PROGRAMMABLE DEVICES UKŁADY PROGRAMOWALNE
|
|
- Franciszek Bednarczyk
- 7 lat temu
- Przeglądów:
Transkrypt
1 Paweł Bogumił BRYŁA IV rok Koło Naukowe Techniki Cyfrowej Dr inŝ. Wojciech Mysiński opiekun naukowy PROGRAMMABLE DEVICES UKŁADY PROGRAMOWALNE Keywords: PAL, PLA, PLD, CPLD, FPGA, programmable device, electronic circuit, logic, array, field Słowa kluczowe: PAL, PLA, PLD, CPLD, FPGA, układ programowalny, układ elektroniczny, logiczne, matryca 1. Wprowadzenie UKŁADY PROGRAMOWALNE Układy cyfrowe moŝna podzielić na dwie grupy standardowe układy scalone oraz na tzw. układy ASIC (Application Specific Integrated Circuit). W przypadku zwykłych układów scalonych ich właściwości funkcjonalne są ustalane w procesie produkcji i nie mogą być później zmieniane. Natomiast właściwości układów ASIC są określane w zaleŝności od potrzeb przez ostatecznego uŝytkownika, a nie przez producenta. Do grona układów ASIC moŝna zaliczyć układy programowalne PLD (Programmable Logic Devices), ale biorąc pod uwagę moŝliwość wielokrotnego przeprogramowywania większości układów PLD oraz łatwość ich wytwarzania, stanowią one jakby odrębną rodzinę. Układy programowalne moŝna podzielić na: SPLD (Simple Programmable Logic Device) proste układy programowalne CPLD (Complex Programmable Logic Device) złoŝone układy programowalne FPGA (Field Programmable Gate Array) programowalne matryce bramkowe Konfigurowanie układów programowalnych moŝe odbywać się następującymi metodami: 1. Odpowiednio przygotowane ścieŝki do przepalenia (przez przepuszczenie prądu o duŝym natęŝeniu) podczas programowania takie zwarcia są usuwane. Układy te mogą być programowane tylko raz. 2. Elementy nie przewodzące, w których podczas programowania następuje przebicie dielektryka między warstwami przewodzącymi, połączenia te charakteryzują się małą rezystancją połączeń. RównieŜ jednokrotnie programowalne. Układy te mogą być programowane przez końcowego uŝytkownika. 3. Z wykorzystaniem tranzystorów MOS, które po włączeniu w stan przewodzenia zwierają ścieŝki; istnieje tu kilka moŝliwości wykorzystania tranzystorów: jako komórki pamięci EPROM, EEPROM, Flash lub zwykłe tranzystory MOS, które są zasilane z pamięci
2 statycznej RAM. Układy tego typu są reprogramowalne. W układach z pamięcią RAM po wyłączeniu zasilania konfiguracja logiczna jest tracona. Po ponownym włączeniu zasilania następuje ładowanie konfiguracji z zewnętrznych pamięci konfiguracyjnej. Układy FPGA programowane w ten sposób mogą być rekonfigurowane w czasie pracy. UŜywając układów programowalnych moŝna zaoszczędzić miejsce na płytce drukowanej oraz stosować zasilanie o mniejszej mocy. Zmniejszony pobór mocy w porównaniu ze standardowymi układami elektronicznymi uzyskuje się dzięki wysokiemu stopniowi scalenia oraz mniejszej liczbie zacisków zewnętrznych. 2. Układy PLD (SPLD) Do układów SPLD zalicza się przede wszystkim układy o architekturach PLA i PAL. Są to najtańsze i najprostsze układy. WiąŜą się z tym niestety niezbyt duŝe moŝliwości logiczne. Układy PLD są układami o małej skali integracji. Zawierają nie więcej niŝ 500 bramek logicznych, 24 makrokomórki i nie więcej niŝ 40 linii I/O. Układy te są produkowane głównie w technologii CMOS. PAL (Programmable Array Logic) Rys. 1. Schemat logiczny układu PAL
3 Architektura PAL składa się z dwóch matryc: AND i OR. Matryca AND jest programowalna a matryca OR skonfigurowana na stałe. Funkcje logiczne są realizowane jako sumy iloczynów sygnałów wejściowych. PLA (Programmable Logic Array) Rys. 2. Schemat logiczny układu PLA Układ ten róŝni się od PAL tylko tym, Ŝe występującą tu matryca OR jest programowalna tak jak matryca AND. W większości produkowanych układów PLD, programowalne matryce AND są wyposaŝane w dodatkowe linie, którymi są doprowadzane sygnały sprzęŝenia zwrotnego z wyjść matrycy OR, przerzutników wyjściowych lub innych elementów makrokomórek wyjściowych. Podstawowe parametry czasowe to: czas propagacji (t PD ; to czas, który upływa od momentu wystąpienia zmiany na zewnętrznych zaciskach układu do momentu ustalenia się wartości na wyjściu układu kombinacyjnego), czas ustawiania (t S ; to minimalny czas, w którym sygnał wejściowy przerzutnika musi być stabilny przed nadejściem zbocza wyzwalającego sygnału zegarowego), czas trzymania (t H ; to minimalny czas, w którym sygnał na wejściu przerzutnika musi być stabilny po wystąpieniu zbocza wyzwalającego sygnału taktującego), opóźnienie sygnału taktującego do wyjścia (t CO ; czas jaki upływa od
