Rok szkolny 2013/2014 PLAN PRACY ZAJĘĆ PRZYGOTOWUJĄCYCH DO EGZAMINU GIMNAZJALNEGO DLA UCZNIÓW KLASY IIIB

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Rok szkolny 2013/2014 PLAN PRACY ZAJĘĆ PRZYGOTOWUJĄCYCH DO EGZAMINU GIMNAZJALNEGO DLA UCZNIÓW KLASY IIIB"

Transkrypt

1 Rok szkolny 2013/2014 PLAN PRACY ZAJĘĆ PRZYGOTOWUJĄCYCH DO EGZAMINU GIMNAZJALNEGO DLA UCZNIÓW KLASY IIIB Zajęcia realizowane w ramach godzin karcianych nauczyciela w wymiarze 2 godzin tygodniowo (środy 8,9 godzina lekcyjna). Opracowanie i realizacja zajęć: Jadwiga Głazman

2 I. ZałoŜenia programowe Program zajęć przygotowujących do egzaminu gimnazjalnego przygotowany został na podstawie obserwacji postępów i osiągnięć uczniów w klasie pierwszej i drugiej gimnazjum i jest zgodny z obowiązującą podstawą programową, realizowanym programem nauczania matematyki Matematyka z plusem oraz standardami wymagań egzaminacyjnych. Ze względu na duŝe róŝnice w stopniu opanowania wiadomości i umiejętności matematycznych u uczniów klasy trzeciej, zajęcia odbywać się będą w dwóch grupach. Pozwoli to w większym stopniu dostosować metody i wymagania do moŝliwości uczniów. Opracowany program ma przygotować uczniów do egzaminu poprzez rozwiązywanie róŝnorodnych typów zadań, z którymi spotkają się na egzaminie. Program zawiera treści, które pozwolą na wyrównanie braków edukacyjnych powstałych w trakcie kształcenia oraz na powtórzenie, utrwalenie wiadomości (grupa słabsza) oraz na pogłębienie wiedzy i umiejętności zdobytych w szkole(grupa silniejsza). Systematyczne i aktywne uczestniczenie w zajęciach pozwoli wszystkim uczniom przezwycięŝyć strach przed egzaminem, pomoŝe uwierzyć we własne siły i nabyć większej pewności siebie, a tym samym osiągnięcie lepszego wyniku na egzaminie. Zaproponowany układ treści dostosowany jest do materiału realizowanego na lekcjach zgodnie z programem, natomiast przygotowywane materiały, stopień ich trudności i zastosowane metody odpowiednie będą do poziomu grupy. Termin realizacji: Liczba godzin: 2 godz. tygodniowo (1 godz. dla grupy) Przewidywana liczba uczniów: ok II. Cele ogólne Celem nadrzędnym zajęć jest przygotowanie uczniów do egzaminu gimnazjalnego z matematyki poprzez kształcenie poniŝszych umiejętności matematycznych: - umiejętne stosowanie terminów, pojęć i procedur z zakresu przedmiotu matematyka, - wyszukiwanie i stosowanie informacji, - wskazywanie i opisywanie faktów, związków i zaleŝności, w szczególności przyczynowo-skutkowych, przestrzennych i czasowych, - stosowanie zintegrowanej wiedzy i umiejętności do rozwiązywania problemów. - stosowanie wiedzy matematycznej w sytuacjach praktycznych. Ponadto celem zajęć jest: - rozwijanie umiejętności samodzielnego i logicznego myślenia, - rozwijanie sprawności rachunkowej, - wyrabianie nawyku poprawnego zapisu rozwiązań, - wdraŝanie do systematycznej i wytrwałej pracy, - kształtowanie pozytywnej motywacji do pracy, - rozwijanie umiejętności zapamiętywania, - rozwijanie wyobraźni przestrzennej,

3 - ukazanie ciekawych i praktycznych zastosowań matematyki, - kształtowanie umiejętności przetwarzania informacji. III. Cele wychowawcze - kształtowanie umiejętności planowania i organizowania własnej pracy, - kształtowanie umiejętności pracy w zespole, - wyrabianie systematyczności, pracowitości i wytrwałości, - wyrabianie poczucia odpowiedzialności za własne wyniki w nauce, - kształtowanie pozytywnego nastawienia do podejmowanego wysiłku intelektualnego i do samodzielnego radzenia sobie z trudnościami, - wyrabianie nawyku samokontroli i umiejętności samooceny, IV. Treści nauczania 1. Liczby na co dzień: a) rozwiązywanie zadań praktycznych z zastosowaniem działań na liczbach naturalnych, całkowitych i wymiernych, liczby rzymskie, b) rozwiązywanie zadań dotyczących praktycznego zastosowania procentów, podatki i lokaty bankowe. 2. WyraŜenia algebraiczne: a) zapisywanie treści zadań w postaci wyraŝeń algebraicznych, b) przekształcanie wyraŝeń algebraicznych, c) obliczanie wartości liczbowych wyraŝeń algebraicznych. 3. Jednostki długości, masy, monetarne: a) przeliczanie jednostek, b) rozwiązywanie zadań praktycznych dotyczących jednostek. 4. Skala i plan. 5. Równania i układy równań: a) rozwiązywanie układów równań i układów równań, b) rozwiązywanie zadań tekstowych z zastosowaniem równań i układów równań. 6. Czytanie informacji, diagramów, wykresów, map itp. 7. Funkcje: a) funkcja liniowa i jej własności, b) wielkości wprost i odwrotnie proporcjonalne. 8. Figury na płaszczyźnie obliczanie obwodów i pól powierzchni. 9. Graniastosłupy i ostrosłupy: a) własności, rozpoznawanie, b) obliczanie powierzchni i objętości. 10. Figury obrotowe: walec, stoŝek, kula: a) własności, rozpoznawanie, b) obliczanie powierzchni i objętości. 11. Wielokąty i okręgi. 12. Matematyka w praktyce: zastosowanie posiadanych umiejętności matematycznych w rozwiązywaniu zadań praktycznych. 13. Trening przed egzaminem z matematyki: a) rozwiązywanie przykładowych zadań egzaminacyjnych, b) rozwiązywanie zadań z lat ubiegłych oryginalne arkusze egz.

