10. / 42! 1 A$!! )$$$% 0 " ! "!" 1!" ""!1!!!!42 % "" t "1%/4( " '8 A B C D E. 5.82

Wielkość: px
Rozpocząć pokaz od strony:

Download "10. / 42! 1 A$!! )$$$% 0 " + 42 + 1 +! "!" 1!" ""!1!!!!42 % "" t "1%/4( " +. 7 4'8 A. 5.62 B. 5.67 C. 5.72 D. 5.77 E. 5.82"

Transkrypt

1 Matematyka finansowa r. 10. / 42! 1 A$!! )$$$% 0 " ! "!" 1!" ""!1!!!!42 % "" * t "1%/4( " + i 10%. 7 4'8 A B C D E

2 Matematyka finansowa r. 6. P na dwa lata. Przedstawiono mu dwie oferty: (i) trwania inwestycji. (ii) a (force of interest) t t 0,1t! P ( 1 ) P! " #$ %$ & P oraz odsetki) 200 '''! ( 2P &) ( 1 2 ) P #$ %$ *' 000! +%, P. "# $ % #&' A.! B.!! C. 2 D. 2! E., 6

3 Matematyka finansowa r. 9. Dana jest n-letnia (n > 1) obligacja, o stopie kuponowej równej i (i > 0). nominalnej równej F C + / * F. y w równych ratach rocznych przez n 9 i. 6 $duration& % (yield rate) j (j > 0). )* 0 8 (i) (ii) (iii) % *. F=C %. i j % % * i czas trwania kredytu, gdy i > j "#' A. tylko (i) B. tylko (ii) C. tylko (iii) D. tylko (ii) i (iii) E / 9

4 Matematyka finansowa r. 10. n-letniej obligacji o nominale 1. nominale. S 2: %. %!:8 /. % 2n- %! "# $ % &' A. ( B. C. 1 D. - E. ; 10

5 Matematyka finansowa r. 7. Inwestor kupuje 20 - $ +, $ $ %$ % + $$ $j wynosi 150 % efektywnej rocznej stopy zwrotu j $ $ na okres 5 lat. Po okresie 5 lat $ $ % + $ $ efektywnej rocznej stopy zwrotu równej j $ % $ tywnej rocznej stopie zwrotu i. + % $ % 5 letniej $ + $ dokonywanych na k, $ + skalkulowana przy efektywnej rocznej stopie zwrotu i = 8%. Wyznacz v 5 j 0.75, gdzie v i oraz efektywnym rocznym stopom zwrotu i oraz j. 5 v i, $ v j $% $% $%!"0$$ % 1# A B C D E

6 Matematyka finansowa r. 4. Dany jest pakiet 10 obligacji o kuponach p atnych pó rocznie w wysoko ci 50 ka dy oraz warto ci wykupu równej Termin wykupu obligacji przypada co rok pocz wszy od ko ca 10 roku tj. pierwsza obligacja zapada na ko cu 10 roku, druga na ko cu 11 roku,, dziesi ta obligacja zapada na ko cu 19 roku. Inwestor bierze kredyt na zakup obligacji w wysoko ci 70% warto ci zakupu obligacji, a za pozosta cz p aci z w asnych rodków. Odsetki otrzymane z obligacji s reinwestowane w funduszu. Inwestor po dwóch latach sprzedaje pakiet obligacji, wycofuje rodki z funduszu i sp aca kredyt w ca o ci wraz z nale nymi odsetkami. Oblicz efektywn roczn stop zwrotu i z zainwestowanych w asnych rodków, je eli wiadomo e: ( 2 ) (i) cena zakupu pakietu obligacji zosta a ustalona przy stopie procentowej i 10%, 1 ( 2 ) (ii) cena sprzeda y pakietu obligacji zosta a ustalona przy stopie procentowej i 6%, (iii) fundusz, w którym inwestowane s rodki otrzymane z zapad ych kuponów s ( 2 ) reinwestowane przy stopie i 8%, 3 ( 2 ) (iv) kredyt na sfinansowanie zakupu jest oprocentowany przy stopie i 16%. 4 2 Odpowied (podaj najbli sz warto ): A. 22% B. 32% C. 42% D. 52% E. 62% 4

7 Matematyka finansowa Na pocz tku roku (w chwili t 0 ) portfel pewnego funduszu inwestycyjnego sk ada si z 40% obligacji typu I oraz 60% obligacji typu II. O obligacjach typu I oraz typu II wiadomo, e: (i) obligacja typu I p aci kupony rocznie z do u w wysoko ci 4% warto ci nominalnej tej obligacji; (ii) cena oraz duration obligacji typu I wyznaczone przy stopie procentowej i = 6% wynosz odpowiednio 80% jej warto ci nominalnej oraz d 0, I ; (iii) obligacja typu II p aci kupony rocznie z do u w wysoko ci 6% warto ci nominalnej tej obligacji; (iv) cena oraz duration obligacji typu II wyznaczone przy stopie procentowej i = 6% wynosz odpowiednio 90% jej warto ci nominalnej oraz d 0, II Na ko cu pierwszego roku kwoty otrzymane z kuponów s reinwestowane w dwuletnie obligacje zerokuponowe. Wyznacz duration d 1 (w chwili t 1) przy stopie procentowej i = 6%. Odpowied (podaj najbli sz warto ): portfela funduszu inwestycyjnego na pocz tku nast pnego roku A B C D E

8 Matematyka finansowa Do funduszu oprocentowanego przy stopie procentowej równej 12% na pocz tku ka dego roku dokonywana jest wp ata w wysoko ci Na ko cu ka dego roku dokonywana jest wyp ata w wysoko ci 50% obecnego stanu funduszu. Wyznacz czn kwot wyp acon z funduszu od pocz tku 6 roku do ko ca 20 roku. Odpowied (podaj najbli sz warto ): A B C D E