4 momentu zmiany sygnału taktującego podanego na zewnętrzny zacisk układu do chwili ustalenia się stabilnego stanu na innym zacisku zewnętrznym układu), opóźnienie propagacji sygnału taktującego przez matrycę logiczną do wyjścia (t CO2 ; ), opóźnienie zegara systemowego do zegara systemowego (t SCS ; minimalny czas sygnału taktującego, wymagany do wykonania operacji logicznych w strukturze między rejestrami; naleŝy tu wliczyć czasy ustawiania obydwu rejestrów). Maksymalna częstotliwość pracy jest określana wg zaleŝności: f 1 max =. t SCS 3. Układy CPLD Układy CPLD są podobne do układów SPLD, ale mają większe zasoby logiczne i moŝliwości funkcjonalne. Zawierają od kilkudziesięciu do kilkuset makrokomórek łączonych w większe bloki logiczne po 4 16 (struktura hierarchiczna). Układy CPLD wytwarzane są zwykle w technologii MOS i wyposaŝane w pamięć EPROM, EEPROM i Flash. Pierwsze układy CPLD oparte były na technologii PAL, przy znacznie zwiększonym wymiarze programowalnej matrycy AND. Dzięki temu uzyskano znaczne zwiększenie ilości sygnałów wejściowych, a takŝe większą liczbę rejestrów wyjściowych. To rozwiązanie było jednak za wolne, co było wynikiem zwiększenia się pojemności pasoŝytniczych. Kolejna architektura była takŝe oparta na strukturach PAL, ale połączono je szybką, programowaną matrycą połączeniową. We współczesnych układach CPLD matryce połączeniowe realizowane są w postaci programowalnych multiplekserów, które dostarczają sygnały z linii wejściowych i sprzęŝenia zwrotnego do bloków logicznych. Czas propagacji nie przekracza zwykle 3 ns. Czasy te są róŝne w zaleŝności od producenta i uŝytych technologii. Matryce połączeniowe wykonywane są takŝe jako wielopoziomowe. W układach tych jest moŝliwe poprowadzenie wszystkich połączeń, czyli dowolne wejście do połączenia programowalnego moŝe być połączone z dowolnym blokiem logicznym, o ile nie wykorzystano juŝ wszystkich wejść danego bloku. Rozmiar bloku logicznego określa jego moŝliwości czyli liczbę elementów logicznych, które moŝna w nim zaimplementować. WaŜnym elementem jest takŝe liczba wejść do bloku, liczba iloczynów oraz schemat rozprowadzenia tych iloczynów wewnątrz struktury. Większość linii iloczynowych moŝe być uŝywana przez cztery sąsiednie makrokomórki, bez ryzyka wystąpienia dodatkowych opóźnień. Sygnały wejściowe mogą być kombinacyjne, zatrzaskowe lub zapisywane w rejestrze. Czasem sygnał asynchroniczny względem zegara systemowego jest synchronizowany przez dwa przerzutniki, aby zwiększyć niezawodność systemu. Parametry czasowe są takie same jak w przypadku układów SPLD: czas propagacji, czas ustawiania, opóźnienie sygnału taktującego do wyjścia oraz czas przejścia sygnału od rejestru do rejestru. W przypadku układów CPLD mamy do czynienia z kilkoma własnościami, które odróŝniają je między sobą, a mianowicie: programowanie
5 układu w systemie (ISP In System Programmability), przeprogramowanie układu w systemie (ISR In System Reprogrammability), napięcie pracy (5V lub 3,5 V), port dla sygnałów testujących i moŝliwość testowania przez złącze obserwacyjno-testujące (JTAG Joint Test Action Group) oraz bufory wejściowe i wyjściowe, które są zgodne ze standardem połączeń PCI (Peripherial Component Interconnect) Rys. 3. Schemat logiczny układu o architekturze CPLD 4. Układy FPGA Układy FPGA składają się z bloków logicznych rozmieszczonych matrycowo, połączonych za pomocą tras i matryc kluczy połączeniowych, umieszczonych na przecięciu tras poziomych i pionowych. Na brzegach znajdują się programowalne bloki we/wy. Zawierają zwykle od 64 do dziesiątków tysięcy bloków logicznych. Bloki logiczne w układach FPGA mogą być bardzo zróŝnicowane. ZłoŜone bloki zawierają dwie lub więcej pamięci RAM i dwa lub więcej przerzutników. W prostszych blokach występują zwykle dwuwejściowe układy generacji funkcji kombinacyjnych lub czterowejściowe multipleksery i przerzutniki. Układy FPGA charakteryzują się duŝą liczbą sygnałów we/wy oraz duŝym upakowaniem rejestrów. UmoŜliwiają zwiększenie, w dość znacznej mierze, stopnia scalenia. MoŜna je programować i przeprogramowywać w systemie.
6 Architektura komórek logicznych jest róŝna, w zaleŝności od tego w jaki sposób są wykonywane połączenia. W strukturach z izolowanymi połączeniami moŝna stosować większą liczbę sygnałów we/wy dzięki duŝej ilości linii do przenoszenia sygnałów i bezpieczników, dzięki którym moŝna wykonać prawie wszystkie dowolne połączenia. W układach opartych na technologii SRAM komórki logiczne są większe o mniejszej liczbie we/wy. Nadają się one do implementacji skomplikowanych funkcji logicznych bez większego wpływu na opóźnienia. Wadą układów FPGA jest to, Ŝe połączenia między blokami są zestawiane z części, co moŝe prowadzić do występowania opóźnień. Pod tym względem układy CPLD są lepsze poniewaŝ posiadają ciągłe połączenia dzięki czemu opóźnienia są mniejsze, stałe i przewidywalne. Powszechnie stosowane są wejścia i obwody specjalnego przeznaczenia charakteryzujące się niskim poziomem zniekształceń, którymi rozprowadzane są sygnały zegarowe. Układy FPGA mogą pracować zasilane napięciami 5V i 3,5V, z niskim poborem mocy. Mogą być takŝe testowane przez złącze obserwacyjno-testujące zgodne ze standardem JTAG. Posiadają zgodność sygnałów we/wy ze standardem PCI. Rys. 4. Architektura układu FPGA
7 LITERATURA [1] Pasierbiński Jerzy, Zbysiński Piotr: Układy programowalne, WKŁ, Warszawa [2] Skahill Kevin: Język VHDL, WNT, Warszawa [3] Zwoliński Mark: Projektowanie układów cyfrowych z wykorzystaniem języka VHDL, WKŁ, Warszawa [4] [5]
Temat: Pamięci. Programowalne struktury logiczne.