4 V. Warunki realizacji wyznaczonych celów: - stosowanie róŝnorodnych form pracy, - dobieranie przykładów zadań i problemów pojawiających się w standardach egzaminacyjnych, - umoŝliwienie wyrównania braków w wiedzy i umiejętnościach, - dbanie o odpowiednią, sprzyjającą pracy atmosferę na zajęciach, - wzmacnianie poczucia satysfakcji i własnej wartości uczniów, - motywowanie do pracy i systematycznego udziału w zajęciach. VI. Metody pracy: 1. Oparte na przyswajaniu gotowych informacji wykład, opis, pokaz, pogadanka. 2. Oparte na tworzeniu wiedzy teoretycznej analiza wyników obserwacji, sporządzanie planu rozwiązania problemu, burza mózgów. 3. Mające na celu przyswojenie i sprawdzenie wiedzy powtarzanie i utrwalanie podstawowych algorytmów, rozwiązywanie testów VII Przewidywane osiągnięcia uczniów Uczeń powinien umieć: - wykorzystywać posiadaną wiedzę do rozwiązywania problemów, - czytać ze zrozumieniem teksty matematyczne, - stosować odpowiednie terminy i pojęcia mat. do opisu zjawisk, - wykonywać obliczenia w róŝnych sytuacjach praktycznych, - posługiwać się własnościami figur płaskich i przestrzennych, - odczytywać informacje przedstawione w róŝnej formie, - stosować zintegrowaną wiedze do objaśniania zjawisk, - znajdować róŝne drogi rozwiązań tego samego problemu, - poprawnie wypełniać kartę egzaminacyjną. VIII. Środki dydaktyczne 1. Podręczniki. 2. Komputer i rzutnik 3. Zbiory zadań róŝnego typu. 4. Testy, arkusze egzaminacyjne. 5. Tabele, wykresy. 6. Modele brył. IX. Ocena i ewaluacja W trakcie pracy, na bieŝąco oceniana będzie praca uczniów, ich wkład w zajęcia i osiąganie postępu. Ocenianie będzie występowało wyłącznie w formie słownej. Ocena ma wykazywać mocne strony ucznia i pełnić rolę stymulującą i wspierającą. Obserwacji podlegać będzie ogólna postawa ucznia, zaangaŝowanie na zajęciach, współpraca i aktywność podczas pracy zespołowej. Śledzone będą równocześnie wyniki osiągane przez uczniów na sprawdzianach, kartkówkach z matematyki. X. Bibliografia

5 1. Matematyka. Nowy kalendarz gimnazjalisty. - M. Dobrowolska, M. Karpiński, J. Lech. 2. Matematyka. Vademecum. Egzamin gimnazjalny I. Kałmuk, E. Jelonek 3. Przed egzaminem gimnazjalnym z matematyki od roku A. Cewe, H. Nahorska, B. Zawistowska. 4. Egzamin po gimnazjum. Matematyka. - A. Sułowska 5. Egzamin gimnazjalny Matematyka krok po kroku. K. Gałązka 6. Matematyka 3. zbiór zadań dla gimnazjum. M. Braun, J. Lech.

egzaminu gimnazjalnego z matematyki dla uczniów klas IIIA

egzaminu gimnazjalnego z matematyki dla uczniów klas IIIA PROJEKT EDUKACYJNY ROK SZK. 2011/2012 Program zajęć przygotowujących do egzaminu gimnazjalnego z matematyki dla uczniów klas IIIA Opracowanie: Jadwiga Głazman Projekt zajęć przygotowujących do egzaminu

Bardziej szczegółowo

Program zajęć wyrównawczych z matematyki dla grupy 5.3. zajęcia pozalekcyjne realizowane w ramach projektu

Program zajęć wyrównawczych z matematyki dla grupy 5.3. zajęcia pozalekcyjne realizowane w ramach projektu Program zajęć wyrównawczych z matematyki dla grupy 5.3 zajęcia pozalekcyjne realizowane w ramach projektu " One Two Three - eksperymentujemy z matematyką i językiem angielskim - program rozwijania kompetencji

Bardziej szczegółowo

Program zajęć wyrównawczych z matematyki dla grupy 4.2. Metoda projektu w nauczaniu matematyki. zajęcia pozalekcyjne realizowane w ramach projektu

Program zajęć wyrównawczych z matematyki dla grupy 4.2. Metoda projektu w nauczaniu matematyki. zajęcia pozalekcyjne realizowane w ramach projektu Program zajęć wyrównawczych z matematyki dla grupy 4. Metoda projektu w nauczaniu matematyki zajęcia pozalekcyjne realizowane w ramach projektu " One Two Three - eksperymentujemy z matematyką i językiem

Bardziej szczegółowo

Zajęcia wyrównawcze klasa III b, c gim.

Zajęcia wyrównawcze klasa III b, c gim. Zajęcia wyrównawcze klasa III b, c gim. Cele nauczania: Głównym celem zajęć jest wyrównanie braków z matematyki oraz poprawa wyników nauczania i kształcenia. Cele szczegółowe: 1. Rozwijanie umiejętności

Bardziej szczegółowo

Renata Krzemińska. nauczyciel matematyki i informatyki

Renata Krzemińska. nauczyciel matematyki i informatyki Program zajęć wyrównawczych w Gimnazjum Matematyka J1 w ramach projektu pn. Czym skorupka za młodu nasiąknie - rozwój kompetencji kluczowych uczniów Zespołu Szkół w Nowej Wsi Lęborskiej Renata Krzemińska

Bardziej szczegółowo

PROGRAM ZAJĘĆ MATEMATYCZNYCH DLA UCZNIÓW Z DYSLEKSJĄ V KLASA SZKOŁY PODSTAWOWEJ

PROGRAM ZAJĘĆ MATEMATYCZNYCH DLA UCZNIÓW Z DYSLEKSJĄ V KLASA SZKOŁY PODSTAWOWEJ PROGRAM ZAJĘĆ MATEMATYCZNYCH DLA UCZNIÓW Z DYSLEKSJĄ V KLASA SZKOŁY PODSTAWOWEJ Opracowała : Dorota Kochańska 1 WSTĘP Indywidualizacja procesu nauczania w pracy z uczniem o szczególnych potrzebach edukacyjnych

Bardziej szczegółowo

Pomyśl Policz - Pokaż, czyli eksperyment w matematyce

Pomyśl Policz - Pokaż, czyli eksperyment w matematyce Program dodatkowych zajęć z matematyki Pomyśl Policz - Pokaż, czyli eksperyment w matematyce Zajęcia realizowane w ramach projektu One Two Three - eksperymentujemy z matematyką i językiem angielskim -

Bardziej szczegółowo

SCENARIUSZ LEKCJI. Podstawa programowa: Wykresy funkcji. Uczeń:

SCENARIUSZ LEKCJI. Podstawa programowa: Wykresy funkcji. Uczeń: SCENARIUSZ LEKCJI 1. Informacje wstępne: Szkoła : Publiczne Gimnazjum nr 6 w Opolu Data : 22.01.2013 Klasa : I A Czas trwania zajęć : 45 minut Nauczany przedmiot: matematyka 2. Program nauczania: Matematyka

Bardziej szczegółowo

SCENARIUSZ LEKCJI. Podstawa programowa: Figury płaskie. Uczeń:

SCENARIUSZ LEKCJI. Podstawa programowa: Figury płaskie. Uczeń: SCENARIUSZ LEKCJI 1. Informacje wstępne: Szkoła : Publiczne Gimnazjum nr 6 w Opolu Data : 21.01.2013 Klasa : I A Czas trwania zajęć : 45 minut Nauczany przedmiot: matematyka 2. Program nauczania: Matematyka

Bardziej szczegółowo

KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM

KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM Na stopień dostateczny uczeń powinien umieć: Arytmetyka - zamieniać procent/promil na liczbę i odwrotnie, - zamieniać procent na promil i odwrotnie, - obliczać

Bardziej szczegółowo

PRZEDMIOTOWE OCENIANIE Z MATEMATYKI I. CELE KSZTAŁCENIA I TREŚCI NAUCZANIA

PRZEDMIOTOWE OCENIANIE Z MATEMATYKI I. CELE KSZTAŁCENIA I TREŚCI NAUCZANIA PRZEDMIOTOWE OCENIANIE Z MATEMATYKI I. CELE KSZTAŁCENIA I TREŚCI NAUCZANIA Cele kształcenia i treści nauczania reguluje podstawa programowa przedmiotu, zatwierdzona przez właściwego ministra dla II etapu

Bardziej szczegółowo

SCENARIUSZ LEKCJI. Podstawa programowa: Figury płaskie. Uczeń:

SCENARIUSZ LEKCJI. Podstawa programowa: Figury płaskie. Uczeń: SCENARIUSZ LEKCJI 1. Informacje wstępne: Szkoła : Publiczne Gimnazjum nr 6 w Opolu Data : Klasa : I A Czas trwania zajęć : 45 minut Nauczany przedmiot: matematyka 2. Program nauczania: Matematyka z plusem.