9 Matematyka finansowa r. 6. Portfel inwestycyjny Zak adu Ubezpiecze sk ada si z trzech rodzajów obligacji: 10 - letnich obligacji o kuponach p atnych rocznie w wysoko ci 10.00% ich warto ci nominalnej (ang. face value), 20 - letnich obligacji zerokuponowych oraz niesko czonych obligacji p ac cych co rok na ko cu roku sta kwot (ang. perpetuity). Wyznacz jaki jest udzia procentowy obligacji 10 - letnich w ca ym portfelu inwestycyjnym Zak adu Ubezpiecze, je eli wiadomo, e: (i) duration ca ego portfela jest równe d (ii) duration portfela z o onego jedynie z obligacji 20 - letnich oraz obligacji niesko czonych wynosi d , (iii) stopa procentowa przyj ta do oblicze wynosi i 10.00%. Odpowied (podaj najbli sz warto ): A. 40% B. 43% C. 46% D. 49% E. 52% 6

10 Matematyka finansowa roku 2. Informacje o warto ci jednostki w czasie w pewnym funduszu inwestycyjnym zestawiono w poni szej tabeli: Data Warto jednostki r r r r r Wiadomo, e do funduszu dokonywane s wp aty wysoko ciach w dniu r. i w dniu r. oraz wyp aty w wysoko ciach w dniu r. i w dniu r. Wiadomo te, e w dniu r. wycofywane s wszystkie rodki z funduszu i e w tym dniu nast puje zako czenie okresu inwestowania. Oblicz, ile wynosi ró nica pomi dzy stop zwrotu z inwestowania rodków w tym funduszu w 2002 r. wyznaczon za pomoc metody kapita owej (ang. dollar - weighted) oraz metody wa enia czasem (ang. time - weighted). Odpowied (podaj najbli sz warto ): A. 0.3% B. 12.3% C. 30.7% D. 32.8% E. 62.3% 2

11 Matematyka finansowa r. 4. Bie ca rynkowa krzywa zerokuponowa w PLN dana jest funkcj f(t) > 0 dla t > 0, gdzie f(t) stopa zerokuponowa w skali roku, t - czas inwestycji w latach. Uniemo liwiaj cy arbitra kurs terminowy USD / PLN dany jest funkcj : 1 f ( t) g( t) 4, t gdzie g(t) t-letni kurs terminowy 1 USD wyra ony w PLN. Bie cy kurs wynosi 1 USD = 4 PLN. Ile wynosi warto bie ca 5-letniej obligacji skarbowej denominowanej w USD o kuponie rocznym 150 USD i nominale 1200 USD? Podaj najbli sz warto. t A) PLN B) PLN C) PLN D) PLN E) PLN 5

12

13 Matematyka finansowa r. 5. W dniu 31 grudnia 2007 Pan Jan kupuje na rynku pierwotnym 4-letni obligacj po cenie 1000 PLN. Nominał obligacji wynosi 1000 PLN, za stałe kupony płatne s na koniec ka dego roku. Struktur czasow stóp procentowych na dzie 31 grudnia 2007 opisuje krzywa stóp spot (krzywa zerokuponowa): s n 1 12n 8 =, n = 1,2, n 1 gdzie s n oznacza n-letni stop spot. Wyznacz stop kuponu tej obligacji. Odpowied (podaj najbli sz warto ). A) 4.0% B) 4.4% C) 5.0% D) 5.3% E) 5.7% 6

14 Matematyka finansowa r. 1. RozwaŜmy portfel składający się z dwóch aktywów: obligacji wygasającej za 2 lata z nominałem PLN, płacącej półroczne kupony w wysokości 3% nominału oraz długiej pozycji w wygasającym za 2 lata kontrakcie futures na 3-letnią (w chwili wygaśnięcia kontraktu) obligację o nominale PLN, płacącą półroczne kupony w wysokości 3% nominału. Stopa wolna od ryzyka jest stała i wynosi 5.. Duration, w latach, tego portfela wynosi w przybliŝeniu: A) 1.50 B) 1.65 C) 1.85 D) 2.45 E)

15 Matematyka finansowa r. 2. Bank inwestycyjny emituje 3-letnią obligacją o nominale 1 mln PLN. Wysokość kuponu tej obligacji związana jest z indeksem XYZ w następujący sposób: w k-tą rocznicę emisji, k=1,2,3, obligacja płaci kupon: C k = + 50% max( XYZ( k) / XYZ( k 1) 1,0), k = 1,2,3, XYZ(0) = 1250 Wyznaczyć cenę tej obligacji w momencie emisji jeŝeli: rynek oczekuje, Ŝe w ciągu kaŝdego roku indeks XYZ wzrośnie o 20% z prawdopodobieństwem 60%, bądź zmaleje o 20% z prawdopodobieństwem 40%, ceny indeksowanych inflacją obligacji zerokuponowych o nominale 1000 PLN są w momencie wyceny następujące: obligacja 1-roczna 968 PLN, obligacja 2-letnia 937 PLN, obligacja 3-letnia 907 PLN, w momencie wyceny prognoza inflacji jest następująca: 1% w pierwszym roku, 1.1% w drugim roku, 1.2% w trzecim roku. A) 1.18 mln PLN B) 1.22 mln PLN C) 1.02 mln PLN D) 1.29 mln PLN E) 1.32 mln PLN Uwaga: Obligacje indeksowane inflacją to takie, które są wyceniane stopą realną. 3

16 Matematyka finansowa r. 3. Dwie róŝne firmy Φ i Ψ wystawiają dwie obligacje zerokuponowe, o tym samym terminie wykupu i wartości wykupu równej PLN. KaŜda z tych firm moŝe stać się niewypłacalna z prawdopodobieństwem ale po bankructwie jednej z nich nie moŝe nastąpić bankructwo drugiej. Jeśli zbankrutuje firma Φ, to jej obligacja wypłaca lub z jednakowym prawdopodobieństwem. Jeśli natomiast firma Ψ stanie się niewypłacalna, to jej obligacja wypłaca lub 6 800, równieŝ z jednakowym prawdopodobieństwem. Ceny obligacji są równe i wynoszą Niech A oznacza zwrot z obligacji firmy Φ, natomiast B zwrot z obligacji firmy Ψ. Ponadto, niech VaR α (A) oznacza Value-at-Risk na poziomie α dla zwrotu A, VaR α (B) Value-at-Risk na poziomie α dla zwrotu B, natomiast VaR ( A + B) Value-at-Risk na poziomie α dla α zwrotu z portfela złoŝonego z obligacji firm Φ i Ψ. Które z poniŝszych stwierdzeń jest prawdziwe: A) VaR A) + VaR ( B) > VaR ( A + ) i VaR A) < VaR ( ) ( B 2. ( 2. B B) VaR A) + VaR ( B) < VaR ( A + ) i VaR A) < VaR ( ) 2. ( B ( B C) VaR A) + VaR ( B) > VaR ( A + ) i VaR A) < VaR ( ) 2. ( B ( B D) VaR A) + VaR ( B) < VaR ( A + ) i VaR A) < VaR ( ) ( B E) śadne z powyŝszych 2. ( 2. B Uwaga: Niech α (0,1). VaR α (Value-at-Risk) na poziomie α dla zwrotu X określamy wzorem: VaRα ( X ) = sup{ x R : P( X < x) < α}. 4