Temat: Pamięci. Programowalne struktury logiczne. 1. Pamięci są układami służącymi do przechowywania informacji w postaci ciągu słów bitowych. Wykonuje się jako układy o bardzo dużym stopniu scalenia w
Programowalne scalone układy cyfrowe PLD, CPLD oraz FPGA
Programowalne scalone układy cyfrowe PLD, CPLD oraz FPGA Ogromną rolę w technice cyfrowej spełniają układy programowalne, często określane nazwą programowalnych modułów logicznych lub krótko hasłem FPLD
Elementy cyfrowe i układy logiczne
Elementy cyfrowe i układy logiczne Wykład 5 Legenda Procedura projektowania Podział układów VLSI 2 1 Procedura projektowania Specyfikacja Napisz, jeśli jeszcze nie istnieje, specyfikację układu. Opracowanie
Układy programowalne
Układy programowalne SPLD, CPLD, FPGA Podział układów programowalnych Procesory strukturalne Procesor Procesory proceduralne ASIC/ASSP PLD mikroprocesor mikrokontroler SPLD CPLD FPGA PROM, PLE, PLA, PAL,
Programowalne Układy Logiczne. Wykład I dr inż. Paweł Russek
Programowalne Układy Logiczne Wykład I dr inż. Paweł Russek Literatura www.actel.com www.altera.com www.xilinx.com www.latticesemi.com Field Programmable Gate Arrays J.V. Oldfield, R.C. Dorf Field Programable
Elektronika i techniki mikroprocesorowe
Elektronika i techniki mikroprocesorowe Technika cyfrowa ZłoŜone one układy cyfrowe Katedra Energoelektroniki, Napędu Elektrycznego i Robotyki Wydział Elektryczny, ul. Krzywoustego 2 PLAN WYKŁADU idea
Technika Cyfrowa 2 wykład 1: programowalne struktury logiczne - wprowadzenie
Technika Cyfrowa 2 wykład 1: programowalne struktury logiczne - wprowadzenie Dr inż. Jacek Mazurkiewicz Katedra Informatyki Technicznej e-mail: Jacek.Mazurkiewicz@pwr.edu.pl Sprawy formalne konsultacje,
ZASTOSOWANIA UKŁADÓW FPGA W ALGORYTMACH WYLICZENIOWYCH APPLICATIONS OF FPGAS IN ENUMERATION ALGORITHMS
inż. Michał HALEŃSKI Wojskowy Instytut Techniczny Uzbrojenia ZASTOSOWANIA UKŁADÓW FPGA W ALGORYTMACH WYLICZENIOWYCH Streszczenie: W artykule przedstawiono budowę oraz zasadę działania układów FPGA oraz
Cyfrowe układy scalone
Cyfrowe układy scalone Ryszard J. Barczyński, 2010 2015 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Cyfrowe układy scalone Układy cyfrowe
Wykorzystanie standardu JTAG do programowania i debugowania układów logicznych
Politechnika Śląska w Gliwicach Wydział Automatyki Elektroniki i Informatyki Wykorzystanie standardu JTAG do programowania i debugowania układów logicznych Promotor dr inż. Jacek Loska Wojciech Klimeczko
Układy programowalne. Wykład z ptc część 5
Układy programowalne Wykład z ptc część 5 Pamięci ROM Pamięci stałe typu ROM (Read only memory) umożliwiają jedynie odczytanie informacji zawartej w strukturze pamięci. Działanie: Y= X j *cs gdzie j=linia(a).
Cyfrowe układy scalone
Cyfrowe układy scalone Ryszard J. Barczyński, 2012 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Publikacja współfinansowana ze środków
Język opisu sprzętu VHDL
Język opisu sprzętu VHDL dr inż. Adam Klimowicz Seminarium dydaktyczne Katedra Mediów Cyfrowych i Grafiki Komputerowej Informacje ogólne Język opisu sprzętu VHDL Przedmiot obieralny dla studentów studiów
Cyfrowe układy scalone
Ryszard J. Barczyński, 2 25 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Układy cyfrowe stosowane są do przetwarzania informacji zakodowanej
Układy programowalne. Wykład z ptc część 5
Układy programowalne Wykład z ptc część 5 Pamięci ROM Pamięci stałe typu ROM (Read only memory) umożliwiają jedynie odczytanie informacji zawartej w strukturze pamięci. Działanie: Y= X j *cs gdzie j=linia_pamięci(a).
