki I Wstęp do astrofizyki I Wykład 13 Tomasz Kwiatkowski Uniwersytet im. Adama Mickiewicza w Poznaniu Wydział Fizyki Instytut Obserwatorium Astronomiczne Tomasz Kwiatkowski, OA UAM Wstęp do astrofizyki I, Wykład

Bardziej szczegółowo

Defi f nicja n aprę r żeń

Defi f nicja n aprę r żeń Wytrzymałość materiałów Stany naprężeń i odkształceń 1 Definicja naprężeń Mamy bryłę materialną obciążoną układem sił (siły zewnętrzne, reakcje), będących w równowadze. Rozetniemy myślowo tę bryłę na dwie

Bardziej szczegółowo

Modelowanie wieloskalowe. Automaty Komórkowe - podstawy

Modelowanie wieloskalowe. Automaty Komórkowe - podstawy Modelowanie wieloskalowe Automaty Komórkowe - podstawy Dr hab. inż. Łukasz Madej Katedra Informatyki Stosowanej i Modelowania Wydział Inżynierii Metali i Informatyki Przemysłowej Budynek B5 p. 716 lmadej@agh.edu.pl

Bardziej szczegółowo

Krople wielokrotne: samoorganizacja, struktura i

Krople wielokrotne: samoorganizacja, struktura i Krople wielokrotne: samoorganizacja, struktura i stabilność Jan Guzowski Instytut Chemii Fizycznej PAN, Warszawa Warszawa, 07.11.2011 Jan Guzowski (ICHF PAN) Krople wielokrotne 1 / 14 Samoorganizacja na

Bardziej szczegółowo

Podstawy OpenCL część 2

Podstawy OpenCL część 2 Podstawy OpenCL część 2 1. Napisz program dokonujący mnożenia dwóch macierzy w wersji sekwencyjnej oraz OpenCL. Porównaj czasy działania obu wersji dla różnych wielkości macierzy, np. 16 16, 128 128, 1024

Bardziej szczegółowo

Analiza ilościowa w przetwarzaniu równoległym

Analiza ilościowa w przetwarzaniu równoległym Komputery i Systemy Równoległe Jędrzej Ułasiewicz 1 Analiza ilościowa w przetwarzaniu równoległym 10. Analiza ilościowa w przetwarzaniu równoległym...2 10.1 Kryteria efektywności przetwarzania równoległego...2

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

Projektowanie algorytmów równoległych. Zbigniew Koza Wrocław 2012

Projektowanie algorytmów równoległych. Zbigniew Koza Wrocław 2012 Projektowanie algorytmów równoległych Zbigniew Koza Wrocław 2012 Spis reści Zadniowo-kanałowy (task-channel) model algorytmów równoległych Projektowanie algorytmów równoległych metodą PACM Task-channel

Bardziej szczegółowo

KRAWĘDŹ G wartość temperatury w węzłach T=100 C; KRAWĘDŹ C wartość strumienia cieplnego q=15,5 W/m^2;

KRAWĘDŹ G wartość temperatury w węzłach T=100 C; KRAWĘDŹ C wartość strumienia cieplnego q=15,5 W/m^2; PODZIAŁ MODELU NA GRUPY MATERIAŁOWE ORAZ OZNACZENIE KRAWĘDZI MODELU ZALEŻNOŚĆ PRZEWODNOŚCI CIEPLNEJ MIEDZI OD TEMPERATURY Wartość temperatury Wartość przewodności cieplnej miedzi deg W/m*deg 0 386 100

Bardziej szczegółowo

Nieskończona jednowymiarowa studnia potencjału

Nieskończona jednowymiarowa studnia potencjału Nieskończona jednowymiarowa studnia potencjału Zagadnienie dane jest następująco: znaleźć funkcje własne i wartości własne operatora energii dla cząstki umieszczonej w nieskończonej studni potencjału,

Bardziej szczegółowo

MODELOWANIE RZECZYWISTOŚCI

MODELOWANIE RZECZYWISTOŚCI MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN d.wojcik@nencki.gov.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/ Podręcznik Iwo Białynicki-Birula Iwona

Bardziej szczegółowo

Katarzyna Jesionek Zastosowanie symulacji dynamiki cieczy oraz ośrodków sprężystych w symulatorach operacji chirurgicznych.