Bardziej szczegółowo

PROGRAM KOŁA MATEMATYCZNEGO

PROGRAM KOŁA MATEMATYCZNEGO PROGRAM KOŁA MATEMATYCZNEGO rok szkolny 2015/2016 I. Wstęp Charakterystyka programu Program adresowany jest do uczniów którzy wykazują uzdolnienia matematyczne i przede wszystkim są zainteresowani pogłębieniem

Bardziej szczegółowo

Pomyśl Policz - Pokaż, czyli eksperyment w matematyce

Pomyśl Policz - Pokaż, czyli eksperyment w matematyce Program dodatkowych zajęć z matematyki Pomyśl Policz - Pokaż, czyli eksperyment w matematyce Zajęcia realizowane w ramach projektu One Two Three - eksperymentujemy z matematyką i językiem angielskim -

Bardziej szczegółowo

Dla uczniów Szkoły Podstawowej

Dla uczniów Szkoły Podstawowej GIMNAZJUM W ZESPOLE SZKÓŁ W RUSKU PROGRAM ZAJĘĆ POZALEKCYJNYCH Z MATEMATYKI Dla uczniów Szkoły Podstawowej Cele ogólne: CELE KSZTAŁCENIA 1. Rozbudzanie i kształtowanie zainteresowań matematycznych. 2.

Bardziej szczegółowo

PROGRAM KOŁA MATEMATYCZNEGO

PROGRAM KOŁA MATEMATYCZNEGO GIMNAZJUM IM. RODZINY REMBIELIOSKICH W KROŚNIEWICACH PROGRAM WŁASNY PROGRAM KOŁA MATEMATYCZNEGO DLA KLASY PIERWSZEJ GIMNAZJUM HANNA SZCZYGIEŁ KROŚNIEWICE 2009 WSTĘP Nieustanny rozwój cywilizacyjny stwarza

Bardziej szczegółowo

Wyniki sprawdzianu zewnętrznego klas szóstych uczniów SP10 w latach 2008-2012 na tle miasta, województwa, kraju:

Wyniki sprawdzianu zewnętrznego klas szóstych uczniów SP10 w latach 2008-2012 na tle miasta, województwa, kraju: Efekty różnorodnych działań przygotowujących uczniów do sprawdzianu zewnętrznego analiza oferty zajęć wspierających oraz materiałów przygotowywanych przez nauczycieli Dzięki zaangażowaniu nauczycieli,

Bardziej szczegółowo

SCENARIUSZ LEKCJI. Podstawa programowa: Wyrażenia algebraiczne. Uczeń:

SCENARIUSZ LEKCJI. Podstawa programowa: Wyrażenia algebraiczne. Uczeń: SCENARIUSZ LEKCJI 1. Informacje wstępne: Szkoła : Publiczne Gimnazjum nr 6 w Opolu Data : 22.03.2013 Klasa : I A Czas trwania zajęć : 45 minut Nauczany przedmiot: matematyka 2. Program nauczania: Matematyka

Bardziej szczegółowo

MATEMATYKA to naprawdę nie jest trudne

MATEMATYKA to naprawdę nie jest trudne MATEMATYKA to naprawdę nie jest trudne Innowacja pedagogiczna o charakterze metodycznym z zakresu edukacji matematycznej realizowana w Szkole Podstawowej w Zamościu w 01.03.2016 30.06.2017 Wiedza jest

Bardziej szczegółowo

PSO MATEMATYKA 1. Cele i materiał nauczania oraz wymagania programowe ustalone są na podstawie

PSO MATEMATYKA 1. Cele i materiał nauczania oraz wymagania programowe ustalone są na podstawie PSO MATEMATYKA 1. Cele i materiał nauczania oraz wymagania programowe ustalone są na podstawie Dla klas I tytuł: Program nauczania matematyki dla gimnazjum,,matematyka wokół nas autorzy: Ewa Duvnjak, Ewa

Bardziej szczegółowo

Pomyśl Policz - Pokaż, czyli eksperyment w matematyce

Pomyśl Policz - Pokaż, czyli eksperyment w matematyce Program dodatkowych zajęć z matematyki Pomyśl Policz - Pokaż, czyli eksperyment w matematyce Zajęcia realizowane w ramach projektu One Two Three - eksperymentujemy z matematyką i językiem angielskim -

Bardziej szczegółowo

Próbny egzamin gimnazjalny w części matematyczno-przyrodniczej dnia r.

Próbny egzamin gimnazjalny w części matematyczno-przyrodniczej dnia r. Próbny egzamin gimnazjalny w części matematyczno-przyrodniczej dnia 06.12.2007r. L.p. Klasa Liczba uczniów w klasie Liczba uczniów, którzy przystąpili do egzaminu Liczba uczniów nieobecnych 1. III a 14

Bardziej szczegółowo

SCENARIUSZ LEKCJI. 4.Integracja: Wewnątrzprzedmiotowa.

SCENARIUSZ LEKCJI. 4.Integracja: Wewnątrzprzedmiotowa. 1. Informacje wstępne: Publiczne Gimnazjum Nr 6 w Opolu Data:17.04.2013 r. Klasa:.II b Czas trwania zajęć: 45 min. Nauczany przedmiot: matematyka Nauczyciel: Ewa Jakubowska SCENARIUSZ LEKCJI 2.Program

Bardziej szczegółowo

GIMNAZJUM Wymagania edukacyjne z matematyki na poszczególne oceny półroczne i roczne w roku szkolnym

GIMNAZJUM Wymagania edukacyjne z matematyki na poszczególne oceny półroczne i roczne w roku szkolnym GIMNAZJUM Wymagania edukacyjne z matematyki na poszczególne oceny półroczne i roczne w roku szkolnym 2013-2014 Ocenę celującą otrzymuje uczeń, który: wykorzystuje na lekcjach matematyki wiadomości z innych

Bardziej szczegółowo

SCENARIUSZ LEKCJI. kategoria B zrozumienie. Uczeń :

SCENARIUSZ LEKCJI. kategoria B zrozumienie. Uczeń : SCENARIUSZ LEKCJI 1. Informacje wstępne: Data : 01.10.2012 Klasa : I A Czas trwania zajęć : 45 minut Nauczany przedmiot: matematyka 2. Program nauczania: Matematyka z plusem. Program nauczania matematyki

Bardziej szczegółowo

Pomyśl Policz - Pokaż, czyli eksperyment w matematyce

Pomyśl Policz - Pokaż, czyli eksperyment w matematyce Program dodatkowych zajęć z matematyki Pomyśl Policz - Pokaż, czyli eksperyment w matematyce Zajęcia realizowane w ramach projektu One Two Three - eksperymentujemy z matematyką i językiem angielskim -