ZL10PLD. Moduł dippld z układem XC3S200
ZL10PLD Moduł dippld z układem XC3S200 Moduły dippld opracowano z myślą o ułatwieniu powszechnego stosowania układów FPGA z rodziny Spartan 3 przez konstruktorów, którzy nie mogą lub nie chcą inwestować
Systemy wbudowane. Układy programowalne
Systemy wbudowane Układy programowalne Układy ASIC Application Specific Integrated Circuits Podstawowy rozdział cyfrowych układów scalonych: Wielkie standardy: standardowe, uniwersalne elementy o strukturze
Cyfrowe układy scalone c.d. funkcje
Cyfrowe układy scalone c.d. funkcje Ryszard J. Barczyński, 206 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Kombinacyjne układy cyfrowe
Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych Laboratorium Przyrządów Półprzewodnikowych. Ćwiczenie 4
Ćwiczenie 4 Cel ćwiczenia Celem ćwiczenia jest poznanie charakterystyk statycznych układów scalonych CMOS oraz ich własności dynamicznych podczas procesu przełączania. Wiadomości podstawowe. Budowa i działanie
4. Wpisz do tabeli odpowiednie oznaczenia ukladów: PAL, PLA, PLE
1. Uzupelnij zapis ukladów CPLD rodziny XC9500XL: a. makrokomórka ma standardowa liczbe iloczynów - b. blok funkcyjny ma calkowita liczbe przerzutników - c. kazda makrokomórka ma liczbe przerzutników -
LABORATORIUM PROJEKTOWANIA UKŁADÓW VLSI
Wydział EAIiE LABORATORIUM PROJEKTOWANIA UKŁADÓW VLSI Temat projektu OŚMIOWEJŚCIOWA KOMÓRKA UKŁADU PAL Z ZASTOSOWANIEM NA PRZYKŁADZIE MULTIPLEKSERA Autorzy Tomasz Radziszewski Zdzisław Rapacz Rok akademicki
FPGA, CPLD, SPLD. Synteza systemów reprogramowalnych 1/27. dr inż. Mariusz Kapruziak mkapruziak@wi.ps.pl pok. 107, tel. 449 55 44
Synteza systemów reprogramowalnych /27 dr inż. Mariusz Kapruziak mkapruziak@wi.ps.pl pok. 07, tel. 449 55 44 FPGA, CPLD, SPLD 945 950 955 960 965 970 975 980 985 990 995 2000 0 D CLK update v cur Q Q 0
Projektowanie układów FPGA. Żródło*6+.
Projektowanie układów FPGA Żródło*6+. Programowalne układy logiczne W elektronice cyfrowej funkcjonują dwa trendy rozwoju: Specjalizowane układy scalone ASIC (ang. Application Specific Integrated Circuits)
Elektronika cyfrowa i mikroprocesory. Dr inż. Aleksander Cianciara
Elektronika cyfrowa i mikroprocesory Dr inż. Aleksander Cianciara Sprawy organizacyjne Warunki zaliczenia Lista obecności Kolokwium końcowe Ocena końcowa Konsultacje Poniedziałek 6:-7: Kontakt Budynek
Bramki logiczne Podstawowe składniki wszystkich układów logicznych
Układy logiczne Bramki logiczne A B A B AND NAND A B A B OR NOR A NOT A B A B XOR NXOR A NOT A B AND NAND A B OR NOR A B XOR NXOR Podstawowe składniki wszystkich układów logicznych 2 Podstawowe tożsamości
PROJEKTOWANIE UKŁADÓW VLSI
prof. dr hab. inż. Andrzej Kos Tel. 34.35, email: kos@uci.agh.edu.pl Pawilon C3, pokój 505 PROJEKTOWANIE UKŁADÓW VLSI Forma zaliczenia: egzamin Układy VLSI wczoraj i dzisiaj Pierwszy układ scalony -
ZL19PRG. Programator USB dla układów PLD firmy Altera
ZL19PRG Programator USB dla układów PLD firmy Altera Nowoczesny programator i konfigurator układów PLD produkowanych przez firmę Altera, w pełni zgodny ze standardem USB Blaster, dzięki czemu współpracuje
Rok akademicki: 2030/2031 Kod: EIT s Punkty ECTS: 4. Poziom studiów: Studia I stopnia Forma i tryb studiów: -
Nazwa modułu: Podstawy elektroniki cyfrowej Rok akademicki: 2030/2031 Kod: EIT-1-304-s Punkty ECTS: 4 Wydział: Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Kierunek: Informatyka Specjalność:
Podstawy elektroniki cyfrowej dla Inżynierii Nanostruktur. Piotr Fita
Podstawy elektroniki cyfrowej dla Inżynierii Nanostruktur Piotr Fita Elektronika cyfrowa i analogowa Układy analogowe - przetwarzanie sygnałów, których wartości zmieniają się w sposób ciągły w pewnym zakresie
Ćw. 9 Przerzutniki. 1. Cel ćwiczenia. 2. Wymagane informacje. 3. Wprowadzenie teoretyczne PODSTAWY ELEKTRONIKI MSIB
Ćw. 9 Przerzutniki 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi elementami sekwencyjnymi, czyli przerzutnikami. Zostanie przedstawiona zasada działania przerzutników oraz sposoby
UKŁAD SCALONY. Cyfrowe układy można podzielić ze względu na różne kryteria, na przykład sposób przetwarzania informacji, technologię wykonania.
UKŁDAY CYFROWE Układy cyfrowe są w praktyce realizowane różnymi technikami. W prostych urządzeniach automatyki powszechnie stosowane są układy elektryczne, wykorzystujące przekaźniki jako podstawowe elementy
43 Pamięci półprzewodnikowe w technice mikroprocesorowej - rodzaje, charakterystyka, zastosowania
43 Pamięci półprzewodnikowe w technice mikroprocesorowej - rodzaje, charakterystyka, zastosowania Typy pamięci Ulotność, dynamiczna RAM, statyczna ROM, Miejsce w konstrukcji komputera, pamięć robocza RAM,
Programowalna matryca logiczna
Programowalna matryca logiczna 1. Wprowadzenie We współczesnej elektronice cyfrowej obecne są dwa trendy rozwoju [1]: Specjalizowane układy scalone ASIC (ang. Application Specific Integrated Circuits)
Układy FPGA. Programowalne Układy Cyfrowe dr inż. Paweł Russek
Układy FPGA Programowalne Układy Cyfrowe dr inż. Paweł Russek Program wykładu Geneza Technologia Struktura Funktory logiczne, sieć połączeń, bloki we/wy Współczesne układy FPGA Porównanie z ASIC Literatura
Rok akademicki: 2016/2017 Kod: EAR s Punkty ECTS: 4. Poziom studiów: Studia I stopnia Forma i tryb studiów: -
Nazwa modułu: Technika mikroprocesorowa Rok akademicki: 2016/2017 Kod: EAR-1-496-s Punkty ECTS: 4 Wydział: Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Kierunek: Automatyka i Robotyka
Wygląd okna aplikacji Project Navigator.