Katarzyna Jesionek Zastosowanie symulacji dynamiki cieczy oraz ośrodków sprężystych w symulatorach operacji chirurgicznych. Katarzyna Jesionek Zastosowanie symulacji dynamiki cieczy oraz ośrodków sprężystych w symulatorach operacji chirurgicznych. Jedną z metod symulacji dynamiki cieczy jest zastosowanie metody siatkowej Boltzmanna.

Bardziej szczegółowo

Rozkład materiału do nauczania informatyki w liceum ogólnokształcącym Wersja I

Rozkład materiału do nauczania informatyki w liceum ogólnokształcącym Wersja I Zespół TI Instytut Informatyki Uniwersytet Wrocławski ti@ii.uni.wroc.pl http://www.wsip.com.pl/serwisy/ti/ Rozkład materiału do nauczania informatyki w liceum ogólnokształcącym Wersja I Rozkład zgodny

Bardziej szczegółowo

Rozkład materiału do nauczania informatyki w liceum ogólnokształcącym Wersja II

Rozkład materiału do nauczania informatyki w liceum ogólnokształcącym Wersja II Zespół TI Instytut Informatyki Uniwersytet Wrocławski ti@ii.uni.wroc.pl http://www.wsip.com.pl/serwisy/ti/ Rozkład materiału do nauczania informatyki w liceum ogólnokształcącym Wersja II Rozkład wymagający

Bardziej szczegółowo

Wykład FIZYKA I. 15. Termodynamika statystyczna. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 15. Termodynamika statystyczna.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 15. Termodynamika statystyczna Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html TERMODYNAMIKA KLASYCZNA I TEORIA

Bardziej szczegółowo

Wybrane Dzialy Fizyki

Wybrane Dzialy Fizyki Wybrane Dzialy Fizyki (2) Elementy fizyki środowiskowej Energia - podstawowy element rozwoju społeczeństwa Podstawowe poj ecia Formy energii Współczesne źródła energii Środowisko zanieczyszczenia i jego

Bardziej szczegółowo

Ćwiczenie 1 Metody pomiarowe i opracowywanie danych doświadczalnych.

Ćwiczenie 1 Metody pomiarowe i opracowywanie danych doświadczalnych. Ćwiczenie 1 Metody pomiarowe i opracowywanie danych doświadczalnych. Ćwiczenie ma następujące części: 1 Pomiar rezystancji i sprawdzanie prawa Ohma, metoda najmniejszych kwadratów. 2 Pomiar średnicy pręta.

Bardziej szczegółowo

MAGNETYZM. PRĄD PRZEMIENNY

MAGNETYZM. PRĄD PRZEMIENNY Włodzimierz Wolczyński 47 POWTÓRKA 9 MAGNETYZM. PRĄD PRZEMIENNY Zadanie 1 W dwóch przewodnikach prostoliniowych nieskończenie długich umieszczonych w próżni, oddalonych od siebie o r = cm, płynie prąd.

Bardziej szczegółowo

Wykład 8 i 9. Hipoteza ergodyczna, rozkład mikrokanoniczny, wzór Boltzmanna

Wykład 8 i 9. Hipoteza ergodyczna, rozkład mikrokanoniczny, wzór Boltzmanna Wykład 8 i 9 Hipoteza ergodyczna, rozkład mikrokanoniczny, wzór Boltzmanna dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak (Wydział Fizyki PW)

Bardziej szczegółowo

Algorytmy i Struktury Danych

Algorytmy i Struktury Danych POLITECHNIKA KRAKOWSKA - WIEiK KATEDRA AUTOMATYKI i TECHNIK INFORMACYJNYCH Algorytmy i Struktury Danych www.pk.edu.pl/~zk/aisd_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład 12: Wstęp