WERSJA TESTU A. Komisja Egzaminacyjna dla Aktuariuszy. XLV Egzamin dla Aktuariuszy z 17 marca 2008 r. Część I. Matematyka finansowa

WERSJA TESTU A. Komisja Egzaminacyjna dla Aktuariuszy. XLV Egzamin dla Aktuariuszy z 17 marca 2008 r. Część I. Matematyka finansowa Komisja Egzaminacyjna dla Aktuariuszy XLV Egzamin dla Aktuariuszy z 17 marca 2008 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. RozwaŜmy

Bardziej szczegółowo

Matematyka finansowa 2.06.2001 r.

Matematyka finansowa 2.06.2001 r. Matematyka finansowa 2.06.2001 r. 3. Inwe 2!%3'(!!%3 $'!%4&!! &,'! * "! &,-' ryzyko inwestycji odchyleniem standardowym stopy zwrotu ze swojego portfela. Jak *!&! $!%3$! %4 A.,. B. spadnie o 5% C. spadnie

Bardziej szczegółowo

Matematyka finansowa 15.12.2008 r. Komisja Egzaminacyjna dla Aktuariuszy. XLVIII Egzamin dla Aktuariuszy z 15 grudnia 2008 r.

Matematyka finansowa 15.12.2008 r. Komisja Egzaminacyjna dla Aktuariuszy. XLVIII Egzamin dla Aktuariuszy z 15 grudnia 2008 r. Komisja Egzaminacyjna dla Aktuariuszy XLVIII Egzamin dla Aktuariuszy z 15 grudnia 2008 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1

Bardziej szczegółowo

Matematyka finansowa 03.10.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVIII Egzamin dla Aktuariuszy z 3 października 2011 r.

Matematyka finansowa 03.10.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVIII Egzamin dla Aktuariuszy z 3 października 2011 r. Komisja Egzaminacyjna dla Aktuariuszy LVIII Egzamin dla Aktuariuszy z 3 października 2011 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut

Bardziej szczegółowo

Matematyka finansowa 13.12.2010 r. Komisja Egzaminacyjna dla Aktuariuszy. LV Egzamin dla Aktuariuszy z 13 grudnia 2010 r. Część I

Matematyka finansowa 13.12.2010 r. Komisja Egzaminacyjna dla Aktuariuszy. LV Egzamin dla Aktuariuszy z 13 grudnia 2010 r. Część I Komisja Egzaminacyjna dla Aktuariuszy LV Egzamin dla Aktuariuszy z 13 grudnia 2010 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Pan

Bardziej szczegółowo

Matematyka finansowa 05.12.2005 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXVII Egzamin dla Aktuariuszy z 5 grudnia 2005 r.

Matematyka finansowa 05.12.2005 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXVII Egzamin dla Aktuariuszy z 5 grudnia 2005 r. Komisja Egzaminacyjna dla Aktuariuszy XXXVII Egzamin dla Aktuariuszy z 5 grudnia 2005 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... WERSJA TESTU A Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

Matematyka finansowa 8.12.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXIX Egzamin dla Aktuariuszy z 8 grudnia 2014 r. Część I

Matematyka finansowa 8.12.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXIX Egzamin dla Aktuariuszy z 8 grudnia 2014 r. Część I Komisja Egzaminacyjna dla Aktuariuszy LXIX Egzamin dla Aktuariuszy z 8 grudnia 2014 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

Matematyka finansowa 04.04.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część I

Matematyka finansowa 04.04.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część I Komisja Egzaminacyjna dla Aktuariuszy LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

Matematyka finansowa 11.10.2004 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r.

Matematyka finansowa 11.10.2004 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r. Komisja Egzaminacyjna dla Aktuariuszy XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... WERSJA TESTU Czas egzaminu: 100 minut

Bardziej szczegółowo

Egzamin XXVII dla Aktuariuszy z 12 października 2002 r.

Egzamin XXVII dla Aktuariuszy z 12 października 2002 r. Komisja Egzaminacyjna dla Aktuariuszy Egzamin XXVII dla Aktuariuszy z 12 października 2002 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Ośrodek Doskonalenia

Bardziej szczegółowo

Ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym Zadanie 1 Procent składany

Ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym Zadanie 1 Procent składany Zadanie 1 Procent składany W banku A oprocentowanie lokat 4% przy kapitalizacji kwartalnej. W banku B oprocentowanie lokat 4,5% przy kapitalizacji miesięcznej. W banku A ulokowano kwotę 1000 zł. Jaki kapitał

Bardziej szczegółowo

Matematyka finansowa 26.05.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część I

Matematyka finansowa 26.05.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część I Komisja Egzaminacyjna dla Aktuariuszy LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Przyjmijmy

Bardziej szczegółowo

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXXIII Egzamin dla Aktuariuszy z 7 marca 2016 r. Część I

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXXIII Egzamin dla Aktuariuszy z 7 marca 2016 r. Część I Komisja Egzaminacyjna dla Aktuariuszy LXXIII Egzamin dla Aktuariuszy z 7 marca 2016 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXI Egzamin dla Aktuariuszy z 1 października 2012 r.

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXI Egzamin dla Aktuariuszy z 1 października 2012 r. Komisja Egzaminacyjna dla Aktuariuszy LXI Egzamin dla Aktuariuszy z 1 października 2012 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1

Bardziej szczegółowo

Matematyka finansowa 20.06.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVII Egzamin dla Aktuariuszy z 20 czerwca 2011 r.

