Wykłady z dydaktyki matematyki (klasy IV-VIII) III rok matematyki semestr zimowy 2017/2018 wykład i ćwiczenia nr 1
|
|
- Eugeniusz Pluta
- 7 lat temu
- Przeglądów:
Transkrypt
1 Wykłady z dydaktyki matematyki (klasy IV-VIII) III rok matematyki semestr zimowy 2017/2018 wykład i ćwiczenia nr 1
2 Reguły współpracy obecności na wykładzie nie są obowiązkowe, ale nieobecności nie należy usprawiedliwiać egzamin: lista tematów teoretycznych oraz zadania (lista zadań będzie dotyczyła także kolokwium) ocena za ćwiczenia będzie miała wpływ na stopień z egzaminu, zwłaszcza w sprawach spornych
3 Tematyka Jak przebiega uczenie się matematyki? Jakie są źródła trudności w uczeniu się matematyki? Co sprzyja większej efektywności nauczania, a co przeszkadza? Dobór metod, środków nauczania, organizacji nauczania. W jaki sposób nowoczesne technologie wpływają na uczenie się i nauczanie matematyki? Analiza błędów uczniów i jak sobie radzić z tymi błędami.
4 Zasady nauczania matematyki Zasada trzech etapów W nauczaniu każdego matematycznego pojęcia należy starać się, aby wystąpiły trzy etapy: enaktywny, ikoniczny i symboliczny.
5 Zasada trzech etapów przykład Etap enaktywny polega na policzeniu 3 jabłek i 2 gruszek, a zadanie dla ucznia jest następujące: Przełóż na duży talerz 3 jabłka i 2 gruszki, a następnie odpowiedz, ile razem owoców jest na talerzu. Etap ikoniczny polega na podobnym zadaniu, jednak teraz operujemy na obrazkach: Pokoloruj 3 jabłka i 2 gruszki, a następnie odpowiedz, ile razem owoców pokolorowałeś. Etap symboliczny to zapisanie działania, zobrazowanego w dwóch poprzednich etapach, za pomocą symboli: Zapisz za pomocą cyfr i znaku dodawania sumę liczb 3 oraz 2, i wynik tego dodawania.
6 Zasady nauczania matematyki Zasada naukowości Treści nauczania i sposoby ich przedstawiania muszą być zgodne z aktualnym stanem nauki i techniki. Zasada poglądowości Zasada poglądowości polega na takim opracowaniu materiału, przy którym wyobrażenia i pojęcia uczniów kształtują się na podstawie aktualnego lub dawniejszego postrzegania autentycznych przedmiotów i autentycznych zjawisk, lub co najmniej wiernych ich modeli.
7 Zasada poglądowości Słownik Języka Polskiego poglądowy to polegający na bezpośredniej obserwacji wzrokowej, odwołujący się do tej obserwacji, unaoczniający coś. Lekcja poglądowa, nauka praktyczna polegająca na bezpośrednim pokazie czegoś. Zasada poglądowości bywa nazywana zasadą konkretności, uczymy od konkretu do abstrakcji.
8 Przykład dotyczący zasady poglądowości pole figury = pole koła figura ta przypomina prostokąt pole figury = pole koła figura ta jeszcze bardziej przypomina prostokąt pole koła = r 2
9 Zasady nauczania matematyki Zasada świadomego i aktywnego uczenia się Zasada trwałości wiedzy Zasada systematyczności i logicznej kolejności Zasada przystępności nauczania Zasada wiązania teorii z praktyką Zasada spiralnego nauczania
10 Zasada trwałości wiedzy Należy uczyć tak, aby pozwalało to na trwałe opanowanie wiedzy przez uczniów. pamięć i jej rodzaje aktywność ucznia i jego motywacja do uczenia się stosowanie różnorodnych środków ustalenie proporcji między materiałem, który należy zapamiętać i utrwalać, a materiałem pomocniczym
11 Zasada systematyczności i logicznej kolejności W nauczaniu należy zachować logiczną kolejność. Przekazywana wiedza powinna być systematyzowana i porządkowana.
12 Zasada paralelizmu Rozwój matematyczny jednostki powtarza w wielkim skrócie dzieje matematyki. Rozwój matematyczny jednostki to indywidualny rozwój normalnego człowieka, nabywanie przezeń w wyniku przedszkolnego, szkolnego i pozaszkolnego uczenia się kompetencji matematycznych. Dzieje matematyki to etapy jej rozwoju, które umiemy wyróżnić.
13 Podział dziejów matematyki okres narodzin okres autorytetu (Verba magistri, Magister dixit, matematyka prawda objawiana przez nauczającego) okres konceptualizacji i konkretnej analizy (ogólne pojęcia liczby, figury geometrycznej; nauczyciel przekonuje ucznia, używając dedukcji) okres aksjomatyczno-dedukcyjny okres matematyzacji przyrody (stosowanie matematyki do opisu np. ruchu) wiek XIX (uściślono wiele pojęć, np. granicy, ciągłości) wiek XX i wiek XXI (nowe dziedziny teoria mnogości, rachunek prawdopodobieństwa, statystyka; coraz większa rola technologii w matematyce i jej nauczaniu)
14 Galileusz Filozofia została napisana w wielkiej, stale przed naszymi oczyma rozwartej księdze, ale nie pojmiemy z niej ani słowa, póki nie nauczymy się jej języka i nie przyswoimy sobie symboli, jakimi została napisana. Językiem tej księgi jest matematyka, symbolami zaś trójkąty, okręgi i inne figury, bez pomocy których daremnie się błąkamy w ciemnym labiryncie niewiedzy.