Bardziej szczegółowo

Nasyp przyrost osiadania w czasie (konsolidacja)

Nasyp przyrost osiadania w czasie (konsolidacja) Nasyp przyrost osiadania w czasie (konsolidacja) Poradnik Inżyniera Nr 37 Aktualizacja: 10/2017 Program: Plik powiązany: MES Konsolidacja Demo_manual_37.gmk Wprowadzenie Niniejszy przykład ilustruje zastosowanie

Bardziej szczegółowo

Repeta z wykładu nr 3. Detekcja światła. Struktura krystaliczna. Plan na dzisiaj

Repeta z wykładu nr 3. Detekcja światła. Struktura krystaliczna. Plan na dzisiaj Repeta z wykładu nr 3 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje:

Bardziej szczegółowo

STATYKA Z UWZGLĘDNIENIEM DUŻYCH SIŁ OSIOWYCH

STATYKA Z UWZGLĘDNIENIEM DUŻYCH SIŁ OSIOWYCH Część. STATYKA Z UWZGLĘDNIENIEM DUŻYCH SIŁ OSIOWYCH.. STATYKA Z UWZGLĘDNIENIEM DUŻYCH SIŁ OSIOWYCH Rozwiązując układy niewyznaczalne dowolnie obciążone, bardzo często pomijaliśmy wpływ sił normalnych i

Bardziej szczegółowo

Klasa 5. Figury na płaszczyźnie. Astr. 1/6. 1. Na którym rysunku nie przedstawiono trapezu?

Klasa 5. Figury na płaszczyźnie. Astr. 1/6. 1. Na którym rysunku nie przedstawiono trapezu? Klasa 5. Figury na płaszczyźnie Astr. 1/6... imię i nazwisko...... klasa data 1. Na którym rysunku nie przedstawiono trapezu? 2. Oblicz obwód trapezu równoramiennego o podstawach długości 18 cm i 12 cm

Bardziej szczegółowo

POLITECHNIKA POZNAŃSKA METODA ELEMENTÓW SKOŃCZONYCH LABORATORIA

POLITECHNIKA POZNAŃSKA METODA ELEMENTÓW SKOŃCZONYCH LABORATORIA POLITECHNIKA POZNAŃSKA METODA ELEMENTÓW SKOŃCZONYCH LABORATORIA Prowadzący: dr hab. Tomasz Stręk, prof. nadzw. Wykonanie: Magdalena Winiarska Wojciech Białek Wydział Budowy Maszyn i Zarządzania Mechanika

Bardziej szczegółowo

Algorytmy równoległe: prezentacja i ocena efektywności prostych algorytmów dla systemów równoległych

Algorytmy równoległe: prezentacja i ocena efektywności prostych algorytmów dla systemów równoległych Algorytmy równoległe: prezentacja i ocena efektywności prostych algorytmów dla systemów równoległych Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka 2018/19 Problem: znajdowanie

Bardziej szczegółowo

Badanie rozkładu pola magnetycznego przewodników z prądem

Badanie rozkładu pola magnetycznego przewodników z prądem Ćwiczenie E7 Badanie rozkładu pola magnetycznego przewodników z prądem E7.1. Cel ćwiczenia Prąd elektryczny płynący przez przewodnik wytwarza wokół niego pole magnetyczne. Ćwiczenie polega na pomiarze

Bardziej szczegółowo

Podstawy fizyki wykład 8

Podstawy fizyki wykład 8 Podstawy fizyki wykład 8 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Ładunek elektryczny Grecy ok. 600 r p.n.e. odkryli, że bursztyn potarty o wełnę przyciąga inne (drobne) przedmioty. słowo

Bardziej szczegółowo

Elementy wspo łczesnej teorii inwersji

Elementy wspo łczesnej teorii inwersji Elementy wspo łczesnej teorii inwersji Metoda optymalizacyjna (2) W. Debski, 8.01.2015 Liniowy problem odwrotny m est (λ) = m apr + (G T G + λi) 1 G T ( dobs G m apr) +δ d est d o = + λ I ( G T G + λi