Bardziej szczegółowo

Powtórka przed sprawdzianem program zajęć przygotowujących uczniów do sprawdzianu końcowego

Powtórka przed sprawdzianem program zajęć przygotowujących uczniów do sprawdzianu końcowego Powtórka przed sprawdzianem program zajęć przygotowujących uczniów do sprawdzianu końcowego Publiczna Szkoła Podstawowa nr 5 23-210 Kraśnik ul. Al. Niepodległości 54 I. Założenia programowe. Program został

Bardziej szczegółowo

Plan wynikowy do programu MATEMATYKA 2001 klasa 3 gimnazjum

Plan wynikowy do programu MATEMATYKA 2001 klasa 3 gimnazjum Plan wynikowy do programu MATEMATYKA 2001 klasa 3 gimnazjum Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego uczeń potrafi: Umiejętności podstawowe KONIECZNE PODSTAWOWE ROZSZERZAJĄCE

Bardziej szczegółowo

Egzamin gimnazjalny z matematyki 2016 analiza

Egzamin gimnazjalny z matematyki 2016 analiza Egzamin gimnazjalny z matematyki 2016 analiza Arkusz zawierał 23 zadania: 20 zamkniętych i 3 otwarte. Dominowały zadania wyboru wielokrotnego, w których uczeń wybierał jedną z podanych odpowiedzi. W pięciu

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA Z INFORMATYKI W SZKOLE PODSTAWOWEJ W RUśU W KLASACH IV-VI

PRZEDMIOTOWY SYSTEM OCENIANIA Z INFORMATYKI W SZKOLE PODSTAWOWEJ W RUśU W KLASACH IV-VI PRZEDMIOTOWY SYSTEM OCENIANIA Z INFORMATYKI W SZKOLE PODSTAWOWEJ W RUśU W KLASACH IV-VI 1. Cele oceniania: 1. BieŜące, okresowe, roczne rozpoznanie i określenie poziomu opanowania kompetencji przewidzianych

Bardziej szczegółowo

Z DYSLEKSJĄ BEZ BARIER

Z DYSLEKSJĄ BEZ BARIER Z DYSLEKSJĄ BEZ BARIER PROGRAM ZAJĘĆ MATEMATYCZNYCH DLA UCZNIÓW Z DYSLEKSJĄ IV KLASA SZKOŁY PODSTAWOWEJ Opracowały : Izabella śółtaszek Barbara Skoczylas WSTĘP Podczas długoletniej pracy jako nauczycielki

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III Wymagania edukacyjne z matematyki dla kl I-III Informacje wstępne 1. Obowiązuje skala ocen: 1, 2, 3, 4, 5, 6. 2. W ciągu semestru ocenia się: a) prace klasowe

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI w Zespole Szkół nr 6

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI w Zespole Szkół nr 6 PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI w Zespole Szkół nr 6 - 2 - I Cele i zadania Zadaniem systemu sprawdzania i oceniania osiągnięć edukacyjnych ucznia jest rozpoznanie przez nauczyciela poziomu

Bardziej szczegółowo

PLAN KIERUNKOWY. Klasa III Gimnazjum Matematyka. Liczba godzin: 144. Wstępne osiągnięcia ucznia

PLAN KIERUNKOWY. Klasa III Gimnazjum Matematyka. Liczba godzin: 144. Wstępne osiągnięcia ucznia Klasa III Gimnazjum Matematyka Liczba godzin: 144 PLAN KIERUNKOWY Wstępne osiągnięcia ucznia Posługuje się prostokątnym układem współrzędnych. Rozwiązuje równania i nierówności I stopnia z jedną niewiadomą

Bardziej szczegółowo

SCENARIUSZ LEKCJI. 3.Temat lekcji: Wyrażenia algebraiczne -powtórzenie i utrwalenie wiadomości. 4.Integracja: wewnątrzprzedmiotowa

SCENARIUSZ LEKCJI. 3.Temat lekcji: Wyrażenia algebraiczne -powtórzenie i utrwalenie wiadomości. 4.Integracja: wewnątrzprzedmiotowa SCENARIUSZ LEKCJI.Informacje wstępne Publiczne Gimnazjum Nr 6 w Opolu Data:2.2.202 r. Klasa:.II b Czas trwania zajęć: 45 min. Nauczany przedmiot: matematyka Nauczyciel: Ewa Jakubowska 2.Program nauczania

Bardziej szczegółowo

Przedmiotowy System Oceniania z informatyki dla. Szkoły Podstawowej i Gimnazjum Specjalnego. Przy Specjalnym Ośrodku Szkolno - Wychowawczym w Lubsku

Przedmiotowy System Oceniania z informatyki dla. Szkoły Podstawowej i Gimnazjum Specjalnego. Przy Specjalnym Ośrodku Szkolno - Wychowawczym w Lubsku Przedmiotowy System Oceniania z informatyki dla Szkoły Podstawowej i Gimnazjum Specjalnego Przy Specjalnym Ośrodku Szkolno - Wychowawczym w Lubsku Na rok szkolny 2008/2009 (4-6 szkoły podstawowej, oraz

Bardziej szczegółowo

OKREŚLENIE WYMAGAŃ NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM

OKREŚLENIE WYMAGAŃ NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM OKREŚLENIE WYMAGAŃ NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM (założone osiągnięcia ucznia w klasach I III gimnazjum zgodnie z programem nauczania Matematyka z plusem (DPN-5002-17/08) realizującym

Bardziej szczegółowo

SCENARIUSZ LEKCJI. Podstawa programowa: oblicza wartości liczbowe wyrażeń algebraicznych mnoży jednomiany.

SCENARIUSZ LEKCJI. Podstawa programowa: oblicza wartości liczbowe wyrażeń algebraicznych mnoży jednomiany. SCENARIUSZ LEKCJI. Informacje wstępne: Szkoła : Publiczne Gimnazjum nr 6 w Opolu Data : 04.03.03 Klasa : I A Czas trwania zajęć : 45 minut Nauczany przedmiot: matematyka. Program nauczania: Matematyka

Bardziej szczegółowo

KRYTERIA OCENIANIA Z PRAKTYCZNYCH PRZEDMIOTÓW BUDOWLANYCH

KRYTERIA OCENIANIA Z PRAKTYCZNYCH PRZEDMIOTÓW BUDOWLANYCH KRYTERIA OCENIANIA Z PRAKTYCZNYCH PRZEDMIOTÓW BUDOWLANYCH 1. Wykaz aktów prawnych i dokumentów: 1. Rozporządzenie Ministra Edukacji Narodowej z dnia 25 kwietnia 2013 r. w sprawie warunków i sposobu oceniania,

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA NA LEKCJACH MATEMATYKI. w Szkole Podstawowej w Babimoście

PRZEDMIOTOWY SYSTEM OCENIANIA NA LEKCJACH MATEMATYKI. w Szkole Podstawowej w Babimoście PRZEDMIOTOWY SYSTEM OCENIANIA NA LEKCJACH MATEMATYKI w Szkole Podstawowej w Babimoście 1 ZAŁOŻENIA PRZEDMIOTOWEGO SYSTEMU OCENIANIA (PSO) SĄ ZGODNE Z: Rozporządzeniem MEN z dnia 3 sierpnia 2017 r. w sprawie