Matematyka finansowa 20.06.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVII Egzamin dla Aktuariuszy z 20 czerwca 2011 r. Komisja Egzaminacyjna dla Aktuariuszy LVII Egzamin dla Aktuariuszy z 20 czerwca 2011 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

Matematyka finansowa 17.05.2003

Matematyka finansowa 17.05.2003 1. Na początku roku (w chwili t = 0 ) portfel pewnego funduszu inwestycyjnego składa się z 40% obligacji typu I oraz 60% obligacji typu II. O obligacjach typu I oraz typu II wiadomo, że: (i) obligacja

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy XXXV Egzamin dla Aktuariuszy z 16 maja 2005 r. Część I Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy XXXV Egzamin dla Aktuariuszy z 16 maja 2005 r. Część I Matematyka finansowa Komisja Egzaminacyjna dla Aktuariuszy XXXV Egzamin dla Aktuariuszy z 6 maja 005 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... WERSJA TESTU A Czas egzaminu: 00 minut . Inwestorzy

Bardziej szczegółowo

Obligacje. nazywamy papier warto sciowy maj acy, po_zyczki przez instytucj e, obligacj e, u jej nabywcy.

Obligacje. nazywamy papier warto sciowy maj acy, po_zyczki przez instytucj e, obligacj e, u jej nabywcy. Obligacje De nicja Obligacj nazywamy papier warto sciowy maj acy, charakter wierzycielski. Obligacj jest zaci agni, eciem, po_zyczki przez instytucj e, sprzedaj ac, obligacj e, u jej nabywcy. Sprzedaj

Bardziej szczegółowo

Matematyka finansowa 30.09.2013 r. Komisja Egzaminacyjna dla Aktuariuszy. LXV Egzamin dla Aktuariuszy z 30 września 2013 r.

Matematyka finansowa 30.09.2013 r. Komisja Egzaminacyjna dla Aktuariuszy. LXV Egzamin dla Aktuariuszy z 30 września 2013 r. Komisja Egzaminacyjna dla Aktuariuszy LXV Egzamin dla Aktuariuszy z 30 września 2013 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

Ćwiczenia 1 Wprowadzenie do inwestycji

Ćwiczenia 1 Wprowadzenie do inwestycji Zadanie 1. Ćwiczenia 1 Wprowadzenie do inwestycji Poniższa tabela przedstawia notowania dwóch instrumentów, A i B. Okres 0 1 2 3 4 5 Instrument A 100 95,00 99,75 111,72 113,95 123,07 Instrument B 50 52,00

Bardziej szczegółowo

Egzamin dla Aktuariuszy z 6 grudnia 2003 r.

Egzamin dla Aktuariuszy z 6 grudnia 2003 r. Komisja Egzaminacyjna dla Aktuariuszy Egzamin dla Aktuariuszy z 6 grudnia 2003 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Ośrodek Doskonalenia Kadr

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy. XXXIX Egzamin dla Aktuariuszy z 5 czerwca 2006 r. Część I. Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy. XXXIX Egzamin dla Aktuariuszy z 5 czerwca 2006 r. Część I. Matematyka finansowa Komisja Egzaminacyjna dla Aktuariuszy XXXIX Egzamin dla Aktuariuszy z 5 czerwca 006 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Inwestor dokonuje

Bardziej szczegółowo

Zadanie 1. Zadanie 2. Zadanie 3

Zadanie 1. Zadanie 2. Zadanie 3 Zadanie 1 Inwestor rozważa nabycie obligacji wieczystej (konsoli), od której będzie otrzymywał na koniec każdego półrocza kupon w wysokości 80 zł. Wymagana przez inwestora stopa zwrotu w terminie do wykupu

Bardziej szczegółowo

Matematyka finansowa 10.12.2012 r. Komisja Egzaminacyjna dla Aktuariuszy. LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r.

Matematyka finansowa 10.12.2012 r. Komisja Egzaminacyjna dla Aktuariuszy. LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r. Komisja Egzaminacyjna dla Aktuariuszy LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

Dr hab. Renata Karkowska, ćwiczenia Zarządzanie ryzykiem 1

Dr hab. Renata Karkowska, ćwiczenia Zarządzanie ryzykiem 1 1 Rodzaje i źródła ryzyka stopy procentowej: Ryzyko niedopasowania terminów przeszacowania, np. 6M kredyt o stałym oprocentowaniu finansowany miesięcznymi lokatami o zmiennym oprocentowaniu. Ryzyko podstawy

Bardziej szczegółowo

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXIII Egzamin dla Aktuariuszy z 25 marca 2013 r. Część I

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXIII Egzamin dla Aktuariuszy z 25 marca 2013 r. Część I Komisja Egzaminacyjna dla Aktuariuszy LXIII Egzamin dla Aktuariuszy z 25 marca 2013 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

Kontrakty terminowe na WIBOR

Kontrakty terminowe na WIBOR Kontrakty terminowe na WIBOR W Polsce podstawowym wskaźnikiem odzwierciedlającym koszt pieniądza na rynku międzybankowym jest WIBOR (ang. Warsaw Interbank Offered Rate). Jest to średnia stopa procentowa

Bardziej szczegółowo

II Etap egzaminu na Doradcę Inwestycyjnego Maj 2014. Zadanie 2

II Etap egzaminu na Doradcę Inwestycyjnego Maj 2014. Zadanie 2 II Etap egzaminu na Doradcę Inwestycyjnego Maj 2014 Zadanie 2 1/ Analizowane są dwie spółki Alfa i Gamma. Spółka Alfa finansuje swoją działalność nie korzystając z długu, natomiast spółka Gamma finansuje

Bardziej szczegółowo

Matematyka finansowa 15.06.2015 r. Komisja Egzaminacyjna dla Aktuariuszy. LXXI Egzamin dla Aktuariuszy z 15 czerwca 2015 r.