15 Literatura [K1] Krygowska Zofia, Zarys dydaktyki matematyki, część 1, WSiP, Warszawa, 1979, str.12. [Si] Siwek Helena, Dydaktyka matematyki, WSiP, 2005, str [T] Turnau Stefan, Wykłady o nauczaniu matematyki, PWN, 1990, str [D] Duda Roman, Ewolucja matematyki a jej nauczanie, Dydaktyka Matematyki, 1989, t.11, str [U] Urbańczyk Franciszek, Zasady nauczania matematyki, PZWS, 1960 [Szu3] Michał Szurek, O nauczaniu matematyki, tom 3, GWO, 2006
16 Ćwiczenia nr 1 Zasady współpracy: jedna nieobecność nieusprawiedliwiona kolokwium, aktywność, zadania domowe zadania do kolokwium na stronie, ponadto przekształcone zadania z ćwiczeń konsultacje: wtorki?-?, p.112
17 Zasady nauczania matematyki przykłady, niebezpieczeństwa,... Zasada trzech etapów: W nauczaniu każdego matematycznego pojęcia należy starać się, aby wystąpiły trzy etapy (trzy reprezentacje), enaktywny, ikoniczny i symboliczny. Praca w grupach: Zastosuj zasadę trzech etapów przy planowaniu zajęć na temat: ułamki zwykłe, długość, kąty, graniastosłupy, ostrosłupy, wyrażenia algebraiczne, dzielniki liczby naturalnej.
18 Zasada naukowości Długość geograficzna to miara kata dwuściennego miedzy płaszczyzną południka zerowego a płaszczyzną południka miejscowego.
19 Zasada wiązania teorii z praktyką Autentyczna historia
20 Zasada świadomego i aktywnego nauczania Zadaniem nauczyciela jest takie zaplanowanie procesu nauczania, aby uczeń uświadamiał sobie, jakie zadanie rozwiązuje, jakie twierdzenie jest dowodzone, aby aktywnie brał udział w odkrywaniu matematycznych prawidłowości.
21 Zasada świadomego i aktywnego nauczania Uzasadnienie tricku dla liczb postaci 10k + 5. Znalezienie tricku dla liczb postaci 10k + 1. Zadanie badawcze nr 1: K 1 = 1, K 2 = 5, K 3 = 14, K 4 =?,, K n =?
22 Zadanie badawcze nr 2
23 Zadanie domowe Zastosuj zasadę trzech etapów do wprowadzenia pojęcia liczby pierwszej (do oddania za tydzień na kartkach). Znajdź wzór jawny dla K n. Zagraj w grę DZIELNIKI, spróbuj znaleźć teorię i strategię dla niedużej liczby kamyków.
Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2018/2019 Ćwiczenia nr 5
Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2018/2019 Ćwiczenia nr 5 Zadanie domowe Kolokwium: przeczytaj z [U] o błędach w stosowaniu zasady poglądowości w nauczaniu matematyki
Dydaktyka matematyki (III etap edukacyjny) IV rok matematyki Semestr letni 2017/2018 Ćwiczenia nr 2
Dydaktyka matematyki (III etap edukacyjny) IV rok matematyki Semestr letni 2017/2018 Ćwiczenia nr 2 Zadanie domowe Zapoznaj się z PODSTAWĄ PROGRAMOWĄ dla szkoły podstawowej (dokument na stronie internetowej).
Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2018/2019 Ćwiczenia nr 4
Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2018/2019 Ćwiczenia nr 4 Z Waszych pogadanek Czy wie ktoś, ile równa się 1%? (jedno z pierwszych pytań) Która liczba jest większa:
Dydaktyka matematyki (III etap edukacyjny) IV rok matematyki Semestr letni 2017/2018 Ćwiczenia nr 1
Dydaktyka matematyki (III etap edukacyjny) IV rok matematyki Semestr letni 2017/2018 Ćwiczenia nr 1 https://mat.ug.edu.pl/~matpz/ matpz@mat.ug.edu.pl Ocena aktywność na ćwiczeniach (ekstra punkty 5 p.)
Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 1
Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 1 https://mat.ug.edu.pl/~matpz/ Ocena nieobecności jedna nieusprawiedliwiona aktywność na ćwiczeniach (5
Zagadnienia wybrane nauczania matematyki Kod przedmiotu
Zagadnienia wybrane nauczania matematyki - opis przedmiotu Informacje ogólne Nazwa przedmiotu Zagadnienia wybrane nauczania matematyki Kod przedmiotu 05.1-WP-EEiTP-ZWNM Wydział Kierunek Wydział Pedagogiki,
Kod przedmiotu: 05.1-WP-PED-PNM Typ przedmiotu: specjalnościowy
P O D S TT A W Y N A U C ZZ A N I A M A TT E M A TT Y K I Kod przedmiotu: 05.1-WP-PED-PNM Typ przedmiotu: specjalnościowy Język nauczania: polski Odpowiedzialny za przedmiot: nauczyciel akademicki prowadzący
KARTA KURSU (realizowanego w module specjalności) MATEMATYKA (specjalność nauczycielska) (nazwa specjalności)
KARTA KURSU (realizowanego w module specjalności) MATEMATYKA (specjalność nauczycielska) (nazwa specjalności) Nazwa Dydaktyka matematyki dla II etapu edukacyjnego 2 Nazwa w j. ang. Didactics of Mathematics
SCENARIUSZ LEKCJI. 3.Temat lekcji: Wyrażenia algebraiczne -powtórzenie i utrwalenie wiadomości. 4.Integracja: wewnątrzprzedmiotowa
SCENARIUSZ LEKCJI.Informacje wstępne Publiczne Gimnazjum Nr 6 w Opolu Data:2.2.202 r. Klasa:.II b Czas trwania zajęć: 45 min. Nauczany przedmiot: matematyka Nauczyciel: Ewa Jakubowska 2.Program nauczania
Renata Krzemińska. nauczyciel matematyki i informatyki
Program zajęć wyrównawczych w Gimnazjum Matematyka J1 w ramach projektu pn. Czym skorupka za młodu nasiąknie - rozwój kompetencji kluczowych uczniów Zespołu Szkół w Nowej Wsi Lęborskiej Renata Krzemińska
Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2018/2019 Ćwiczenia nr 2
Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2018/2019 Ćwiczenia nr 2 Zadanie domowe Rozwiązanie zadania: o rozumowanie ucznia ( wzroczne, wycięcie i nałożenie, złożenie) o
PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI
PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W KLASACH IV VI ( STANDARDY WYMAGAŃ w roku szkolnym 2015 / 2016 ) I. Obszary aktywności ucznia podlegające ocenie. Na lekcjach matematyki oceniane będą następujące
II. Zasady nauczania. Ligia Tuszyńska wykład dla doktorantów wydziałów przyrodniczych 2013
II. Zasady nauczania Ligia Tuszyńska wykład dla doktorantów wydziałów przyrodniczych 2013 1 Zasady nauczania (B. Nawroczyński, K. Sośnicki, Cz. Kupisiewicz) Zasady kształcenia (W. Okoń) Zasady uczenia
Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 6
Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 6 Zasady nauczania trzech etapów naukowości poglądowości świadomego i aktywnego uczenia się trwałości wiedzy
Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 9
Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 9 Karta pracy: podzielność przez 9 Niektóre są dobre, z drobnymi usterkami. Największy błąd: nie ma sformułowanej
Matematyka Szkoła podstawowa
Matematyka Szkoła podstawowa Podstawowe założenia, filozofia zmiany i kierunki działania Autorzy: Maciej Borodzik, Regina Pruszyńska Założenia Dostosowanie treści nauczania do rozwoju dziecka. Zachowanie
Ocena poziomu rozwoju podstawowych zdolności arytmetycznych w oparciu o baterie testów wydawnictwa PROMATHEMATICA
Ocena poziomu rozwoju podstawowych zdolności arytmetycznych w oparciu o baterie testów wydawnictwa PROMATHEMATICA Profil arytmetyczny U Test Porównywania Ilości Figur określa: Proces rozumienia liczb na
Dydaktyka matematyki III-IV etap edukacyjny (wykłady) Wykład nr 3: Wprowadzanie i definiowanie matematycznych pojęć Semestr zimowy 2018/2019
Dydaktyka matematyki III-IV etap edukacyjny (wykłady) Wykład nr 3: Wprowadzanie i definiowanie matematycznych pojęć Semestr zimowy 2018/2019 Zasada trzech etapów (jeszcze raz) Trzy etapy, enaktywny, ikoniczny
Wymagania edukacyjne na poszczególne oceny z matematyki
Szczegółowe kryteria ocen dla klasy czwartej. 1. Ocenę dopuszczającą otrzymuje uczeń, który: Zna zależności wartości cyfry od jej położenia w liczbie, Zna kolejność działań bez użycia nawiasów, Zna algorytmy
egzaminu gimnazjalnego z matematyki dla uczniów klas IIIA
PROJEKT EDUKACYJNY ROK SZK. 2011/2012 Program zajęć przygotowujących do egzaminu gimnazjalnego z matematyki dla uczniów klas IIIA Opracowanie: Jadwiga Głazman Projekt zajęć przygotowujących do egzaminu
Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas
Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas klasa I 1)Działania na liczbach: dopuszczający: uczeń potrafi poprawnie wykonać cztery podstawowe działania na ułamkach
Program zajęć wyrównawczych z matematyki dla grupy 6.1. zajęcia pozalekcyjne realizowane w ramach projektu
Program zajęć wyrównawczych z matematyki dla grupy 6.1 zajęcia pozalekcyjne realizowane w ramach projektu " One Two Three - eksperymentujemy z matematyką i językiem angielskim - program rozwijania kompetencji
PROGRAM ZAJĘĆ MATEMATYCZNYCH DLA UCZNIÓW Z DYSLEKSJĄ V KLASA SZKOŁY PODSTAWOWEJ
PROGRAM ZAJĘĆ MATEMATYCZNYCH DLA UCZNIÓW Z DYSLEKSJĄ V KLASA SZKOŁY PODSTAWOWEJ Opracowała : Dorota Kochańska 1 WSTĘP Indywidualizacja procesu nauczania w pracy z uczniem o szczególnych potrzebach edukacyjnych
Krakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2012/2013
Krakowska Akademia im. Andrzeja Frycza Modrzewskiego Karta przedmiotu Wydział Nauk o Bezpieczeństwie obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 01/01 Kierunek studiów: Bezpieczeństwo
Scenariusz lekcji. Opracował: Paweł Słaby
Scenariusz lekcji 1. Informacje wstępne: Klasa: uczniowie szkoły ponadgimnazjalnej, realizujący poziom podstawowy bądź rozszerzony; Czas trwania zajęć: 45 minut; Nauczany przedmiot: matematyka.. Temat
RÓŻNE KONCEPCJE NAUCZANIA
RÓŻNE KONCEPCJE NAUCZANIA MATEMATYKI KONCEPCJA DYDAKTYCZNA Teoria Projekt CZYNNOŚCIOWE NAUCZANIE MATEMATYKI Przejście od konkretu do abstrakcji Zofia Krygowska Helena Siwek Zarys dydaktyki matematyki,
ARKUSZ HOSPITACYJNY. (wyłącznie do użytku służbowego)
1. Imię i nazwisko nauczyciela 2. Przedmiot ARKUSZ HOSPITACYJNY (wyłącznie do użytku służbowego) 3. Data 4. Długość jednostki lekcyjnej 5. Klasa szkoła specjalność (zawód) 6. Temat lekcji 7. Typ zajęć
Przedmiotowy system oceniania z matematyki
Przedmiotowy system oceniania z matematyki w Gimnazjum im. św. Franciszka z Asyżu w Teresinie I. Obszary aktywności Na lekcjach oceniane będą następujące obszary aktywności uczniów: 1. Stopień rozumienia
PROGRAM KOŁA MATEMATYCZNEGO Klasa IV
PROGRAM KOŁA MATEMATYCZNEGO Klasa IV SZKOŁA PODSTAWOWA Z ODDZIAŁAMI INTEGRACYJNYMI W JANOWSZCZYŹNIE ROK SZKOLNY 2017/2018 Opracowała mgr Katarzyna Sarosiek Matematyka - to bardziej czynność niż nauka.