Laboratorium przedmiotu Podstawy Techniki Cyfrowej ćw.1: Układy kombinacyjne Wprowadzenie: Wszelkie realizacje układowe projektów w ramach laboratorium z przedmiotu Podstawy Techniki Cyfrowej będą tworzone
Ćw. 8 Bramki logiczne
Ćw. 8 Bramki logiczne 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi bramkami logicznymi, poznanie ich rodzajów oraz najwaŝniejszych parametrów opisujących ich własności elektryczne.
Wielokontekstowy sterownik programowalny przyszłości wykorzystujący układy programowalne psoc
Wielokontekstowy sterownik programowalny przyszłości wykorzystujący układy programowalne psoc Dariusz Kania* Celem artykułu jest przedstawienie koncepcji działania wielokontekstowego sterownika przemysłowego
Funkcje logiczne X = A B AND. K.M.Gawrylczyk /55
Układy cyfrowe Funkcje logiczne AND A B X = A B... 2/55 Funkcje logiczne OR A B X = A + B NOT A A... 3/55 Twierdzenia algebry Boole a A + B = B + A A B = B A A + B + C = A + (B+C( B+C) ) = (A+B( A+B) )
Spis treœci. Co to jest mikrokontroler? Kody i liczby stosowane w systemach komputerowych. Podstawowe elementy logiczne
Spis treści 5 Spis treœci Co to jest mikrokontroler? Wprowadzenie... 11 Budowa systemu komputerowego... 12 Wejścia systemu komputerowego... 12 Wyjścia systemu komputerowego... 13 Jednostka centralna (CPU)...
Podział układów cyfrowych. rkijanka
Podział układów cyfrowych rkijanka W zależności od przyjętego kryterium możemy wyróżnić kilka sposobów podziału układów cyfrowych. Poniżej podam dwa z nich związane ze sposobem funkcjonowania układów cyfrowych
Technika Cyfrowa 2. Wykład 1: Programowalne układy logiczne
Technika Cyfrowa Wykład : Programowalne układy logiczne dr inż Jarosław Sugier JaroslawSugier@pwrwrocpl II pok C- J Sugier TC - Treść wykładu w tym semestrze: I Programowalne układy logiczne II Architektura
Kierunek Inżynieria Akustyczna, V rok Programowalne Układy Cyfrowe. Platforma sprzętowa. Rajda & Kasperek 2014 Katedra Elektroniki AGH 1
Kierunek Inżynieria Akustyczna, V rok Programowalne Układy Cyfrowe Platforma sprzętowa Rajda & Kasperek 2014 Katedra Elektroniki AGH 1 Program wykładu Architektura układów FPGA Rodzina Xilinx Spartan-6
IC200UDR002 ASTOR GE INTELLIGENT PLATFORMS - VERSAMAX NANO/MICRO
IC200UDR002 8 wejść dyskretnych 24 VDC, logika dodatnia/ujemna. Licznik impulsów wysokiej częstotliwości. 6 wyjść przekaźnikowych 2.0 A. Port: RS232. Zasilanie: 24 VDC. Sterownik VersaMax Micro UDR002
Pracownia elektryczna i elektroniczna. Elektronika cyfrowa. Ćwiczenie nr 5.
Pracownia elektryczna i elektroniczna. Elektronika cyfrowa. Ćwiczenie nr 5. Klasa III Opracuj projekt realizacji prac związanych z badaniem działania cyfrowych bloków arytmetycznych realizujących operacje
Projektowanie Systemów Wbudowanych
Projektowanie Systemów Wbudowanych Podstawowe informacje o płycie DE2 Autorzy: mgr inż. Dominik Bąk i mgr inż. Leszek Ciopiński 1. Płyta DE2 Rysunek 1. Widok płyty DE2 z zaznaczonymi jej komponentami.
Podstawy elektroniki cz. 2 Wykład 2
Podstawy elektroniki cz. 2 Wykład 2 Elementarne prawa Trzy elementarne prawa 2 Prawo Ohma Stosunek natężenia prądu płynącego przez przewodnik do napięcia pomiędzy jego końcami jest stały R U I 3 Prawo
2. PRZERZUTNIKI I REJESTRY
Technika cyfrowa i mikroprocesorowa w ćwiczeniach laboratoryjnych : praca zbiorowa / pod redakcją Jerzego Jakubca ; autorzy Ryszard Bogacz, Jerzy Roj, Janusz Tokarski. Wyd. 3. Gliwice, 2016 Spis treści
Opis przedmiotu zamówienia CZĘŚĆ 1
Opis przedmiotu zamówienia CZĘŚĆ 1 Stanowiska do badań algorytmów sterowania interfejsów energoelektronicznych zasobników energii bazujących na układach programowalnych FPGA. Stanowiska laboratoryjne mają
Cyfrowe układy kombinacyjne. 5 grudnia 2013 Wojciech Kucewicz 2
Cyfrowe układy kombinacyjne 5 grudnia 2013 Wojciech Kucewicz 2 Cyfrowe układy kombinacyjne X1 X2 X3 Xn Y1 Y2 Y3 Yn Układy kombinacyjne charakteryzuje funkcja, która każdemu stanowi wejściowemu X i X jednoznacznie
Przerzutnik ma pewną liczbę wejść i z reguły dwa wyjścia.
Kilka informacji o przerzutnikach Jaki układ elektroniczny nazywa się przerzutnikiem? Przerzutnikiem bistabilnym jest nazywany układ elektroniczny, charakteryzujący się istnieniem dwóch stanów wyróżnionych
Krótkie przypomnienie
Krótkie przypomnienie x i ={,} y i ={,} w., p. Bramki logiczne czas propagacji Odpowiedź na wyjściu bramki następuje po pewnym, charakterystycznym dla danego układu czasie od momentu zmiany sygnałów wejściowych.