Matematyka finansowa 15.06.2015 r. Komisja Egzaminacyjna dla Aktuariuszy. LXXI Egzamin dla Aktuariuszy z 15 czerwca 2015 r. Komisja Egzaminacyjna dla Aktuariuszy LXXI Egzamin dla Aktuariuszy z 1 czerwca 201 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Pracownik

Bardziej szczegółowo

Charakterystyka i wycena kontraktów terminowych forward

Charakterystyka i wycena kontraktów terminowych forward Charakterystyka i wycena kontraktów terminowych forward Profil wypłaty forward Profil wypłaty dla pozycji długiej w kontrakcie terminowym Long position Zysk/strata Cena spot Profil wypłaty dla pozycji

Bardziej szczegółowo

Matematyka finansowa, rozkład normalny, Model wyceny aktywów kapitałowych, Forward, Futures

Matematyka finansowa, rozkład normalny, Model wyceny aktywów kapitałowych, Forward, Futures Matematyka finansowa, rozkład normalny, Model wyceny aktywów kapitałowych, Forward, Futures 1 Inwestor ma trzyletnią obligację o wartości nominalnej 2000 zł, oprocentowaną 8% rocznie, przy czym odsetki

Bardziej szczegółowo

Struktura terminowa rynku obligacji

Struktura terminowa rynku obligacji Krzywa dochodowości pomaga w inwestowaniu w obligacje Struktura terminowa rynku obligacji Wskazuje, które obligacje są atrakcyjne a których unikać Obrazuje aktualną sytuację na rynku długu i zmiany w czasie

Bardziej szczegółowo

DZIENNIK USTAW RZECZYPOSPOLITEJ POLSKIEJ

DZIENNIK USTAW RZECZYPOSPOLITEJ POLSKIEJ DZIENNIK USTAW RZECZYPOSPOLITEJ POLSKIEJ Warszawa, dnia 6 czerwca 2016 r. Poz. 789 ROZPORZĄDZENIE MINISTRA FINANSÓW 1) z dnia 25 maja 2016 r. w sprawie rocznych i półrocznych sprawozdań ubezpieczeniowego

Bardziej szczegółowo

Inwestowanie w obligacje

Inwestowanie w obligacje Inwestowanie w obligacje Ile zapłacić za obligację aby uzyskać oczekiwaną stopę zwrotu? Jaką stopę zwrotu uzyskamy kupując obligację po danej cenie? Jak zmienią się ceny obligacji, kiedy Rada olityki ieniężnej

Bardziej szczegółowo

Umowa kredytu. zawarta w dniu. zwanym dalej Kredytobiorcą, przy kontrasygnacie Skarbnika Powiatu.

Umowa kredytu. zawarta w dniu. zwanym dalej Kredytobiorcą, przy kontrasygnacie Skarbnika Powiatu. Umowa kredytu Załącznik nr 5 do siwz PROJEKT zawarta w dniu. między: reprezentowanym przez: 1. 2. a Powiatem Skarżyskim reprezentowanym przez: zwanym dalej Kredytobiorcą, przy kontrasygnacie Skarbnika

Bardziej szczegółowo

TRANSAKCJE SWAP: - PROCENTOWE - WALUTOWE - WALUTOWO-PROCENTOWE - KREDYTOWE

TRANSAKCJE SWAP: - PROCENTOWE - WALUTOWE - WALUTOWO-PROCENTOWE - KREDYTOWE TRANSAKCJE SWAP: - PROCENTOWE - WALUTOWE - WALUTOWO-PROCENTOWE - KREDYTOWE 1 SWAP - fixed-to-floating rate IRS - swap procentowy jest umową, w której dwie strony uzgadniają, że będą w ustalonych terminach

Bardziej szczegółowo

Papiery wartościowe o stałym dochodzie

Papiery wartościowe o stałym dochodzie Papiery wartościowe o stałym dochodzie Inwestycje i teoria portfela Strona 1 z 42 1. Wartość pieniądza w czasie Złotówka dzisiaj (którą mamy w ręku) jest więcej warta niż (przyrzeczona) złotówka w przyszłości,

Bardziej szczegółowo

Zadania do wykładu Rachunek efektywności projektów inwestycyjnych

Zadania do wykładu Rachunek efektywności projektów inwestycyjnych Zadania do wykładu Rachunek efektywności projektów inwestycyjnych Dorota Klim Instytut Nauk Ekonomicznych i Informatyki, Państwowa Wyższa Szkoła Zawodowa w Płocku E-mail address: klimdr@math.uni.ldz.pl

Bardziej szczegółowo

Egzamin dla Aktuariuszy z 16 listopada 1996 r.

Egzamin dla Aktuariuszy z 16 listopada 1996 r. Komisja Egzaminacyjna dla Aktuariuszy Egzamin dla Aktuariuszy z 16 listopada 1996 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:.... Czas egzaminu: l OO minut Ośrodek Doskonalenia

Bardziej szczegółowo

4.5. Obligacja o zmiennym oprocentowaniu

4.5. Obligacja o zmiennym oprocentowaniu .5. Obligacja o zmiennym oprocentowaniu 71.5. Obligacja o zmiennym oprocentowaniu Aby wycenić kontrakt IRS musi bliżej przyjrzeć się obligacji o zmiennym oprocentowaniu (Floating Rate Note lub floater

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy LXX Egzamin dla Aktuariuszy z 23 marca 2015 r. Część I Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy LXX Egzamin dla Aktuariuszy z 23 marca 2015 r. Część I Matematyka finansowa Komisja Egzaminacyjna dla Aktuariuszy LXX Egzamin dla Aktuariuszy z 23 marca 2015 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Rozważmy

Bardziej szczegółowo

Warszawska Giełda Towarowa S.A.

Warszawska Giełda Towarowa S.A. KONTRAKT FUTURES Poprzez kontrakt futures rozumiemy umowę zawartą pomiędzy dwoma stronami transakcji. Jedna z nich zobowiązuje się do kupna, a przeciwna do sprzedaży, w ściśle określonym terminie w przyszłości

Bardziej szczegółowo

INFORMACJE O INSTRUMENTACH FINANSOWYCH WCHODZĄCYCH W SKŁAD ZARZADZANYCH PRZEZ BIURO MAKLERSKIE PORTFELI Z UWZGLĘDNIENIEM ZWIĄZANYCH Z NIMI RYZYK

INFORMACJE O INSTRUMENTACH FINANSOWYCH WCHODZĄCYCH W SKŁAD ZARZADZANYCH PRZEZ BIURO MAKLERSKIE PORTFELI Z UWZGLĘDNIENIEM ZWIĄZANYCH Z NIMI RYZYK INFORMACJE O INSTRUMENTACH FINANSOWYCH WCHODZĄCYCH W SKŁAD ZARZADZANYCH PRZEZ BIURO MAKLERSKIE PORTFELI Z UWZGLĘDNIENIEM ZWIĄZANYCH Z NIMI RYZYK Akcje Akcje są papierem wartościowym reprezentującym odpowiedni