PROGRAM KOŁA MATEMATYCZNEGO DO REALIZACJI W KLASIE SZÓSTEJ
PROGRAM KOŁA MATEMATYCZNEGO DO REALIZACJI W KLASIE SZÓSTEJ Opracowała mgr Maria Kardynał nauczycielka matematyki w Szkole Podstawowej w Solcu Zdroju Spis treści: I Wstęp II Podstawowe założenia programu.
PROGRAM AUTORSKI ZAJĘĆ WYRÓWNAWCZYCH Z MATEMATYKI OPRACOWANY PRZEZ MGR ANNĘ JAKUBOWICZ
PROGRAM AUTORSKI ZAJĘĆ WYRÓWNAWCZYCH Z MATEMATYKI OPRACOWANY PRZEZ MGR ANNĘ JAKUBOWICZ WPROWADZENIE W projekcie Kierunek zamawiany Informatyka stosowana zaplanowane są zajęcia wyrównawcze z matematyki.
KRYTERIA OCENIANIA W CHEMII ZGODNIE Z PSO
KRYTERIA OCENIANIA W CHEMII ZGODNIE Z PSO I. Obszary aktywności Na lekcjach chemii oceniane będą następujące obszary aktywności uczniów: 1. Stopień rozumienia pojęć, terminów i praw chemicznych 2. Sposób
Pomyśl Policz - Pokaż, czyli eksperyment w matematyce
Program dodatkowych zajęć z matematyki Pomyśl Policz - Pokaż, czyli eksperyment w matematyce Zajęcia realizowane w ramach projektu One Two Three - eksperymentujemy z matematyką i językiem angielskim -
1. Zajęcia organizacyjne. Zapoznanie z programem zajęć z dydaktyki zintegrowanego nauczania przyrody. oraz wymogami zaliczenia.
Dydaktyka zintegrowanego nauczania przyrody Kierunek : Wychowanie Fizyczne, specjalność: wychowanie fizyczne i przyroda II rok semestr 3 stacjonarne studia pierwszego stopnia Rok akademicki 2015/16 Tematyka
Wymagania edukacyjne na poszczególne oceny z matematyki
Szczegółowe kryteria ocen dla klasy szóstej. 1.Ocenę dopuszczającą otrzymuje uczeń, który: Dodaje, odejmuje, mnoży liczby wymierne, Zapisuje ułamki zwykłe i dziesiętne oraz wykonuje na nich działania,
Cele kształcenia wymagania ogólne (przedruk z podstawy programowej) Ramowy plan nauczania zakres podstawowy. Podręcznik 3 (3 godziny 25 tygodni)
PLAN WYNIKOWY dla techników i liceów ogólnokształcących zakres podstawowy do Podręcznika 3 z serii Matematyka w otaczającym nas świecie Wydawnictwa Podkowa Plan wynikowy polega na zaplanowaniu umiejętności
SCENARIUSZ LEKCJI. Podstawa programowa: Figury płaskie. Uczeń:
SCENARIUSZ LEKCJI 1. Informacje wstępne: Szkoła : Publiczne Gimnazjum nr 6 w Opolu Data : 21.01.2013 Klasa : I A Czas trwania zajęć : 45 minut Nauczany przedmiot: matematyka 2. Program nauczania: Matematyka
Rok szkolny 2013/2014 PLAN PRACY ZAJĘĆ PRZYGOTOWUJĄCYCH DO EGZAMINU GIMNAZJALNEGO DLA UCZNIÓW KLASY IIIB
Rok szkolny 2013/2014 PLAN PRACY ZAJĘĆ PRZYGOTOWUJĄCYCH DO EGZAMINU GIMNAZJALNEGO DLA UCZNIÓW KLASY IIIB Zajęcia realizowane w ramach godzin karcianych nauczyciela w wymiarze 2 godzin tygodniowo (środy
Matematyka z kluczem. Układ treści w klasach 4 8 szkoły podstawowej. KLASA 4 (126 h) część 1 (59 h) część 2 (67 h)
Matematyka z kluczem Układ treści w klasach 4 8 szkoły podstawowej KLASA 4 (126 h) część 1 (59 h) I. LICZBY NATURALNE część 1 (23) 1. Jak się uczyć matematyki (1) 2. Oś liczbowa 3. Jak zapisujemy liczby
Matematyka z kluczem. Układ treści w klasach 4 8 szkoły podstawowej. KLASA 4 (126 h) część 1 (59 h) część 2 (67 h)
Matematyka z kluczem Układ treści w klasach 4 8 szkoły podstawowej KLASA 4 (126 h) część 1 (59 h) I. LICZBY NATURALNE część 1 (23) 1. Jak się uczyć matematyki (1) 2. Oś liczbowa 3. Jak zapisujemy liczby
SYLABUS DOTYCZY CYKLU KSZTAŁCENIA (skrajne daty)
Załącznik nr 4 do Uchwały Senatu nr 430/01/2015 SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2015-2018 (skrajne daty) 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu Dydaktyka matematyki