Bardziej szczegółowo

NA PODSTAWIE PROGRAMU ROBOT STRUCTURAL ANALYSIS PROFESSIONAL Autor: mgr inż. Bartosz Kawecki

NA PODSTAWIE PROGRAMU ROBOT STRUCTURAL ANALYSIS PROFESSIONAL Autor: mgr inż. Bartosz Kawecki NA PODSTAWIE PROGRAMU ROBOT STRUCTURAL ANALYSIS PROFESSIONAL 2016 Autor: mgr inż. Bartosz Kawecki Konstrukcję należy wykonać z przestrzennych elementów prętowych Wybór ikony pręt z paska narzędzi po prawej

Bardziej szczegółowo

Metoda określania pozycji wodnicy statków na podstawie pomiarów odległości statku od głowic laserowych

Metoda określania pozycji wodnicy statków na podstawie pomiarów odległości statku od głowic laserowych inż. Marek Duczkowski Metoda określania pozycji wodnicy statków na podstawie pomiarów odległości statku od głowic laserowych słowa kluczowe: algorytm gradientowy, optymalizacja, określanie wodnicy W artykule

Bardziej szczegółowo

Fizyka 3.3 WYKŁAD II

Fizyka 3.3 WYKŁAD II Fizyka 3.3 WYKŁAD II Promieniowanie elektromagnetyczne Dualizm korpuskularno-falowy światła Fala elektromagnetyczna Strumień fotonów o energii E F : E F = hc λ c = 3 10 8 m/s h = 6. 63 10 34 J s Światło

Bardziej szczegółowo

Pzetestuj działanie pętli while i do...while na poniższym przykładzie:

Pzetestuj działanie pętli while i do...while na poniższym przykładzie: Pzetestuj działanie pętli while i do...while na poniższym przykładzie: Zadania pętla while i do...while: 1. Napisz program, który wczytuje od użytkownika liczbę całkowitą, dopóki podana liczba jest mniejsza

Bardziej szczegółowo

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1 PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1 Planimetria to dział geometrii, w którym przedmiotem badań są własności figur geometrycznych leżących na płaszczyźnie (patrz określenie płaszczyzny). Pojęcia

Bardziej szczegółowo

ECDL/ICDL CAD 2D Moduł S8 Sylabus - wersja 1.5

ECDL/ICDL CAD 2D Moduł S8 Sylabus - wersja 1.5 ECDL/ICDL CAD 2D Moduł S8 Sylabus - wersja 1.5 Przeznaczenie Sylabusa Dokument ten zawiera szczegółowy Sylabus dla modułu ECDL/ICDL CAD 2D. Sylabus opisuje zakres wiedzy i umiejętności, jakie musi opanować

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 12 Wykorzystanie sieci rekurencyjnych w optymalizacji grafowej

Wstęp do sieci neuronowych, wykład 12 Wykorzystanie sieci rekurencyjnych w optymalizacji grafowej Wstęp do sieci neuronowych, wykład 12 Wykorzystanie sieci rekurencyjnych w optymalizacji grafowej Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2013-01-09

Bardziej szczegółowo

Radialna funkcja korelacji g(r)

Radialna funkcja korelacji g(r) Radialna funkcja korelacji g(r) r1 Określa prawdopodobieństwo znalezienia innej cząsteczki w odległości r= r1-r od cząsteczki znajdującej się w punkcie r1 Definicja g(r) Aby zdefiniować g(r) całkuje się

Bardziej szczegółowo

Sortowanie. Bartman Jacek Algorytmy i struktury

Sortowanie. Bartman Jacek Algorytmy i struktury Sortowanie Bartman Jacek jbartman@univ.rzeszow.pl Algorytmy i struktury danych Sortowanie przez proste wstawianie przykład 41 56 17 39 88 24 03 72 41 56 17 39 88 24 03 72 17 41 56 39 88 24 03 72 17 39