Bardziej szczegółowo

Inżynieria Finansowa: 4. FRA i Swapy

Inżynieria Finansowa: 4. FRA i Swapy Inżynieria Finansowa: 4. FRA i Swapy Piotr Bańbuła Katedra Rynków i Instytucji Finansowych, KES Październik 2014 r. Warszawa, Szkoła Główna Handlowa Zakup syntetycznej obligacji +1 mln PLN: emisja obligacji/krótka

Bardziej szczegółowo

Obligacje o stałym oprocentowaniu (fixed- interest bonds) Najprostsze z nich to

Obligacje o stałym oprocentowaniu (fixed- interest bonds) Najprostsze z nich to Obligacje (bonds) Obligacja papier wartościowy emitowany w serii, w którym emitent stwierdza, że jest dłużnikiem obligatariusza i zobowiązuje się wobec niego do spełnienia określonego świadczenia. Najczęściej

Bardziej szczegółowo

Inwestycje finansowe. Wycena obligacji. Stopa zwrotu z akcji. Ryzyko.

Inwestycje finansowe. Wycena obligacji. Stopa zwrotu z akcji. Ryzyko. Inwestycje finansowe Wycena obligacji. Stopa zwrotu z akcji. yzyko. Inwestycje finansowe Instrumenty rynku pieniężnego (np. bony skarbowe). Instrumenty rynku walutowego. Obligacje. Akcje. Instrumenty pochodne.

Bardziej szczegółowo

Podatek przemysłowy (lokalny podatek od działalności usługowowytwórczej) 2015-12-17 16:02:07

Podatek przemysłowy (lokalny podatek od działalności usługowowytwórczej) 2015-12-17 16:02:07 Podatek przemysłowy (lokalny podatek od działalności usługowowytwórczej) 2015-12-17 16:02:07 2 Podatek przemysłowy (lokalny podatek od działalności usługowo-wytwórczej) Podatek przemysłowy (lokalny podatek

Bardziej szczegółowo

Rynek kapitałowy. Rynek kapitałowy. Rynek kapitałowy. Rynek kapitałowy. Charakterystyka:

Rynek kapitałowy. Rynek kapitałowy. Rynek kapitałowy. Rynek kapitałowy. Charakterystyka: ogół transakcji kupna-sprzedaŝy, których przedmiotem są instrumenty finansowe o okresie wykupu dłuŝszym od roku; środki uzyskane z emisji tych instrumentów mogą być przeznaczone na działalność rozwojową

Bardziej szczegółowo

Inżynieria finansowa Ćwiczenia III Stopy Forward i Kontrakt FRA

Inżynieria finansowa Ćwiczenia III Stopy Forward i Kontrakt FRA Inżynieria finansowa Ćwiczenia III Stopy Forward i Kontrakt FRA Wydział Matematyki Informatyki i Mechaniki UW 18 października 2011 Zadanie 3.1 W dniu 18 października 2004 Bank X kwotował: 3M PLN Depo -

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejk z kodem dysleksja PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Czas pracy 10 minut Instrukcja dla zdaj cego 1. Prosz sprawdzi, czy arkusz egzaminacyjny zawiera 9 stron. Ewentualny brak nale

Bardziej szczegółowo

Rozwiązanie zadań egzaminacyjnych. marzec 2010

Rozwiązanie zadań egzaminacyjnych. marzec 2010 Rozwiązanie zadań egzaminacyjnych I etap egzaminu na Doradcę Inwestycyjnego marzec 2010 Opracował: Marcin Reszka Doradca Inwestycyjny nr 335 Wszystkie prawa zastrzeżone. Nie zezwala się na kopiowanie,

Bardziej szczegółowo

Regulamin programu "Kredyt Hipoteczny Banku BPH. Obowiązuje od dnia: 26.11.2014 r.

Regulamin programu Kredyt Hipoteczny Banku BPH. Obowiązuje od dnia: 26.11.2014 r. Regulamin programu "Kredyt Hipoteczny Banku BPH Obowiązuje od dnia: 26.11.2014 r. 1 Rozdział I Postanowienia ogólne 1 Zakres Przedmiotowy Niniejszy Regulamin określa zasady ustalania warunków cenowych

Bardziej szczegółowo

Inżynieria finansowa Ćwiczenia II Stopy Procentowe

Inżynieria finansowa Ćwiczenia II Stopy Procentowe Inżynieria finansowa Ćwiczenia II Stopy Procentowe Wydział Matematyki Informatyki i Mechaniki UW 11 października 2011 Zadanie 2.1 Oprocentowanie 3M pożyczki wynosi 5.00% (ACT/365). Natomiast, 3M bon skarbowy

Bardziej szczegółowo

Formularz informacyjny dotyczący kredytu konsumenckiego

Formularz informacyjny dotyczący kredytu konsumenckiego Formularz informacyjny dotyczący kredytu konsumenckiego 1.Imię, nazwisko (nazwa) i adres (siedziba) kredytodawcy lub pośrednika kredytowego KREDYTODAWCA: POLI INVEST Spółka z ograniczoną odpowiedzialnością

Bardziej szczegółowo

Materiały do samodzielnego kształcenia Inżynieria finansowa i zarządzanie ryzykiem. Temat wykładu: Wycena kontraktów swap

Materiały do samodzielnego kształcenia Inżynieria finansowa i zarządzanie ryzykiem. Temat wykładu: Wycena kontraktów swap Materiały do samodzielnego kształcenia Inżynieria finansowa i zarządzanie ryzykiem Temat wykładu: Wycena kontraktów swap Podstawowe zagadnienia: 1. Wycena swapa procentowego metodą wyceny obligacji 2.

Bardziej szczegółowo

Co powinna zawierać obligacja?