SYLABUS DOTYCZY CYKLU KSZTAŁCENIA (skrajne daty)
Załącznik nr 4 do Uchwały Senatu nr 430/01/2015 SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2015-2018 (skrajne daty) 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu Dydaktyka matematyki
Program zajęć wyrównawczych z matematyki dla grupy 5.3. zajęcia pozalekcyjne realizowane w ramach projektu
Program zajęć wyrównawczych z matematyki dla grupy 5.3 zajęcia pozalekcyjne realizowane w ramach projektu " One Two Three - eksperymentujemy z matematyką i językiem angielskim - program rozwijania kompetencji
PRZEDMIOTOWE OCENIANIE Z MATEMATYKI I. CELE KSZTAŁCENIA I TREŚCI NAUCZANIA
PRZEDMIOTOWE OCENIANIE Z MATEMATYKI I. CELE KSZTAŁCENIA I TREŚCI NAUCZANIA Cele kształcenia i treści nauczania reguluje podstawa programowa przedmiotu, zatwierdzona przez właściwego ministra dla II etapu
Małgorzata Spendel ROM-E Metis Katowice
OBSZARY DOSTOSOWANIA WYMAGAŃ WOBEC UCZNIÓW Z SPE Małgorzata Spendel ROM-E Metis Katowice Dostosowanie wymagań edukacyjnych Zasady kształcenia Metody kształcenia Formy kształcenia Środki realizacji kształcenia
Algebra I sprawozdanie z badania 2014-2015
MATEMATYKA Algebra I sprawozdanie z badania 2014-2015 IMIĘ I NAZWISKO Data urodzenia: 08/09/2000 ID: 5200154019 Klasa: 11 Niniejsze sprawozdanie zawiera informacje o wynikach zdobytych przez Państwa dziecko
PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI. W KLASACH IV VI SZKOŁY PODSTAWOWEJ im. ORŁA BIAŁEGO W BORAWEM
PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI W KLASACH IV VI SZKOŁY PODSTAWOWEJ im. ORŁA BIAŁEGO W BORAWEM 1. Procedury osiągania celów Podstawową formą organizacyjną nauczania matematyki w szkole jest lekcja.
Program zajęć wyrównawczych z matematyki dla grupy 4.2. Metoda projektu w nauczaniu matematyki. zajęcia pozalekcyjne realizowane w ramach projektu
Program zajęć wyrównawczych z matematyki dla grupy 4. Metoda projektu w nauczaniu matematyki zajęcia pozalekcyjne realizowane w ramach projektu " One Two Three - eksperymentujemy z matematyką i językiem
Modelowanie wybranych pojęć matematycznych. semestr letni, 2016/2017 Wykład 8 Funkcje w matematyce szkolnej
Modelowanie wybranych pojęć matematycznych semestr letni, 2016/2017 Wykład 8 Funkcje w matematyce szkolnej Co to jest objętość? Wyniki ankiety Objętość jest to przestrzeń jaką zajmuje dana figura. Ilość
Program edukacyjny wspierający nauczanie matematyki w klasach III - VII
Program edukacyjny wspierający nauczanie matematyki w klasach III - VII Teresa Świrska Aleksandra Jakubowska Małgorzata Niedziela Wrocław 2019 I. W S T Ę P Intencją autorów programu Z kalkulatorem, kartami
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2016/2017 ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2016/2017 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M8 KWIECIEŃ 2017 Zadanie 1. (0 1) Wymagania szczegółowe Umiejętności z zakresu
Przedmiotowy System Oceniania w SP 77. w klasach IV - VI. matematyka
Przedmiotowy System Oceniania w SP 77 w klasach IV - VI matematyka Spis treści I. Główne założenia PSO... 2 II. Obszary aktywności podleające ocenie... 2 III. Wymagania na poszczególne oceny z uwzględnieniem
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZE: GM-MX1, GM-M2, GM-M4, GM-M5 KWIECIEŃ 2018 Zadanie 1. (0 1) I. Wykorzystanie i
Krzyżówka oraz hasła do krzyżówki. Kalina R., Przewodnik po matematyce dla klas VII-VIII, część IV, SENS, Poznań 1997, s.20-22.