Bardziej szczegółowo

ARKUSZ OBSERWACYJNY LEKCJI. Uwagi nauczyciela hospitującego lekcję koleżeńską na temat zajęć:

ARKUSZ OBSERWACYJNY LEKCJI. Uwagi nauczyciela hospitującego lekcję koleżeńską na temat zajęć: Temat zajęć: Proporcjonalność odwrotna. Lekcja dla uczniów klasy: II c Data zajęć: 17 marzec 2005r. 1. Przebieg lekcji. Nauczycielka zgodnie z przyjętymi celami wprowadziła pojęcie proporcjonalności odwrotnej,

Bardziej szczegółowo

Konieczne Podstawowe Rozszerzające Dopełniające Wykraczające. tworzyć teksty w stylu matematycznym

Konieczne Podstawowe Rozszerzające Dopełniające Wykraczające. tworzyć teksty w stylu matematycznym 14 OSIĄGNIĘCIA PONADPRZEDMIOTOWE W rezultacie kształcenia matematycznego w klasie 3 uczeń potrafi: czytać teksty w stylu matematycznym wykorzystywać słownictwo wprowadzane przy okazji nowych treści W rezultacie

Bardziej szczegółowo

Analiza wyników egzaminu gimnazjalnego 2013 r. Test matematyczno-przyrodniczy (matematyka) Test GM-M1-132

Analiza wyników egzaminu gimnazjalnego 2013 r. Test matematyczno-przyrodniczy (matematyka) Test GM-M1-132 Analiza wyników egzaminu gimnazjalnego 2013 r. Test matematyczno-przyrodniczy (matematyka) Test GM-M1-132 Zestaw zadań z zakresu matematyki posłużył w dniu 24 kwietnia 2013 roku do sprawdzenia u uczniów

Bardziej szczegółowo

Wymagania edukacyjne na poszczególne oceny z matematyki

Wymagania edukacyjne na poszczególne oceny z matematyki Szczegółowe kryteria ocen dla klasy szóstej. 1.Ocenę dopuszczającą otrzymuje uczeń, który: Dodaje, odejmuje, mnoży liczby wymierne, Zapisuje ułamki zwykłe i dziesiętne oraz wykonuje na nich działania,

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE MATEMATYKA klasy trzecie Gimnazjum nr 19 w Krakowie

WYMAGANIA EDUKACYJNE MATEMATYKA klasy trzecie Gimnazjum nr 19 w Krakowie WYMAGANIA EDUKACYJNE MATEMATYKA klasy trzecie Gimnazjum nr 19 w Krakowie I. Zasady oceniania i sposoby sprawdzania osiągnięć edukacyjnych 1. Ocenianie ma charakter systematyczny i wieloaspektowy. 2. Formy

Bardziej szczegółowo

W przyszłość bez barier

W przyszłość bez barier Program zajęć dla dzieci z trudnościami w zdobywaniu umiejętności matematycznych w klasach I III w Szkole Podstawowej w Łysowie realizowany w ramach projektu W przyszłość bez barier PO KL.09.01.02-14-071/13

Bardziej szczegółowo

Osiągnięcia ponadprzedmiotowe

Osiągnięcia ponadprzedmiotowe Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego w klasie 3 gimnazjum uczeń potrafi: Umiejętności konieczne i podstawowe czytać teksty w stylu matematycznym wykorzystywać słownictwo

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W KLASACH IV VI SZKOŁY PODSTAWOWEJ

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W KLASACH IV VI SZKOŁY PODSTAWOWEJ PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W KLASACH IV VI SZKOŁY PODSTAWOWEJ Przedmiotowy system oceniania z matematyki jest zgodny z Wewnątrzszkolnym Systemem Oceniania w Zespole Szkół w Świlczy Nauczanie

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA Z ZAJĘĆ KOMPUTEROWYCH. dla klas IV-VI. 2. Systematyczne dokumentowanie postępów uczenia się. 3. Motywowanie do rozwoju;

PRZEDMIOTOWY SYSTEM OCENIANIA Z ZAJĘĆ KOMPUTEROWYCH. dla klas IV-VI. 2. Systematyczne dokumentowanie postępów uczenia się. 3. Motywowanie do rozwoju; PRZEDMIOTOWY SYSTEM OCENIANIA Z ZAJĘĆ KOMPUTEROWYCH 1. Cele oceniania: dla klas IV-VI 1. Bieżące, okresowe, roczne rozpoznanie i określenie poziomu opanowania kompetencji przewidzianych programem nauczania;

Bardziej szczegółowo

PSO jest zgodny z Wewnątrzszkolnym Systemem Oceniania w Gimnazjum w Zespole Szkół im. Jana Pawła II w Masłowie.

PSO jest zgodny z Wewnątrzszkolnym Systemem Oceniania w Gimnazjum w Zespole Szkół im. Jana Pawła II w Masłowie. PRZEDMIOTOWY SYSTEM OCENIANIA Z FIZYKI PSO jest zgodny z Wewnątrzszkolnym Systemem Oceniania w Gimnazjum w Zespole Szkół im. Jana Pawła II w Masłowie. W procesie dydaktycznym oceniane są wiadomości i umiejętności

Bardziej szczegółowo

RAPORT Z EWALUACJI WEWNĘTRZNEJ. Wymaganie 3:

RAPORT Z EWALUACJI WEWNĘTRZNEJ. Wymaganie 3: RAPORT Z EWALUACJI WEWNĘTRZNEJ w Publicznym Gimnazjum im. Jana Pawła II w Tuszowie Narodowym rok szkolny 1/16 Wymaganie 3: Uczniowie nabywają wiadomości i umiejętności określone w podstawie programowej.

Bardziej szczegółowo

Strona 1 z 9. prowadzić rozumowania matematyczne sprawnie posługiwać się językiem matematycznym

Strona 1 z 9. prowadzić rozumowania matematyczne sprawnie posługiwać się językiem matematycznym Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego w klasie 3 gimnazjum uczeń potrafi: Umiejętności konieczne i podstawowe KONIECZNE( 2) PODSTAWOWE (3) ROZSZERZAJĄCE (4) DOPEŁNIAJACE

Bardziej szczegółowo

wymagania programowe z matematyki kl. III gimnazjum

wymagania programowe z matematyki kl. III gimnazjum wymagania programowe z matematyki kl. III gimnazjum 1. Liczby i wyrażenia algebraiczne Zna pojęcie notacji wykładniczej. Umie zapisać liczbę w notacji wykładniczej. Umie porównywać liczy zapisane w różny

Bardziej szczegółowo

ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY III A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi

ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY III A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY III A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi Rozkład materiału nauczania został opracowany na podstawie programu

Bardziej szczegółowo

KRYTERIA I ZASADY OCENIANIA Z MATEMATYKI. zgodne z Wewnątrzszkolnymi Zasadami Oceniania w Zespole Szkół przy ul. Grunwaldzkiej 9 w Łowiczu.

KRYTERIA I ZASADY OCENIANIA Z MATEMATYKI. zgodne z Wewnątrzszkolnymi Zasadami Oceniania w Zespole Szkół przy ul. Grunwaldzkiej 9 w Łowiczu. KRYTERIA I ZASADY OCENIANIA Z MATEMATYKI zgodne z Wewnątrzszkolnymi Zasadami Oceniania w Zespole Szkół przy ul. Grunwaldzkiej 9 w Łowiczu. Nauczanie matematyki w szkole podstawowej w klasach IV VI odbywa

Bardziej szczegółowo

Scenariusz lekcji. 1. Informacje wstępne: Data: 27 maja 2013r.