ZL11PRG v.2. Uniwersalny programator ISP. Odpowiednik: Byte Blaster II DLC5 Programmer AT89ISP STK-200 Lattice ISP ARM Wiggler
ZL11PRG v.2 Uniwersalny programator ISP Odpowiednik: Byte Blaster II DLC5 Programmer AT89ISP STK-200 Lattice ISP ARM Wiggler Nowoczesna konstrukcja czyni z programatora ZL11PRG v.2 urządzenie niezwykle
RODZAJE PAMIĘCI RAM. Cz. 1
RODZAJE PAMIĘCI RAM Cz. 1 1 1) PAMIĘĆ DIP DIP (ang. Dual In-line Package), czasami nazywany DIL - w elektronice rodzaj obudowy elementów elektronicznych, głównie układów scalonych o małej i średniej skali
Układy sekwencyjne. 1. Czas trwania: 6h
Instytut Fizyki oświadczalnej UG Układy sekwencyjne 1. Czas trwania: 6h 2. Cele ćwiczenia Poznanie zasad działania podstawowych typów przerzutników: RS, -latch,, T, JK-MS. Poznanie zasad działania rejestrów
LICZNIKI Liczniki scalone serii 749x
LABOATOIUM PODSTAWY ELEKTONIKI LICZNIKI Liczniki scalone serii 749x Cel ćwiczenia Zapoznanie się z budową i zasadą działania liczników synchronicznych i asynchronicznych. Poznanie liczników dodających
Technika Cyfrowa 2 wykład 4: FPGA odsłona druga technologie i rodziny układów logicznych
Technika Cyfrowa 2 wykład 4: FPGA odsłona druga technologie i rodziny układów logicznych Dr inż. Jacek Mazurkiewicz Katedra Informatyki Technicznej e-mail: Jacek.Mazurkiewicz@pwr.edu.pl Elementy poważniejsze
Opis przedmiotu zamówienia
Opis przedmiotu zamówienia Stanowiska do badań algorytmów sterowania interfejsów energoelektronicznych zasobników energii bazujących na układach programowalnych FPGA. Stanowiska laboratoryjne mają służyć
Wydział Elektryczny. Katedra Automatyki i Elektroniki. Instrukcja. do ćwiczeń laboratoryjnych z przedmiotu: SYSTEMY CYFROWE 1.
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: SYSTEMY CYFROWE 1 PAMIĘCI SZEREGOWE EEPROM Ćwiczenie 3 Opracował: dr inŝ.
LABORATORIUM TECHNIKA CYFROWA BRAMKI. Rev.1.0
LABORATORIUM TECHNIKA CYFROWA BRAMKI Rev..0 LABORATORIUM TECHNIKI CYFROWEJ: Bramki. CEL ĆWICZENIA - praktyczna weryfikacja wiedzy teoretycznej z zakresu działania bramek, - pomiary parametrów bramek..
Laboratorium przedmiotu Technika Cyfrowa
Laboratorium przedmiotu Technika Cyfrowa ćw.3 i 4: Asynchroniczne i synchroniczne automaty sekwencyjne 1. Implementacja asynchronicznych i synchronicznych maszyn stanu w języku VERILOG: Maszyny stanu w
LABORATORIUM ELEKTRONIKI I TEORII OBWODÓW
POLITECHNIKA POZNAŃSKA FILIA W PILE LABORATORIUM ELEKTRONIKI I TEORII OBWODÓW numer ćwiczenia: data wykonania ćwiczenia: data oddania sprawozdania: OCENA: 6 21.11.2002 28.11.2002 tytuł ćwiczenia: wykonawcy:
MODEL KOMÓRKI UKŁADU FPGA ZBUDOWANEGO W OPARCIU O BRAMKI PRĄDOWE
MODEL KOMÓRKI UKŁADU FPGA ZBUDOWANEGO W OPARCIU O BRAMKI PRĄDOWE Oeg Maslennikow, Robert Berezowski, Przemysław Sołtan Politechnika Koszalińska, Wydział Elektroniki, ul. Partyzantów 17, 75-411 Koszalin
Układy FPGA w przykładach, część 2
Układy FPGA w przykładach, część 2 W drugiej części artykułu zajmiemy się omówieniem wyposażenia (po mikrokontrolerowemu : peryferiów) układów FPGA z rodziny Spartan 3, co ułatwi ich wykorzystywanie w
Logiczne układy bistabilne przerzutniki.
Przerzutniki spełniają rolę elementów pamięciowych: -przy pewnej kombinacji stanów na pewnych wejściach, niezależnie od stanów innych wejść, stany wyjściowe oraz nie ulegają zmianie; -przy innej określonej
Podstaw Elektroniki Cyfrowej Wykonał zespół w składzie (nazwiska i imiona): Dzień tygodnia:
Wydział EAIiIB Katedra Laboratorium Metrologii i Elektroniki Podstaw Elektroniki Cyfrowej Wykonał zespół w składzie (nazwiska i imiona): Ćw. 5. Funktory CMOS cz.1 Data wykonania: Grupa (godz.): Dzień tygodnia:
Systemy na Chipie. Robert Czerwiński
Systemy na Chipie Robert Czerwiński Cel kursu Celem kursu jest zapoznanie słuchaczy ze współczesnymi metodami projektowania cyfrowych układów specjalizowanych, ze szczególnym uwzględnieniem układów logiki
płytka montażowa z tranzystorami i rezystorami, pokazana na rysunku 1. płytka montażowa do badania przerzutnika astabilnego U CC T 2 masa
Tranzystor jako klucz elektroniczny - Ćwiczenie. Cel ćwiczenia Zapoznanie się z podstawowymi układami pracy tranzystora bipolarnego jako klucza elektronicznego. Bramki logiczne realizowane w technice RTL
Wstęp do Techniki Cyfrowej... Synchroniczne układy sekwencyjne
Wstęp do Techniki Cyfrowej... Synchroniczne układy sekwencyjne Schemat ogólny X Y Układ kombinacyjny S Z Pamięć Zegar Działanie układu Zmiany wartości wektora S możliwe tylko w dyskretnych chwilach czasowych
Programowanie Układów Logicznych kod kursu: ETD6203 W dr inż. Daniel Kopiec. Pamięć w układach programowalnych
Programowanie Układów Logicznych kod kursu: ETD623 Pamięć w układach programowalnych W6 6.4.26 dr inż. Daniel Kopiec Plan wykładu Pamięć w układach programowalnych Zasada działania, podział pamięci Miara
To nie huragan, to Cyclone II!