Omnibus matematyczny 1. Cele lekcji a) Wiadomości Uczeń: zna pojęcia matematyczne z zakresu szkoły podstawowej i gimnazjum. b) Umiejętności Uczeń: potrafi podać odpowiednie pojęcie matematyczne na podstawie
PRZEDMIOTOWY SYSTEM OCENIANIA DLA KLAS IV VI SZKOŁA PODSTAWOWA NR 10 W KOSZALINIE
PRZEDMIOTOWY SYSTEM OCENIANIA DLA KLAS IV VI SZKOŁA PODSTAWOWA NR 10 W KOSZALINIE (opracowali Janina Kurek, Henryk Zarach, Katarzyna Matusz) ZASADY PSO 1. PSO ma na celu czytelne przedstawienie wymagań
PROGRAM NAUCZANIA PRZEDMIOTU OBOWIĄZKOWEGO NA WYDZIALE LEKARSKIM I ROK AKADEMICKI 2014/2015 PRZEWODNIK DYDAKTYCZNY dla STUDENTÓW IV ROKU STUDIÓW
PROGRAM NAUCZANIA PRZEDMIOTU OBOWIĄZKOWEGO NA WYDZIALE LEKARSKIM I ROK AKADEMICKI 2014/2015 PRZEWODNIK DYDAKTYCZNY dla STUDENTÓW IV ROKU STUDIÓW 1. NAZWA PRZEDMIOTU : BIOSTATYSTYKA 2. NAZWA JEDNOSTKI (jednostek
PROGRAM ZAJĘĆ WYRÓWNAWCZYCH Z MATEMATYKI DLA UCZNIÓW KLASY IV. Realizowanych w ramach projektu: SZKOŁA DLA KAŻDEGO
PROGRAM ZAJĘĆ WYRÓWNAWCZYCH Z MATEMATYKI DLA UCZNIÓW KLASY IV Realizowanych w ramach projektu: SZKOŁA DLA KAŻDEGO Opracowała: Marzanna Leśniewska I. WSTĘP Matematyka potrzebna jest każdemu. Spotykamy się
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019 MATEMATYKA rozwiązań zadań z arkusza egzaminacyjnego OMAP-800 KWIECIEŃ 2019 Centralna Komisja Egzaminacyjna Warszawa Zadanie 1. (0 3) Podstawa programowa
Wymagania edukacyjne niezbędne do otrzymania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z matematyki dla klasy VIII
Wymagania edukacyjne niezbędne do otrzymania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z matematyki dla klasy VIII Temat 1. System rzymski. 2. Własności liczb naturalnych. 3. Porównywanie
PRZEDMIOTOWY SYSTEM OCENIANIA - MATEMATYKA
PRZEDMIOTOWY SYSTEM OCENIANIA - MATEMATYKA WYMAGANIA KONIECZNE - OCENA DOPUSZCZAJĄCA uczeń posiada niepełną wiedzę określoną programem nauczania, intuicyjnie rozumie pojęcia, zna ich nazwy i potrafi podać
Metodyka rozwiązywania zadań matematycznych 3 - opis przedmiotu
Metodyka rozwiązywania zadań matematycznych 3 - opis przedmiotu Informacje ogólne Nazwa przedmiotu Metodyka rozwiązywania zadań matematycznych 3 Kod przedmiotu 05.3-WK-MATD-MRZM3-Ć-S14_pNadGenD31UH Wydział
KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP WOJEWÓDZKI
Kod ucznia - - pieczątka WKK Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP WOJEWÓDZKI Drogi Uczniu Witaj na III etapie konkursu matematycznego. Przeczytaj uważnie
KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM
KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM Na stopień dostateczny uczeń powinien umieć: Arytmetyka - zamieniać procent/promil na liczbę i odwrotnie, - zamieniać procent na promil i odwrotnie, - obliczać
Scenariusz lekcyjny Obliczanie pierwiastków dowolnego stopnia i stosowanie praw działań na pierwiastkach. Scenariusz lekcyjny
Scenariusz lekcyjny Data: 25 wrzesień 2012 rok. Klasa: I c liceum ogólnokształcące (profil bezpieczeństwo wewnętrzne). Czas trwania zajęć: 45 minut. Nauczany przedmiot: matematyka. Program nauczania: program
Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 8
Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 8 Scenariusze na temat objętości Pominięcie definicji poglądowej objętości kolosalny błąd (w podsumowaniu
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019 MATEMATYKA rozwiązań zadań z arkusza egzaminacyjnego OMAP-Q00-1904 KWIECIEŃ 2019 Centralna Komisja Egzaminacyjna Warszawa Zadanie 1. (2 pkt) Podstawa programowa
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA KLASA 8 DZIAŁ 1. LICZBY I DZIAŁANIA
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA KLASA 8 DZIAŁ 1. LICZBY I DZIAŁANIA zna znaki używane do zapisu liczb w systemie rzymskim; zna zasady zapisu liczb w systemie rzymskim; umie zapisać
OPIS MODUŁU KSZTAŁCENIA (przedmiotu lub grupy przedmiotów)
OPIS MODUŁU KSZTAŁCENIA (przedmiotu lub grupy przedmiotów) Nazwa modułu Przygotowanie w zakresie dydaktycznym Przedmioty: Dydaktyka techniki w szkole podstawowej Dydaktyka zajęć komputerowych w szkole
rozwiązuje - często przy pomocy nauczyciela - zadania typowe, o niewielkim stopniu trudności
KRYTERIA OCENIANIA Z MATEMATYKI Klasa I Gimnazjum Kryteria ocen i wymagań: Ocenę dopuszczającą otrzymuje uczeń, który: w ograniczonym zakresie opanował podstawowe wiadomości i umiejętności, a braki nie
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE VIII
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE VIII Uczeń na ocenę dopuszczającą: - zna znaki używane do zapisu liczb w systemie rzymskim, - umie zapisać i odczytać liczby naturalne dodatnie w systemie rzymskim
Wśród prostokątów o jednakowym obwodzie największe pole. ma kwadrat. Scenariusz zajęć z pytaniem problemowym dla. gimnazjalistów.