Scenariusz lekcji. 1. Informacje wstępne: Data: 27 maja 2013r. 1. Informacje wstępne: Data: 7 maja 013r. Scenariusz lekcji matematyki: Scenariusz lekcji Klasa: II a liceum (profil bezpieczeństwo wewnętrzne); Czas trwania zajęć: 45 minut; Nauczany przedmiot: matematyka..

Bardziej szczegółowo

PROGRAM KÓŁKA MATEMAETYCZNEGO

PROGRAM KÓŁKA MATEMAETYCZNEGO GIMNAZJUM NR 2 W KAMIENNEJ GÓRZE PROGRAM KÓŁKA MATEMAETYCZNEGO KLUB MIŁOŚNIKÓW MATEMATYKI Autor: mgr Wiesława Kurnyta Kamienna Góra, 2003 rok Cele edukacyjne: Matematyka jest jednym z najwaŝniejszych przedmiotów

Bardziej szczegółowo

Przedmiotowy system ocenia z matematyki. w klasach I, II, III gimnazjalnych. Zespołu Szkół w Baczynie

Przedmiotowy system ocenia z matematyki. w klasach I, II, III gimnazjalnych. Zespołu Szkół w Baczynie Przedmiotowy system ocenia z matematyki w klasach I, II, III gimnazjalnych Zespołu Szkół w Baczynie W roku 2014/2015 1.Wstęp Program nauczania matematyki realizowany jest w wymiarze 4godz. tygodniowo w

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA

PRZEDMIOTOWY SYSTEM OCENIANIA PRZEDMIOTOWY SYSTEM OCENIANIA MATEMATYKA ROK SZKOLNY 2015/2016 I. KRYTERIA OCENIANIA I ZASADY WYSTAWIANIA OCEN, WYMAGANIA NA POSZCZEGÓLNE OCENY 1. Oceny pracy ucznia dokonuje się według skali od 1 do 6

Bardziej szczegółowo

SCENARIUSZ LEKCJI. Uczeń zapisuje: wzór na pole prostokąta i kwadratu ( B 1 ) jednostki długości ( B 2 ) podstawowe jednostki miar pola ( B 3 )

SCENARIUSZ LEKCJI. Uczeń zapisuje: wzór na pole prostokąta i kwadratu ( B 1 ) jednostki długości ( B 2 ) podstawowe jednostki miar pola ( B 3 ) SCENARIUSZ LEKCJI 1. Informacje wstępne: Szkoła : Publiczne Gimnazjum nr 6 w Opolu Data : 07.01.2013 Klasa : I A Czas trwania zajęć : 45 minut Nauczany przedmiot: matematyka 2. Program nauczania: Matematyka

Bardziej szczegółowo

SZKOLNY PROGRAM POPRAWY EFEKTYWNOŚCI KSZTAŁCENIA

SZKOLNY PROGRAM POPRAWY EFEKTYWNOŚCI KSZTAŁCENIA SZKOLNY PROGRAM POPRAWY EFEKTYWNOŚCI KSZTAŁCENIA W ZSZ NR 1 IM. WŁADYSŁAWA KORŻYKA W RYKACH W ROKU SZKOLNYM 2014/2015 Wstęp Po dokonaniu analizy wyników egzaminu maturalnego z polskiego,matematyki,języka

Bardziej szczegółowo

DZIENNIK ZAJĘĆ POZALEKCYJNYCH

DZIENNIK ZAJĘĆ POZALEKCYJNYCH DZIENNIK ZAJĘĆ POZALEKCYJNYCH REALIZOWANYCH W RAMACH PROGRAMU ROZWOJOWEGO SZKOŁY w projekcie Dolnośląska szkoła liderem projakościowych zmian w polskim systemie edukacji Priorytet IX Rozwój wykształcenia

Bardziej szczegółowo

Przedmiotowy system oceniania FIZYKA klasa I LO

Przedmiotowy system oceniania FIZYKA klasa I LO Przedmiotowy system oceniania FIZYKA klasa I LO 1. Ponieważ celem nauczania jest kształtowanie kompetencji kluczowych, niezbędnych człowiekowi w dorosłym życiu, niezależnie od rodzaju wykształcenia i wykonywanego

Bardziej szczegółowo

Przedmiotowy system oceniania FIZYKA klasa I LO

Przedmiotowy system oceniania FIZYKA klasa I LO Przedmiotowy system oceniania FIZYKA klasa I LO 1. Ponieważ celem nauczania jest kształtowanie kompetencji kluczowych, niezbędnych człowiekowi w dorosłym życiu, niezależnie od rodzaju wykształcenia i wykonywanego

Bardziej szczegółowo

Cele kształcenia wymagania ogólne (przedruk z podstawy programowej) Ramowy plan nauczania zakres podstawowy. Podręcznik 3 (3 godziny 25 tygodni)

Cele kształcenia wymagania ogólne (przedruk z podstawy programowej) Ramowy plan nauczania zakres podstawowy. Podręcznik 3 (3 godziny 25 tygodni) PLAN WYNIKOWY dla techników i liceów ogólnokształcących zakres podstawowy do Podręcznika 3 z serii Matematyka w otaczającym nas świecie Wydawnictwa Podkowa Plan wynikowy polega na zaplanowaniu umiejętności

Bardziej szczegółowo

SCENARIUSZ LEKCJI. 4.Integracja: Wewnątrzprzedmiotowa.

SCENARIUSZ LEKCJI. 4.Integracja: Wewnątrzprzedmiotowa. 1. Informacje wstępne: Publiczne Gimnazjum Nr 6 w Opolu Data:05.03.2013 r. Klasa:.II b Czas trwania zajęć: 45 min. Nauczany przedmiot: matematyka Nauczyciel: Ewa Jakubowska SCENARIUSZ LEKCJI 2.Program

Bardziej szczegółowo

Przedmiotowy System Oceniania w SP 77. w klasach IV - VI. matematyka

Przedmiotowy System Oceniania w SP 77. w klasach IV - VI. matematyka Przedmiotowy System Oceniania w SP 77 w klasach IV - VI matematyka Spis treści I. Główne założenia PSO... 2 II. Obszary aktywności podleające ocenie... 2 III. Wymagania na poszczególne oceny z uwzględnieniem

Bardziej szczegółowo

Program zajęć wyrównawczych z zakresu edukacji polonistycznej i matematycznej w kształceniu zintegrowanym klasa III B

Program zajęć wyrównawczych z zakresu edukacji polonistycznej i matematycznej w kształceniu zintegrowanym klasa III B . Program zajęć wyrównawczych z zakresu edukacji polonistycznej i matematycznej w kształceniu zintegrowanym klasa III B Program powstał w celu wyrównania szans edukacyjnych dzieci z brakami w wiadomościach

Bardziej szczegółowo

rozwiązuje - często przy pomocy nauczyciela - zadania typowe, o niewielkim stopniu trudności

rozwiązuje - często przy pomocy nauczyciela - zadania typowe, o niewielkim stopniu trudności KRYTERIA OCENIANIA Z MATEMATYKI Klasa I Gimnazjum Kryteria ocen i wymagań: Ocenę dopuszczającą otrzymuje uczeń, który: w ograniczonym zakresie opanował podstawowe wiadomości i umiejętności, a braki nie