Bardziej szczegółowo

Symulacje kinetyczne Par2cle In Cell w astrofizyce wysokich energii Wykład 7

Symulacje kinetyczne Par2cle In Cell w astrofizyce wysokich energii Wykład 7 Symulacje kinetyczne Par2cle In Cell w astrofizyce wysokich energii Wykład 7 dr Jacek Niemiec Instytut Fizyki Jądrowej PAN, Kraków Jacek.Niemiec@ifj.edu.pl www.oa.uj.edu.pl/j.niemiec/symulacjenumeryczne

Bardziej szczegółowo

Definicje. Algorytm to:

Definicje. Algorytm to: Algorytmy Definicje Algorytm to: skończony ciąg operacji na obiektach, ze ściśle ustalonym porządkiem wykonania, dający możliwość realizacji zadania określonej klasy pewien ciąg czynności, który prowadzi

Bardziej szczegółowo

Strefa pokrycia radiowego wokół stacji bazowych. Zasięg stacji bazowych Zazębianie się komórek

Strefa pokrycia radiowego wokół stacji bazowych. Zasięg stacji bazowych Zazębianie się komórek Problem zapożyczania kanałów z wykorzystaniem narzędzi optymalizacji Wprowadzenie Rozwiązanie problemu przydziału częstotliwości prowadzi do stanu, w którym każdej stacji bazowej przydzielono żądaną liczbę

Bardziej szczegółowo

Modelowanie absorbcji cząsteczek LDL w ściankach naczyń krwionośnych

Modelowanie absorbcji cząsteczek LDL w ściankach naczyń krwionośnych Modelowanie absorbcji cząsteczek LDL w ściankach naczyń krwionośnych Plan prezentacji Co to jest LDL? 1 Budowa naczynia krwionośnego 2 Przykładowe wyniki 3 Mechanizmy wnikania blaszki miażdżycowej w ścianki

Bardziej szczegółowo

Programowanie Współbieżne. Algorytmy

Programowanie Współbieżne. Algorytmy Programowanie Współbieżne Algorytmy Sortowanie przez scalanie (mergesort) Algorytm :. JEŚLI jesteś rootem TO: pobierz/wczytaj tablice do posortowania JEŚLI_NIE to pobierz tablicę do posortowania od rodzica

Bardziej szczegółowo

O 2 O 1. Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego

O 2 O 1. Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego msg M 7-1 - Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Zagadnienia: prawa dynamiki Newtona, moment sił, moment bezwładności, dynamiczne równania ruchu wahadła fizycznego,

Bardziej szczegółowo

Dynamiki rynków oligopolistycznych oczami fizyka

Dynamiki rynków oligopolistycznych oczami fizyka KNF Migacz, Instytut Fizyki Teoretycznej, Uniwersytet Wrocławski 7-10 listopada 2008 1 1 2 1 2 3 1 2 3 4 Wprowadzenie reklamy 1 2 3 4 Wprowadzenie reklamy 5 1 2 3 4 Wprowadzenie reklamy 5 6 1 2 3 4 Wprowadzenie

Bardziej szczegółowo

2008/2009. Seweryn Kowalski IVp IF pok.424

2008/2009. Seweryn Kowalski IVp IF pok.424 2008/2009 seweryn.kowalski@us.edu.pl Seweryn Kowalski IVp IF pok.424 Plan wykładu Wstęp, podstawowe jednostki fizyki jądrowej, Własności jądra atomowego, Metody wyznaczania własności jądra atomowego, Wyznaczanie

Bardziej szczegółowo

Ogólny schemat postępowania

Ogólny schemat postępowania Ogólny schemat postępowania 1. Należy zdecydować, który rozkład prawdopodobieństwa chcemy badać. Rozkład oznaczamy przez P; zależy od zespołu statystycznego. 2. Narzucamy warunek równowagi szczegółowej,

Bardziej szczegółowo

Algorytmy równoległe. Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka 2010

Algorytmy równoległe. Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka 2010 Algorytmy równoległe Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka Znajdowanie maksimum w zbiorze n liczb węzły - maksimum liczb głębokość = 3 praca = 4++ = 7 (operacji) n - liczność