1 Wśród prostokątów o jednakowym obwodzie największe pole ma kwadrat. Scenariusz zajęć z pytaniem problemowym dla gimnazjalistów. Czas trwania zajęć: 45 minut Potencjalne pytania badawcze: 1. Jaki prostokąt
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2016/2017 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 016/017 CZĘŚĆ. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M7 KWIECIEŃ 017 Zadanie 1. (0 1) II. Wykorzystywanie i interpretowanie reprezentacji.
Kryteria oceniania z matematyki dla klas V- VI w Szkole Podstawowej nr 3 w Jastrzębiu Zdroju.
Kryteria oceniania z matematyki dla klas V- VI w Szkole Podstawowej nr 3 w Jastrzębiu Zdroju. Wiadomości i umiejętności przez Was opanowane będą sprawdzane w formie: odpowiedzi i wypowiedzi ustnych, prac
PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W GIMNAZJUM
PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W GIMNAZJUM 1. Każdy uczeń jest oceniany zgodnie z zasadami sprawiedliwości. 2. Ocenie podlegają wszystkie wymienione w pkt. II formy aktywności ucznia. 3. Każdy
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2014/2015
EGZAMIN W KLASIE TRZEIEJ GIMNAZJUM W ROKU SZKOLNYM 2014/2015 ZĘŚĆ 2. MATEMATYKA ZASADY OENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M8 KWIEIEŃ 2015 Zadanie 1. (0 1) 7) stosuje obliczenia na liczbach wymiernych do
Zajęcia dodatkowe z matematyki dla klasy II i III gimnazjum
183 - Zajęcia dodatkowe z matematyki - kółko matematyczne dla klasy II i III gimnazjum Jesteś zalogowany(a) jako Recenzent (Wyloguj) Kreatywna szkoła ZP_183 Osoby Uczestnicy Certificates Fora dyskusyjne
Podkowiańska Wyższa Szkoła Medyczna im. Z. i J. Łyko. Syllabus przedmiotowy 2017/ /22 r.
Podkowiańska Wyższa Szkoła Medyczna im. Z. i J. Łyko Syllabus przedmiotowy 017/18 01/ r. Wydział Fizjoterapii Kierunek studiów Fizjoterapia Specjalność ----------- Forma studiów Stacjonarne Stopień studiów
Przedmiotowe Zasady Oceniania matematyka, geometria w ćwiczeniach, funkcje w zastosowaniach Sposoby sprawdzania osiągnięć edukacyjnych
Przedmiotowe Zasady Oceniania matematyka, geometria w ćwiczeniach, funkcje w zastosowaniach Sposoby sprawdzania osiągnięć edukacyjnych Ocenie podlegają: a) sprawdziany pisemne wiadomości: - kartkówka obejmuje
Analiza wyników egzaminu gimnazjalnego 2013 r. Test matematyczno-przyrodniczy (matematyka) Test GM-M1-132
Analiza wyników egzaminu gimnazjalnego 2013 r. Test matematyczno-przyrodniczy (matematyka) Test GM-M1-132 Zestaw zadań z zakresu matematyki posłużył w dniu 24 kwietnia 2013 roku do sprawdzenia u uczniów
Planowanie zajęć dydaktycznych stanowi roboczą syntezę treści nauczania, logiczne dopełnienie wcześniej przeprowadzonej analizy.
Planowanie zajęć dydaktycznych stanowi roboczą syntezę treści nauczania, logiczne dopełnienie wcześniej przeprowadzonej analizy. PROCES PLANOWANIA ZAJĘĆ DYDAKTYCZNYCH MOŻE BYĆ ROZDZIELONY NA TRZY ETAPY:
SZKOŁA PODSTAWOWA NR 1 IM. ŚW. JANA KANTEGO W ŻOŁYNI. Wymagania na poszczególne oceny klasa VIII Matematyka z kluczem
SZKOŁA PODSTAWOWA NR 1 IM. ŚW. JANA KANTEGO W ŻOŁYNI Wymagania na poszczególne oceny klasa VIII Matematyka z kluczem I. Wymagania konieczne (na ocenę dopuszczającą) obejmują wiadomości i umiejętności umożliwiające
PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W KLASIE 4
PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W KLASIE 4 Program: Matematyka z kluczem Uczeń zobowiązany jest posiadać: zeszyt w kratkę min. 60 kartkowy, podręcznik, ćwiczenia, przybory do pisania, kredki,
SCENARIUSZ LEKCJI. 4.Integracja: Wewnątrzprzedmiotowa.