Bardziej szczegółowo

KRYTERIA OCENIANIA Z MATEMATYKI

KRYTERIA OCENIANIA Z MATEMATYKI KRYTERIA OCENIANIA Z MATEMATYKI Kryteria oceniania z matematyki są zgodne z Wewnątrzszkolnym Systemem Oceniania w Zespole Szkół w Rajczy. Nauczanie matematyki w szkole podstawowej w klasach IV odbywa się

Bardziej szczegółowo

Ułamki i działania 20 h

Ułamki i działania 20 h Propozycja rozkładu materiału Klasa I Razem h Ułamki i działania 0 h I. Ułamki zwykłe II. Ułamki dziesiętne III. Ułamki zwykłe i dziesiętne. Przypomnienie wiadomości o ułamkach zwykłych.. Dodawanie i odejmowanie

Bardziej szczegółowo

KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM. Arytmetyka

KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM. Arytmetyka KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM Na stopień dostateczny uczeń powinien umieć: Arytmetyka - obliczać wartości wyrażeń arytmetycznych, w których występują liczby wymierne, - szacować wartości

Bardziej szczegółowo

SCENARIUSZ LEKCJI. 4.Integracja: Wewnątrzprzedmiotowa.

SCENARIUSZ LEKCJI. 4.Integracja: Wewnątrzprzedmiotowa. 1. Informacje wstępne: Publiczne Gimnazjum Nr 6 w Opolu Data:15.05.2013 r. Klasa:.II b Czas trwania zajęć: 45 min. Nauczany przedmiot: matematyka Nauczyciel: Ewa Jakubowska SCENARIUSZ LEKCJI 2.Program

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI - GIMNAZJUM

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI - GIMNAZJUM 1 PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI - GIMNAZJUM I System oceniania w nauczaniu matematyki ma sprzyjać : dostarczaniu uczniowi bieżącej informacji o poziomie jego osiągnięć edukacyjnych i postępach

Bardziej szczegółowo

SPIS TREŚCI 1 Założenia organizacyjne...3 2 Cele ogólne kształcenia matematycznego...3

SPIS TREŚCI 1 Założenia organizacyjne...3 2 Cele ogólne kształcenia matematycznego...3 PROGRAM KOŁA MATEMATYCZNEGO DLA UCZNIÓW KLASY I GIMNAZJUM UZDOLNIONYCH MATEMATYCZNIE I ZAINTERESOWANYCH MATEMATYKĄ Opracowanie: Małgorzata Kaczmarek Jedlnia Letnisko, wrzesień 2004 1 SPIS TREŚCI 1 Założenia

Bardziej szczegółowo

Przedmiotowy system oceniania w klasach I- III gimnazjum z fizyki

Przedmiotowy system oceniania w klasach I- III gimnazjum z fizyki Przedmiotowy system oceniania w klasach I- III gimnazjum z fizyki I. Zasady systemu oceniania 1. Każdy uczeń jest oceniany zgodnie z zasadami sprawiedliwości. 2. Ocena ma dostarczyć uczniom, rodzicom i

Bardziej szczegółowo

Scenariusz lekcji. 1. Informacje wstępne: Data: 26 luty 2013r.

Scenariusz lekcji. 1. Informacje wstępne: Data: 26 luty 2013r. 1. Informacje wstępne: Data: 26 luty 2013r. Scenariusz lekcji matematyki: Scenariusz lekcji Klasa: II a 2 liceum (profil bezpieczeństwo wewnętrzne); Czas trwania zajęć: 45 minut; Nauczany przedmiot: matematyka.

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI Nauczanie matematyki odbywa się według programu Matematyka z plusem - GWO. I. Kontrakt z uczniami 1. Każdy uczeń jest oceniany zgodnie z zasadami sprawiedliwości.

Bardziej szczegółowo

1. Przedmiot oceniania:

1. Przedmiot oceniania: Przedmiotowy system oceniania z matematyki w Gimnazjum w Posądzy Opracowano na podstawie Wewnątrzszkolnego Systemu Oceniania oraz w oparciu o program "Matematyka 2001 1. Przedmiot oceniania: a) wiadomości,

Bardziej szczegółowo

PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI W KLASIE III

PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI W KLASIE III PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI W KLASIE III Przedmiotowe Zasady Oceniania z matematyki są zgodne z Wewnątrzszkolnym Ocenianiem GIMNAZJUM IM. JANA PAWŁA II W BOGUSZYCACH 1/8 ZASADY OCENIANIA:

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI I. Wstęp 1. Przedmiotowy system oceniania jest zgodny z: Rozporządzeniem Ministra Edukacji i Sportu w sprawie oceniania, klasyfikowania i promowania uczniów.

Bardziej szczegółowo

Dorota Pawlik Aneta Jagucka Przedmiotowy system oceniania Matematyka. I Ogólne zasady oceniania uczniów

Dorota Pawlik Aneta Jagucka Przedmiotowy system oceniania Matematyka. I Ogólne zasady oceniania uczniów Dorota Pawlik Aneta Jagucka Przedmiotowy system oceniania Matematyka I Ogólne zasady oceniania uczniów 1. Ocenianie osiągnięć edukacyjnych ucznia polega na rozpoznawaniu postępów w opanowaniu przez ucznia

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA Z FIZYKI. I Liceum Ogólnokształcące w Jeleniej Górze Gimnazjum w ZSO nr 1 w Jeleniej Górze

PRZEDMIOTOWY SYSTEM OCENIANIA Z FIZYKI. I Liceum Ogólnokształcące w Jeleniej Górze Gimnazjum w ZSO nr 1 w Jeleniej Górze PRZEDMIOTOWY SYSTEM OCENIANIA Z FIZYKI I Liceum Ogólnokształcące w Jeleniej Górze Gimnazjum w ZSO nr 1 w Jeleniej Górze Przedmiotowy system oceniania z fizyki w ZSO nr 1 sporządzono w oparciu o : 1. Wewnątrzszkolny

Bardziej szczegółowo

EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019

EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019 EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019 MATEMATYKA rozwiązań zadań z przykładowego arkusza egzaminacyjnego (EO_8) GRUDZIEŃ 2017 Centralna Komisja Egzaminacyjna Warszawa Zadanie 1. (0 2) II. Wykorzystanie

Bardziej szczegółowo

SCENARIUSZ LEKCJI. kategoria B zrozumienie

SCENARIUSZ LEKCJI. kategoria B zrozumienie SCENARIUSZ LEKCJI 1. Informacje wstępne: Data: 12.11.2012 Klasa: I A Czas trwania zajęć : 45 minut Nauczany przedmiot: matematyka 2. Program nauczania: Matematyka z plusem. Program nauczania matematyki

Bardziej szczegółowo

SCENARIUSZ LEKCJI. kategoria B zrozumienie. Uczeń :

SCENARIUSZ LEKCJI. kategoria B zrozumienie. Uczeń : SCENARIUSZ LEKCJI 1. Informacje wstępne: Szkoła : Publiczne Gimnazjum nr 6 w Opolu Data : Klasa : I A Czas trwania zajęć : 45 minut Nauczany przedmiot: matematyka 2. Program nauczania: Matematyka z plusem.