To nie huragan, to Cyclone II! Współczesne układy FPGA oferują konstruktorom zasoby z jakich korzystać jeszcze kilka lat temu mogli tylko nieliczni. Sytuację współczesnych konstruktorów dodatkowo upraszczają
PRZERZUTNIKI: 1. Należą do grupy bloków sekwencyjnych, 2. podstawowe układy pamiętające
PRZERZUTNIKI: 1. Należą do grupy bloków sekwencyjnych, 2. podstawowe układy pamiętające Zapamiętywanie wartości wybranych zmiennych binarnych, jak również sekwencji tych wartości odbywa się w układach
Układy cyfrowe (logiczne)
Układy cyfrowe (logiczne) 1.1. Przerzutniki I Przerzutnik to najprostszy (elementarny) cyfrowy układ sekwencyjny, który w zaleŝności od sekwencji zmian sygnałów wejściowych przyjmować moŝe i utrzymywać
PSM niebanalne Flashe
PSM niebanalne Flashe Pamięci Flash bardzo spowszedniały, a ich niskie ceny i korzystne cechy funkcjonalne umożliwiły faktyczne zdominowanie rynku pamięci nieulotnych. Poważnym brakiem Flashy jest brak
UKŁADY KOMBINACYJNE (BRAMKI: AND, OR, NAND, NOR, NOT)
LORTORIUM PODSTWY ELEKTRONIKI UKŁDY KOMINCYJNE (RMKI: ND, OR, NND, NOR, NOT) Cel ćwiczenia Zapoznanie się z budową i zasadą działania podstawowych funktorów (bramek) układów kombinacyjnych, jak równieŝ
Układy kombinacyjne. cz.2
Układy kombinacyjne cz.2 Układy kombinacyjne 2/26 Kombinacyjne bloki funkcjonalne Kombinacyjne bloki funkcjonalne - dekodery 3/26 Dekodery Są to układy zamieniające wybrany kod binarny (najczęściej NB)
Architektura komputerów
Architektura komputerów Tydzień 8 Magistrale systemowe Magistrala Układy składające się na komputer (procesor, pamięć, układy we/wy) muszą się ze sobą komunikować, czyli być połączone. Układy łączymy ze
Tranzystory. 1. Tranzystory bipolarne 2. Tranzystory unipolarne. unipolarne. bipolarny
POLTEHNKA AŁOSTOKA Tranzystory WYDZAŁ ELEKTYZNY 1. Tranzystory bipolarne 2. Tranzystory unipolarne bipolarny unipolarne Trójkońcówkowy (czterokońcówkowy) półprzewodnikowy element elektroniczny, posiadający
Układ elementarnej pamięci cyfrowej
Opis ćwiczenia Układ elementarnej pamięci cyfrowej Pod określeniem pamięć cyfrowa będziemy rozumieć układ, do którego moŝna wprowadzić i przez pewien czas w nim przechowywać ciąg liczb zero-jedynkowych.
Statyczne badanie przerzutników - ćwiczenie 3
Statyczne badanie przerzutników - ćwiczenie 3. Cel ćwiczenia Zapoznanie się z podstawowymi strukturami przerzutników w wersji TTL realizowanymi przy wykorzystaniu bramek logicznych NAND oraz NO. 2. Wykaz
Lista tematów na kolokwium z wykładu z Techniki Cyfrowej w roku ak. 2013/2014
Lista tematów na kolokwium z wykładu z Techniki Cyfrowej w roku ak. 2013/2014 Temat 1. Algebra Boole a i bramki 1). Podać przykład dowolnego prawa lub tożsamości, które jest spełnione w algebrze Boole
Układy zegarowe w systemie mikroprocesorowym
Układy zegarowe w systemie mikroprocesorowym 1 Sygnał zegarowy, sygnał taktujący W każdym systemie mikroprocesorowym jest wymagane źródło sygnałów zegarowych. Wszystkie operacje wewnątrz jednostki centralnej
Ćw. 7: Układy sekwencyjne
Ćw. 7: Układy sekwencyjne Wstęp Celem ćwiczenia jest zapoznanie się z sekwencyjnymi, cyfrowymi blokami funkcjonalnymi. W ćwiczeniu w oparciu o poznane przerzutniki zbudowane zostaną następujące układy
THE HARDWARE IMPLMENTATION OF THE PS/2 PROTOCOL ON SPARTAN 3 FPGA DEVICE IMPLEMENTACJA SPRZĘTOWA PROTOKOŁU PS/2 W UKLADZIE FPGA SPARTAN 3
Szymon Kozień IV rok Koło Naukowe Techniki Cyfrowej Dr inż. Wojciech Mysiński opiekun naukowy THE HARDWARE IMPLMTATION OF THE PS/ PROTOCOL ON SPARTAN FPGA DEVICE IMPLEMTACJA SPRZĘTOWA PROTOKOŁU PS/ W UKLADZIE
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki. ĆWICZENIE Nr 8 (3h) Implementacja pamięci ROM w FPGA
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki ĆWICZENIE Nr 8 (3h) Implementacja pamięci ROM w FPGA Instrukcja pomocnicza do laboratorium z przedmiotu Programowalne Struktury
Podstawy Informatyki JA-L i Pamięci
Podstawy Informatyki alina.momot@polsl.pl http://zti.polsl.pl/amomot/pi Plan wykładu 1 Operator elementarny Proste układy z akumulatorem Realizacja dodawania Realizacja JAL dla pojedynczego bitu 2 Parametry
dwójkę liczącą Licznikiem Podział liczników:
1. Dwójka licząca Przerzutnik typu D łatwo jest przekształcić w przerzutnik typu T i zrealizować dzielnik modulo 2 - tzw. dwójkę liczącą. W tym celu wystarczy połączyć wyjście zanegowane Q z wejściem D.