1. Informacje wstępne: Publiczne Gimnazjum Nr 6 w Opolu Data:08.01.2013 r. Klasa:.II b Czas trwania zajęć: 45 min. Nauczany przedmiot: matematyka Nauczyciel: Ewa Jakubowska SCENARIUSZ LEKCJI 2.Program
WYMAGANIA EDUKACYJNE
SZKOŁA PODSTAWOWA W RYCZOWIE WYMAGANIA EDUKACYJNE niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z MATEMATYKI w klasie 8 Szkoły Podstawowej str. 1 Wymagania edukacyjne
SCENARIUSZ LEKCJI. Podstawa programowa: Wyrażenia algebraiczne. Uczeń:
SCENARIUSZ LEKCJI 1. Informacje wstępne: Szkoła : Publiczne Gimnazjum nr 6 w Opolu Data : 22.03.2013 Klasa : I A Czas trwania zajęć : 45 minut Nauczany przedmiot: matematyka 2. Program nauczania: Matematyka
METODYKA WYCHOWANIA FIZYCZNEGO Studia I stopnia. Autor: Tomasz Frołowicz
METODYKA WYCHOWANIA FIZYCZNEGO Autor: Tomasz Frołowicz TOŻSAMOŚĆ METODYKI WYCHOWANIA FIZYCZNEGO Wychowanie jest to sztuka, której nikt dotąd nie umie, jest to kurs, który jakaś dobra głowa dopiero ma ułożyć.
Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2018/2019 Ćwiczenia nr 8
Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2018/2019 Ćwiczenia nr 8 Scenariusze na temat objętości Niestety scenariusze są słabe, średnia: 1,21 p./3p. Wiele osób zapomniało,
Wymagania edukacyjne z matematyki dla klasy VIII. rok szkolny 2018/2019
Wymagania edukacyjne z matematyki dla klasy VIII rok szkolny 2018/2019 Program nauczania Matematyka z plusem realizowany przy pomocy podręcznika Matematyka z plusem LICZBY I DZIAŁANIA używać znaków do
KARTA KURSU (realizowanego w module specjalności) MATEMATYKA Studia I stopnia niestacjonarne
KARTA KURSU (realizowanego w module specjalności) MATEMATYKA Studia I stopnia niestacjonarne (specjalność nauczycielska) Nazwa Nazwa w j. ang. Matematyka szkolna a matematyka wyższa School Mathematics
Metodyka rozwiązywania zadań matematycznych 4 - opis przedmiotu
Metodyka rozwiązywania zadań matematycznych 4 - opis przedmiotu Informacje ogólne Nazwa przedmiotu Metodyka rozwiązywania zadań matematycznych 4 Kod przedmiotu 05.3-WK-MATD-MRZM4-Ć-S14_pNadGen1P4NJ Wydział
KARTA KURSU DLA STUDIÓW PODYPLOMOWYCH
KARTA KURSU DLA STUDIÓW PODYPLOMOWYCH Nazwa Nazwa w j. ang. Geometria Geometry Punktacja ECTS* 9 Opis kursu (cele kształcenia) Celem przedmiotu jest powtórzenie i pogłębienie wiadomości słuchaczy z geometrii
Wymagania programowe z matematyki na poszczególne oceny w klasie III A i III B LP. Kryteria oceny
Wymagania programowe z matematyki na poszczególne oceny w klasie III A i III B LP Przygotowane w oparciu o propozycję Wydawnictwa Nowa Era 2017/2018 Kryteria oceny Znajomość pojęć, definicji, własności
Wykłady z dydaktyki matematyki (klasy IV-VIII) III rok matematyki semestr zimowy 2017/2018 ćwiczenia i wykład nr 2
Wykłady z dydaktyki matematyki (klasy IV-VIII) III rok matematyki semestr zimowy 2017/2018 ćwiczenia i wykład nr 2 Ćwiczenia nr 2 zadanie domowe Zastosuj zasadę trzech etapów do wprowadzenia pojęcia liczby
EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012. CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA Matematyka WOJEWÓDZTWO KUJAWSKO-POMORSKIE
Okręgowa Komisja Egzaminacyjna w Gdańsku EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012 CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA Matematyka WOJEWÓDZTWO KUJAWSKO-POMORSKIE Osiągnięcia gimnazjalistów z zakresu matematyki
Matematyka na czasie Przedmiotowe zasady oceniania wraz z określeniem wymagań edukacyjnych dla klasy 1
Matematyka na czasie Przedmiotowe zasady oceniania wraz z określeniem wymagań edukacyjnych dla klasy 1 Wyróżniono następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające
Zasady Oceniania Przedmiot: Matematyka
I. Kontrakt między nauczycielem i uczniem Zasady Oceniania Przedmiot: Matematyka 1. Każdy uczeń jest oceniany zgodnie z zasadami sprawiedliwości. 2. Prace klasowe, sprawdziany i odpowiedzi ustne są obowiązkowe.
KARTA KURSU (realizowanego w module specjalności) Matematyka (specjalność nauczycielska) studia niestacjonarne 1 stopnia
Załącznik nr 7 do Zarządzenia Nr. KARTA KURSU (realizowanego w module specjalności) Matematyka (specjalność nauczycielska) studia niestacjonarne 1 stopnia Nazwa Nazwa w j. ang. Analiza tekstu matematycznego:
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI wg podstawy programowej z VIII 2008r.
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI wg podstawy programowej z VIII 2008r. Ocena niedostateczna. Zna nazwy argumentów działań Pamięciowo i pisemnie wykonuje każde z czterech działań na liczbach
Scenariusz lekcyjny Rozwiązywanie zadań z wykorzystaniem działań na logarytmach. Scenariusz lekcyjny
Scenariusz lekcyjny Klasa: I c liceum ogólnokształcące (profil bezpieczeństwo wewnętrzne). Czas trwania zajęć: 45 minut. Nauczany przedmiot: matematyka. Program nauczania: Kształcenie w zakresie podstawowym