Bardziej szczegółowo

WYMAGANIA PRZEDMIOTOWE Z MATEMATYKI

WYMAGANIA PRZEDMIOTOWE Z MATEMATYKI OCENĘ CELUJĄCĄ otrzymuje uczeń który: posiadł wiedzę i umiejętności znacznie wykraczające poza program nauczania; biegle posługuje się zdobytymi wiadomościami w rozwiązywaniu problemów teoretycznych lub

Bardziej szczegółowo

Gimnazjum nr 1 im. Jana Kochanowskiego w Koluszkach SZKOLNY SYSTEM WSPIERANIA UCZNIA Z TRUDNOŚCIAMI W UCZENIU SIĘ. Opracowała: Emilia Michalak

Gimnazjum nr 1 im. Jana Kochanowskiego w Koluszkach SZKOLNY SYSTEM WSPIERANIA UCZNIA Z TRUDNOŚCIAMI W UCZENIU SIĘ. Opracowała: Emilia Michalak Gimnazjum nr 1 im. Jana Kochanowskiego w Koluszkach SZKOLNY SYSTEM WSPIERANIA UCZNIA Z TRUDNOŚCIAMI W UCZENIU SIĘ Opracowała: Emilia Michalak Koluszki, rok szkolny 2006/2007 PODSTAWA PRAWNA Rozporządzenie

Bardziej szczegółowo

SCENARIUSZ LEKCJI. 4.Integracja: Wewnątrzprzedmiotowa.

SCENARIUSZ LEKCJI. 4.Integracja: Wewnątrzprzedmiotowa. 1. Informacje wstępne: Publiczne Gimnazjum Nr 6 w Opolu Data:08.01.2013 r. Klasa:.II b Czas trwania zajęć: 45 min. Nauczany przedmiot: matematyka Nauczyciel: Ewa Jakubowska SCENARIUSZ LEKCJI 2.Program

Bardziej szczegółowo

Wymagania edukacyjne z fizyki dla klasy VII Szkoły Podstawowej

Wymagania edukacyjne z fizyki dla klasy VII Szkoły Podstawowej Wymagania edukacyjne z fizyki dla klasy VII Szkoły Podstawowej W klasie VII obowiązuje podręcznik:,,świat fizyki Podręcznik z fizyki dla klasy VII szkoły podstawowej wyd. WSiP oraz,,świat fizyki Cwiczenia

Bardziej szczegółowo

Program poprawy efektywności kształcenia. Gimnazjum nr 3 w Lubinie

Program poprawy efektywności kształcenia. Gimnazjum nr 3 w Lubinie Program poprawy efektywności kształcenia Gimnazjum nr 3 w Lubinie rok szkolny 2012/ Cel ogólny: Poprawa jakości kształcenia w szkole potwierdzona wyższymi wynikami egzaminu gimnazjalnego, wyższym wskaźnikiem

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA Z INFORMATYKA W KLASIE IV i VII SZKOŁY PODSTAWOWEJ

PRZEDMIOTOWY SYSTEM OCENIANIA Z INFORMATYKA W KLASIE IV i VII SZKOŁY PODSTAWOWEJ PRZEDMIOTOWY SYSTEM OCENIANIA Z INFORMATYKA W KLASIE IV i VII SZKOŁY PODSTAWOWEJ I. OBSZARY AKTYWNOŚCI. 1. Pisemne prace sprawdzające (sprawdziany, kartkówki). Sprawdziany i kartkówki są przeprowadzane

Bardziej szczegółowo

Sprawdzian z matematyki w pierwszym semestrze nauki w szóstej klasie szkoły podstawowej Praga. Instrukcja dla nauczyciela oceniającego test

Sprawdzian z matematyki w pierwszym semestrze nauki w szóstej klasie szkoły podstawowej Praga. Instrukcja dla nauczyciela oceniającego test Sprawdzian z matematyki w pierwszym semestrze nauki w szóstej klasie szkoły podstawowej Praga Instrukcja dla nauczyciela oceniającego test Celem badania jest zdiagnozowanie poziomu umiejętności matematycznych

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI Zespół Szkół Ekonomicznych w Brzozowie PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI Przedmiotowy System Oceniania (PSO) z matematyki opracowany na podstawie programu nauczania nr DKW-4015-37/01 oraz podręczników

Bardziej szczegółowo

Kryteria ocen z matematyki dla klasy III gimnazjum. Osiągnięcia przedmiotowe

Kryteria ocen z matematyki dla klasy III gimnazjum. Osiągnięcia przedmiotowe umiejętności konieczne ocena dopuszczający umiejętności podstawowe ocena dostateczny umiejętności rozszerzające ocena dobry umiejętności dopełniające ocena bardzo dobry umiejętności wykraczające ocena

Bardziej szczegółowo

Koło matematyczne 2abc

Koło matematyczne 2abc Koło matematyczne 2abc Autor: W. Kamińska 17.09.2015. Zmieniony 08.12.2015. "TO CO MUSIAŁEŚ ODKRYĆ SAMODZIELNIE, ZOSTANIE W TWYM UMYŚLE ŚCIEŻKĄ, KTÓRĄ W RAZIE POTRZEBY MOŻESZ PÓJŚĆ RAZ JESZCZE" G. CH.

Bardziej szczegółowo

P R Z E D M I O T O W Y S Y S T E M O C E N I A N I A

P R Z E D M I O T O W Y S Y S T E M O C E N I A N I A P R Z E D M I O T O W Y S Y S T E M O C E N I A N I A Z I N F O R M A T Y K I W K L A S A C H I - II G I M. I. Cele oceniania: Ocenianie ma na celu: 1. Bieżące, okresowe, roczne rozpoznanie i określenie

Bardziej szczegółowo

Przedmiotowy system oceniania MATEMATYKA Miejskie Gimnazjum nr 3 im. Jana Pawła II

Przedmiotowy system oceniania MATEMATYKA Miejskie Gimnazjum nr 3 im. Jana Pawła II Przedmiotowy system oceniania MATEMATYKA Miejskie Gimnazjum nr 3 im. Jana Pawła II Przedmiotem oceniania są: - wiadomości, - umiejętności, - postawa ucznia i jego aktywność. Cele ogólne oceniania: - rozpoznanie

Bardziej szczegółowo

PRZEDMIOTOWE ZASADY OCENIANIA Z JĘZYKA NIEMIECKIEGO

PRZEDMIOTOWE ZASADY OCENIANIA Z JĘZYKA NIEMIECKIEGO PRZEDMIOTOWE ZASADY OCENIANIA Z JĘZYKA NIEMIECKIEGO I ZASADY OGÓLNE 1. Przedmiotowe Zasady Oceniania z języka niemieckiego zostały opracowane na podstawie programu nauczania autorstwa Anny Jaroszewskiej,

Bardziej szczegółowo

Egzamin gimnazjalny 2015 część matematyczna

Egzamin gimnazjalny 2015 część matematyczna Egzamin gimnazjalny 2015 część matematyczna imię i nazwisko Kalendarz gimnazjalisty Tydz. Dział start 22.09 29 26.09 Przygotowanie do pracy zapoznanie się z informacjami na temat egzaminu gimnazjalnego

Bardziej szczegółowo