Bardziej szczegółowo

Algorytmy równoległe: ocena efektywności prostych algorytmów dla systemów wielokomputerowych

Algorytmy równoległe: ocena efektywności prostych algorytmów dla systemów wielokomputerowych Algorytmy równoległe: ocena efektywności prostych algorytmów dla systemów wielokomputerowych Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka 2014/15 Znajdowanie maksimum w zbiorze

Bardziej szczegółowo

Optymalizacja. Symulowane wyżarzanie

Optymalizacja. Symulowane wyżarzanie dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Maciej Hapke Wyżarzanie wzrost temperatury gorącej kąpieli do takiej wartości, w której ciało stałe topnieje powolne

Bardziej szczegółowo

Przyspieszanie cząstek w źródłach kosmicznych

Przyspieszanie cząstek w źródłach kosmicznych Przyspieszanie cząstek w źródłach kosmicznych Jacek Niemiec Instytut Fizyki Jądrowej PAN, Kraków Nietermiczne promieniowanie obiektów astronomicznych Supernowa Keplera szok nierel. The image cannot be

Bardziej szczegółowo

Ćwiczenia z przetwarzania tablic 2D

Ćwiczenia z przetwarzania tablic 2D Ćwiczenia z przetwarzania tablic 2D Wyświetlanie tablic 2D Jako wstęp do przetwarzania obrazów w pythonie przećwiczmy podstawowe operacje na dwuwymiarowych tablicach numpy w postaci których będziemy takie

Bardziej szczegółowo

Macierzowe algorytmy równoległe

Macierzowe algorytmy równoległe Macierzowe algorytmy równoległe Zanim przedstawimy te algorytmy zapoznajmy się z metodami dekompozycji macierzy, możemy wyróżnić dwa sposoby dekompozycji macierzy: Dekompozycja paskowa - kolumnowa, wierszowa

Bardziej szczegółowo

Voter model on Sierpiński fractals Model głosujący na fraktalach Sierpińskiego

Voter model on Sierpiński fractals Model głosujący na fraktalach Sierpińskiego Voter model on Sierpiński fractals Model głosujący na fraktalach Sierpińskiego Krzysztof Suchecki Janusz A. Hołyst Wydział Fizyki Politechniki Warszawskiej Plan Model głosujący : definicja i własności

Bardziej szczegółowo

Prawdopodobieństwo i rozkład normalny cd.

Prawdopodobieństwo i rozkład normalny cd. # # Prawdopodobieństwo i rozkład normalny cd. Michał Daszykowski, Ivana Stanimirova Instytut Chemii Uniwersytet Śląski w Katowicach Ul. Szkolna 9 40-006 Katowice E-mail: www: mdaszyk@us.edu.pl istanimi@us.edu.pl

Bardziej szczegółowo

Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący:

Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący: Dynamika Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący: mamy ciało (zachowujące się jak punkt materialny) o znanych właściwościach (masa, ładunek itd.),

Bardziej szczegółowo

Wstęp do Modelu Standardowego

Wstęp do Modelu Standardowego Wstęp do Modelu Standardowego Plan Wstęp do QFT (tym razem trochę równań ) Funkcje falowe a pola Lagranżjan revisited Kilka przykładów Podsumowanie Tomasz Szumlak AGH-UST Wydział Fizyki i Informatyki Stosowanej

Bardziej szczegółowo

1 Rachunek prawdopodobieństwa

1 Rachunek prawdopodobieństwa 1 Rachunek prawdopodobieństwa 1. Obliczyć średnią i wariancję rozkładu Bernouliego 2. Wykonać przejście graniczne p 0, N w rozkładzie Bernouliego przy zachowaniu stałej wartości średniej: λ = N p = const