Co powinna zawierać obligacja? OBLIGACJE Obligacja Jest papierem wartościowym typu wierzytelnościowego, czyli jedna strona, zwana emitentem, stwierdza, że jest dłużnikiem drugiej strony (zwanej obligatariuszem) i zobowiązuje się wobec

Bardziej szczegółowo

Obligacje, Swapy, FRAsy i Bob Citron

Obligacje, Swapy, FRAsy i Bob Citron Obligacje, Swapy, FRAsy i Bob Citron Andrzej Kulik andrzej.kulik@pioneer.com.pl +22 321 4106/ 609 691 729 1 Plan Przypomnienie informacji o rynku długu Rodzaje obligacji Ryzyko obligacji yield curve Duration

Bardziej szczegółowo

Eugeniusz Gostomski. Ryzyko stopy procentowej

Eugeniusz Gostomski. Ryzyko stopy procentowej Eugeniusz Gostomski Ryzyko stopy procentowej 1 Stopa procentowa Stopa procentowa jest ceną pieniądza i wyznacznikiem wartości pieniądza w czasie. Wpływa ona z jednej strony na koszt pozyskiwania przez

Bardziej szczegółowo

Zasady obliczania depozytów na opcje na GPW - MPKR

Zasady obliczania depozytów na opcje na GPW - MPKR Jesteś tu: Bossa.pl Zasady obliczania depozytów na opcje na GPW - MPKR Depozyt zabezpieczający dla pozycji w kontraktach opcyjnych wyznaczany jest za pomocą Modelu Portfelowej Kalkulacji Ryzyka. Czym jest

Bardziej szczegółowo

Polecenie 2.W spółce akcyjnej akcja na okaziciela oznacza ograniczoną zbywalność. Polecenie 5. Zadaniem controllingu jest pomiar wyniku finansowego

Polecenie 2.W spółce akcyjnej akcja na okaziciela oznacza ograniczoną zbywalność. Polecenie 5. Zadaniem controllingu jest pomiar wyniku finansowego Polecenie 1. Spółka z ograniczoną odpowiedzialnością jest podmiotem w pełni bezosobowym. Polecenie 2.W spółce akcyjnej akcja na okaziciela oznacza ograniczoną zbywalność Polecenie 3.W WZA osobą najważniejszą

Bardziej szczegółowo

Instrumenty pochodne - Zadania

Instrumenty pochodne - Zadania Jerzy A. Dzieża Instrumenty pochodne - Zadania 27 marca 2011 roku Rozdział 1 Wprowadzenie 1.1. Zadania 1. Spekulant zajął krótką pozycję w kontrakcie forward USD/PLN zapadającym za 2 miesiące o nominale

Bardziej szczegółowo

TABELA OPROCENTOWANIA PRODUKTÓW DEPOZYTOWYCH DLA KLIENTÓW INDYWIDUALNYCH BANKU SPÓŁDZIELCZEGO W LUBAWIE obowiązuje od 01.06.2016r.

TABELA OPROCENTOWANIA PRODUKTÓW DEPOZYTOWYCH DLA KLIENTÓW INDYWIDUALNYCH BANKU SPÓŁDZIELCZEGO W LUBAWIE obowiązuje od 01.06.2016r. ZRZESZENIE BANKU POLSKIEJ SPÓŁDZIELCZOŚCI BANK SPÓŁDZIELCZY W LUBAWIE Rok założenia 1870 Załącznik do Uchwały nr 58/2016 Zarządu Banku Spółdzielczego w Lubawie z dnia 31 maja 2016r. TABELA OPROCENTOWANIA

Bardziej szczegółowo

Uchwała Nr XVII/501/15 Rady Miasta Gdańska z dnia 17 grudnia 2015r.

Uchwała Nr XVII/501/15 Rady Miasta Gdańska z dnia 17 grudnia 2015r. Uchwała Nr XVII/501/15 Rady Miasta Gdańska z dnia 17 grudnia 2015r. w sprawie przyjęcia Wieloletniej Prognozy Finansowej Gminy Miasta Gdańska. Na podstawie art.226, art. 227, art. 228, art. 230 ust. 6

Bardziej szczegółowo

"Kredyt konsumencki w świetle przepisów dyrektywy"

Kredyt konsumencki w świetle przepisów dyrektywy "Kredyt konsumencki w świetle przepisów dyrektywy" MSZ CIE, Warszawa, 17 października 2012 r. 1 Spis treści 1. Podstawa prawna 2. Definicje 3. Wyłączenia 4. Informacje podawane w reklamie 5. Standardowy

Bardziej szczegółowo

EFEKTYWNE OSZCZĘDZANIE Jędrzej Stachura 18.10.2014

EFEKTYWNE OSZCZĘDZANIE Jędrzej Stachura 18.10.2014 EFEKTYWNE OSZCZĘDZANIE Jędrzej Stachura 18.10.2014 Jak oszczędzać pieniądze? Przykładowe sposoby na zaoszczędzenie pieniędzy Zmień przekonania, zostań freeganem Za każdym razem gaś światło w pokoju Co

Bardziej szczegółowo

Zad u enie Skarbu Pa stwa 1 04/2002

Zad u enie Skarbu Pa stwa 1 04/2002 MINISTERSTWO FINANSÓW DEPARTAMENT D UGU PUBLICZNEGO 00-916 Warszawa, ul. wi tokrzyska 12 tel. (48 22) 694-57-97 Warszawa, 5 lipca 2002 r. Zad u enie Skarbu Pa stwa 1 04/2002 I. ZAD U ENIE SKARBU PA STWA

Bardziej szczegółowo

Spis treści. Przedmowa. O Autorach. Wstęp. Część I. Finanse i system finansowy

Spis treści. Przedmowa. O Autorach. Wstęp. Część I. Finanse i system finansowy Spis treści Przedmowa O Autorach Wstęp Część I. Finanse i system finansowy Rozdział 1. Co to są finanse? 1.1. Definicja pojęcia finanse 1.2. Dlaczego należy studiować finanse? 1.3. Decyzje finansowe gospodarstw

Bardziej szczegółowo

Obowiązek wystawienia faktury zaliczkowej wynika z przepisów o VAT i z faktu udokumentowania tego podatku.

Obowiązek wystawienia faktury zaliczkowej wynika z przepisów o VAT i z faktu udokumentowania tego podatku. Różnice kursowe pomiędzy zapłatą zaliczki przez kontrahenta zagranicznego a fakturą dokumentującą tę Obowiązek wystawienia faktury zaliczkowej wynika z przepisów o VAT i z faktu udokumentowania tego podatku.