Miernik i regulator temperatury
Miernik i regulator temperatury Model M-10 do Dydaktycznego Systemu Mikroprocesorowego DSM-51 Instrukcja uŝytkowania Copyright 2007 by MicroMade All rights reserved Wszelkie prawa zastrzeŝone MicroMade
Statyczne i dynamiczne badanie przerzutników - ćwiczenie 2
tatyczne i dynamiczne badanie przerzutników - ćwiczenie 2. Cel ćwiczenia Zapoznanie się z podstawowymi strukturami przerzutników w wersji TTL realizowanymi przy wykorzystaniu bramek logicznych NAND oraz
Układy pamięci firmy Microchip w ofercie TME
Układy pamięci firmy Microchip w ofercie TME JuŜ przy konstruowaniu pierwszych systemów mikroprocesorowych pojawił się problem długotrwałego przechowywania danych. Układy RAM świetnie sprawdzające się
1. Podstawowe wiadomości...9. 2. Możliwości sprzętowe... 17. 3. Połączenia elektryczne... 25. 4. Elementy funkcjonalne programów...
Spis treści 3 1. Podstawowe wiadomości...9 1.1. Sterowniki podstawowe wiadomości...10 1.2. Do czego służy LOGO!?...12 1.3. Czym wyróżnia się LOGO!?...12 1.4. Pierwszy program w 5 minut...13 Oświetlenie
MIKROELEKTRONIKA [gr.], dział. elektroniki zajmujący się działaniem, konstrukcją Fifth i technologią Level układów scalonych.
Click Co to to jest edit mikroelektronika Master title style Click to edit Master text styles Second Level MIKROELEKTRONIKA [gr.], dział Third Level elektroniki zajmujący się działaniem, Fourth Level konstrukcją
Układy TTL i CMOS. Trochę logiki
Układy TTL i CMOS O liczbie elementów użytych do budowy jakiegoś urządzenia elektronicznego, a więc i o możliwości obniżenia jego ceny, decyduje dzisiaj liczba zastosowanych w nim układów scalonych. Najstarszą
3. Funktory CMOS cz.1
3. Funktory CMOS cz.1 Druga charakterystyczna rodzina układów cyfrowych to układy CMOS. W jej ramach występuje zbliżony asortyment funktorów i przerzutników jak dla układów TTL (wejście standardowe i wejście
PROJEKT I OPTYMALIZACJA STRUKTURY LOGICZNEJ DYDAKTYCZNEGO SYSTEMU MIKROPROCESOROWEGO DLA LABORATORIUM PROJEKTOWANIA ZINTEGROWANEGO
II Konferencja Naukowa KNWS'05 "Informatyka- sztuka czy rzemios o" 15-18 czerwca 2005, Z otniki Luba skie PROJEKT I OPTYMALIZACJA STRUKTURY LOGICZNEJ DYDAKTYCZNEGO SYSTEMU MIKROPROCESOROWEGO DLA LABORATORIUM
Ćwiczenie 24 Temat: Układy bramek logicznych pomiar napięcia i prądu. Cel ćwiczenia
Ćwiczenie 24 Temat: Układy bramek logicznych pomiar napięcia i prądu. Cel ćwiczenia Poznanie własności i zasad działania różnych bramek logicznych. Zmierzenie napięcia wejściowego i wyjściowego bramek
Wstęp...9. 1. Architektura... 13
Spis treści 3 Wstęp...9 1. Architektura... 13 1.1. Schemat blokowy...14 1.2. Pamięć programu...15 1.3. Cykl maszynowy...16 1.4. Licznik rozkazów...17 1.5. Stos...18 1.6. Modyfikowanie i odtwarzanie zawartości
Układy cyfrowe. Najczęściej układy cyfrowe służą do przetwarzania sygnałów o dwóch poziomach napięć:
Układy cyfrowe W układach cyfrowych sygnały napięciowe (lub prądowe) przyjmują tylko określoną liczbę poziomów, którym przyporządkowywane są wartości liczbowe. Najczęściej układy cyfrowe służą do przetwarzania
LABORATORIUM. Technika Cyfrowa. Badanie Bramek Logicznych
WYDZIAŁ ELEKTRYCZNY Katedra Inżynierii Systemów, Sygnałów i Elektroniki LABORATORIUM Technika Cyfrowa Badanie Bramek Logicznych Opracował: mgr inż. Andrzej Biedka 1 BADANIE FUNKCJI LOGICZNYCH 1.1 Korzystając
Układy sekwencyjne przerzutniki 2/18. Przerzutnikiem nazywamy elementarny układ sekwencyjny, wyposaŝony w n wejść informacyjnych (x 1.
Przerzutniki Układy sekwencyjne przerzutniki 2/18 Pojęcie przerzutnika Przerzutnikiem nazywamy elementarny układ sekwencyjny, wyposaŝony w n wejść informacyjnych (x 1... x n ), 1-bitową pamięć oraz 1 wyjście