Bardziej szczegółowo

Wykład 5 Widmo rotacyjne dwuatomowego rotatora sztywnego

Wykład 5 Widmo rotacyjne dwuatomowego rotatora sztywnego Wykład 5 Widmo rotacyjne dwuatomowego rotatora sztywnego W5. Energia molekuł Przemieszczanie się całych molekuł w przestrzeni - Ruch translacyjny - Odbywa się w fazie gazowej i ciekłej, w fazie stałej

Bardziej szczegółowo

Salam,Weinberg (W/Z) t Hooft, Veltman 1999 (renomalizowalność( renomalizowalność)

Salam,Weinberg (W/Z) t Hooft, Veltman 1999 (renomalizowalność( renomalizowalność) Teoria cząstek elementarnych 23.IV.08 1948 nowa faza mechaniki kwantowej precyzyjne pomiary wymagały precyzyjnych obliczeń metoda Feynmana Diagramy Feynmana i reguły Feynmana dziś uniwersalne narzędzie

Bardziej szczegółowo

FUNKCJE ELEMENTARNE I ICH WŁASNOŚCI

FUNKCJE ELEMENTARNE I ICH WŁASNOŚCI FUNKCJE ELEMENTARNE I ICH WŁASNOŚCI DEFINICJA (funkcji elementarnych) Podstawowymi funkcjami elementarnymi nazywamy funkcje: stałe potęgowe wykładnicze logarytmiczne trygonometryczne Funkcje, które można

Bardziej szczegółowo

Fizyka statystyczna Fenomenologia przejść fazowych. P. F. Góra

Fizyka statystyczna Fenomenologia przejść fazowych. P. F. Góra Fizyka statystyczna Fenomenologia przejść fazowych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Przejście fazowe transformacja układu termodynamicznego z jednej fazy (stanu materii) do innej, dokonywane

Bardziej szczegółowo

Cząstki elementarne wprowadzenie. Krzysztof Turzyński Wydział Fizyki Uniwersytet Warszawski

Cząstki elementarne wprowadzenie. Krzysztof Turzyński Wydział Fizyki Uniwersytet Warszawski Cząstki elementarne wprowadzenie Krzysztof Turzyński Wydział Fizyki Uniwersytet Warszawski Historia badania struktury materii XVII w.: ruch gwiazd i planet, zasady dynamiki, teoria grawitacji, masa jako

Bardziej szczegółowo

Algorytmy równoległe: ocena efektywności prostych algorytmów dla systemów wielokomputerowych

Algorytmy równoległe: ocena efektywności prostych algorytmów dla systemów wielokomputerowych Algorytmy równoległe: ocena efektywności prostych algorytmów dla systemów wielokomputerowych Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka 2013/14 Znajdowanie maksimum w zbiorze

Bardziej szczegółowo

DWUKROTNA SYMULACJA MONTE CARLO JAKO METODA ANALIZY RYZYKA NA PRZYKŁADZIE WYCENY OPCJI PRZEŁĄCZANIA FUNKCJI UŻYTKOWEJ NIERUCHOMOŚCI

DWUKROTNA SYMULACJA MONTE CARLO JAKO METODA ANALIZY RYZYKA NA PRZYKŁADZIE WYCENY OPCJI PRZEŁĄCZANIA FUNKCJI UŻYTKOWEJ NIERUCHOMOŚCI DWUKROTNA SYMULACJA MONTE CARLO JAKO METODA ANALIZY RYZYKA NA PRZYKŁADZIE WYCENY OPCJI PRZEŁĄCZANIA FUNKCJI UŻYTKOWEJ NIERUCHOMOŚCI mgr Marcin Pawlak Katedra Inwestycji i Wyceny Przedsiębiorstw Plan wystąpienia

Bardziej szczegółowo

Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. 2 godz. = 76 godz.)

Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. 2 godz. = 76 godz.) Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. godz. = 76 godz.) I. Funkcja i jej własności.4godz. II. Przekształcenia wykresów funkcji...9 godz. III. Funkcja

Bardziej szczegółowo

SPOTKANIE 6: Klasteryzacja: K-Means, Expectation Maximization

SPOTKANIE 6: Klasteryzacja: K-Means, Expectation Maximization Wrocław University of Technology SPOTKANIE 6: Klasteryzacja: K-Means, Expectation Maximization Jakub M. Tomczak Studenckie Koło Naukowe Estymator jakub.tomczak@pwr.wroc.pl 4.1.213 Klasteryzacja Zmienne

Bardziej szczegółowo

Algorytmy mrówkowe (optymalizacja kolonii mrówek, Ant Colony optimisation)

Algorytmy mrówkowe (optymalizacja kolonii mrówek, Ant Colony optimisation) Algorytmy mrówkowe (optymalizacja kolonii mrówek, Ant Colony optimisation) Jest to technika probabilistyczna rozwiązywania problemów obliczeniowych, które mogą zostać sprowadzone do problemu znalezienie

Bardziej szczegółowo

Kinematyka relatywistyczna

Kinematyka relatywistyczna Kinematyka relatywistyczna Fizyka I (B+C) Wykład VI: Prędkość światła historia pomiarów doświadczenie Michelsona-Morleya prędkość graniczna Teoria względności Einsteina Dylatacja czasu Prędkość światła

Bardziej szczegółowo

Ćwiczenie nr 2 : Badanie licznika proporcjonalnego fotonów X

Ćwiczenie nr 2 : Badanie licznika proporcjonalnego fotonów X Ćwiczenie nr 2 : Badanie licznika proporcjonalnego fotonów X Oskar Gawlik, Jacek Grela 16 lutego 2009 1 Podstawy teoretyczne 1.1 Liczniki proporcjonalne Wydajność detekcji promieniowania elektromagnetycznego

Bardziej szczegółowo

Feynmana wykłady z fizyki. [T.] 1.1, Mechanika, szczególna teoria względności / R. P. Feynman, R. B. Leighton, M. Sands. wyd. 7.

Feynmana wykłady z fizyki. [T.] 1.1, Mechanika, szczególna teoria względności / R. P. Feynman, R. B. Leighton, M. Sands. wyd. 7. Feynmana wykłady z fizyki. [T.] 1.1, Mechanika, szczególna teoria względności / R. P. Feynman, R. B. Leighton, M. Sands. wyd. 7. Warszawa, 2014 Spis treści Spis rzeczy części 2 tomu I O Richardzie P. Feynmanie

Bardziej szczegółowo

EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019

EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019 EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019 MATEMATYKA Przykładowy arkusz egzaminacyjny (EO_5) Czas pracy: do 150 minut GRUDZIEŃ 2017 Centralna Komisja Egzaminacyjna Warszawa Zadanie 1. (0 1) Z okazji

Bardziej szczegółowo

I V X L C D M. Przykłady liczb niewymiernych: 3; 2

I V X L C D M. Przykłady liczb niewymiernych: 3; 2 1 LICZBY Liczby naturalne: 0; 1; 2; 3;.... Liczby całkowite:...; -3; -2; -1; 0; 1; 2; 3;.... Liczbą wymierną nazywamy każdą liczbę, którą można zapisać w postaci ułamka a b, gdzie a i b są liczbami całkowitymi,

Bardziej szczegółowo

MATEMATYKA ZP Ramowy rozkład materiału na cały cykl kształcenia

MATEMATYKA ZP Ramowy rozkład materiału na cały cykl kształcenia MATEMATYKA ZP Ramowy rozkład materiału na cały cykl kształcenia KLASA I (3 h w tygodniu x 32 tyg. = 96 h; reszta godzin do dyspozycji nauczyciela) 1. Liczby rzeczywiste Zbiory Liczby naturalne Liczby wymierne

Bardziej szczegółowo

Fizyka 2. Janusz Andrzejewski

Fizyka 2. Janusz Andrzejewski Fizyka 2 wykład 14 Janusz Andrzejewski Atom wodoru Wczesne modele atomu -W czasach Newtona atom uważany była za małą twardą kulkę co dość dobrze sprawdzało się w rozważaniach dotyczących kinetycznej teorii

Bardziej szczegółowo