Bardziej szczegółowo

OGŁOSZENIE. o zmianach statutu Allianz Fundusz Inwestycyjny Otwarty

OGŁOSZENIE. o zmianach statutu Allianz Fundusz Inwestycyjny Otwarty OGŁOSZENIE z dnia 13 listopada 2015 roku o zmianach statutu Allianz Fundusz Inwestycyjny Otwarty Towarzystwo Funduszy Inwestycyjnych Allianz Polska S.A. z siedzibą w Warszawie niniejszym informuje o dokonaniu

Bardziej szczegółowo

Wyniki finansowe funduszy inwestycyjnych i towarzystw funduszy inwestycyjnych w 2011 roku 1

Wyniki finansowe funduszy inwestycyjnych i towarzystw funduszy inwestycyjnych w 2011 roku 1 Warszawa, 26 czerwca 2012 r. Wyniki finansowe funduszy inwestycyjnych i towarzystw funduszy inwestycyjnych w 2011 roku 1 W końcu 2011 r. na polskim rynku finansowym funkcjonowały 484 fundusze inwestycyjne

Bardziej szczegółowo

Prognoza 2015. Prognoza 2016. Prognoza 2017. Prognoza 2018

Prognoza 2015. Prognoza 2016. Prognoza 2017. Prognoza 2018 WIELOLETNIA PROGNOZA FINANSOWA GMINY MIASTA CHEŁMŻY NA LATA 2015-2025 Załącznik Nr 1 do uchwały Nr VII/53/15 Rady Miejskiej Chełmży z dnia 17 września 2015r. L.p. Formuła Wyszczególnienie Wykonanie 2012

Bardziej szczegółowo

ROZPORZÑDZENIE MINISTRA FINANSÓW. z dnia 7 listopada 2001 r.

ROZPORZÑDZENIE MINISTRA FINANSÓW. z dnia 7 listopada 2001 r. Dziennik Ustaw Nr 135 10543 Poz. 1518 1518 ROZPORZÑDZENIE MINISTRA FINANSÓW z dnia 7 listopada 2001 r. w sprawie informacji, jakie powinien zawieraç wniosek o przyrzeczenie podpisania Umowy DOKE, oraz

Bardziej szczegółowo

1/ W oparciu o znajomość MSSF, które zostały zatwierdzone przez UE (dalej: MSR/MSSF): (Punktacja dot. pkt 1, razem: od 0 do 20 pkt)

1/ W oparciu o znajomość MSSF, które zostały zatwierdzone przez UE (dalej: MSR/MSSF): (Punktacja dot. pkt 1, razem: od 0 do 20 pkt) Egzamin na Doradcę Inwestycyjnego II etap 11.2015 Zadanie 1 1/ W oparciu o znajomość MSSF, które zostały zatwierdzone przez UE (dalej: MSR/MSSF): (Punktacja dot. pkt 1, razem: od 0 do 20 pkt) 1.1/ podaj

Bardziej szczegółowo

Informacja dotycząca adekwatności kapitałowej HSBC Bank Polska S.A. na 31 grudnia 2010 r.

Informacja dotycząca adekwatności kapitałowej HSBC Bank Polska S.A. na 31 grudnia 2010 r. Informacja dotycząca adekwatności kapitałowej HSBC Bank Polska S.A. na 31 grudnia 2010 r. Spis treści: 1. Wstęp... 3 2. Fundusze własne... 4 2.1 Informacje podstawowe... 4 2.2 Struktura funduszy własnych....5

Bardziej szczegółowo

Matematyka finansowa 08.01.2007 r. Komisja Egzaminacyjna dla Aktuariuszy. XLI Egzamin dla Aktuariuszy z 8 stycznia 2007 r. Część I

Matematyka finansowa 08.01.2007 r. Komisja Egzaminacyjna dla Aktuariuszy. XLI Egzamin dla Aktuariuszy z 8 stycznia 2007 r. Część I Komisja Egzaminacyjna dla Aktuariuszy XLI Egzamin dla Aktuariuszy z 8 stycznia 2007 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 00 minut . Ile

Bardziej szczegółowo

Oprocentowanie konta 0,10%

Oprocentowanie konta 0,10% KONTA Konto osobiste konta 0,10% Brak kwoty minimalnej. zmienne obowiązuje od 18.05.2015 r. Miesięczna kapitalizacja odsetek. Odsetki za niedozwolone saldo debetowe - 4-krotność stopy kredytu lombardowego

Bardziej szczegółowo

WZÓR PORÓWNANIA OFERT DLA PRZYKŁADOWYCH BANKÓW

WZÓR PORÓWNANIA OFERT DLA PRZYKŁADOWYCH BANKÓW Warszawa, 10.02.2016 Piotr Truchan M: 609 244 093 piotr.truchan@trufinanse.pl WZÓR PORÓWNANIA OFERT DLA PRZYKŁADOWYCH BANKÓW Przyjęta wartość zabezpieczenia Kwota kredytu hipotecznego 540.000zł netto 540.000zł

Bardziej szczegółowo

Wartość brutto Miesięczna rata leasingowa 34... Cena brutto. Podatek VAT

Wartość brutto Miesięczna rata leasingowa 34... Cena brutto. Podatek VAT Szpital Specjalistyczny im. Ludwika Rydygiera w Krakowie Sp. z o.o. z siedzibą w Krakowie, os. Złotej Jesieni 1, 31-826 Kraków Dział Zamówień Publicznych i Zaopatrzenia Kraków, 3 października 2014 r. DZPiZ

Bardziej szczegółowo

Formularz informacyjny dotyczący kredytu konsumenckiego w rachunku oszczędnościowo-rozliczeniowym sporządzony na podstawie reprezentatywnego przykładu

Formularz informacyjny dotyczący kredytu konsumenckiego w rachunku oszczędnościowo-rozliczeniowym sporządzony na podstawie reprezentatywnego przykładu Formularz informacyjny dotyczący kredytu konsumenckiego w rachunku oszczędnościowo-rozliczeniowym sporządzony na podstawie reprezentatywnego przykładu Imię, nazwisko (nazwa) i adres (siedziba) kredytodawcy

Bardziej szczegółowo

TABELA OPROCENTOWANIA PRODUKTÓW BANKOWYCH w Powiatowym Banku Spółdzielczym w Kędzierzynie - Koźlu

TABELA OPROCENTOWANIA PRODUKTÓW BANKOWYCH w Powiatowym Banku Spółdzielczym w Kędzierzynie - Koźlu TABELA OPROCENTOWANIA PRODUKTÓW BANKOWYCH w Powiatowym Banku Spółdzielczym w Kędzierzynie - Koźlu ROZDZIAŁ I Tekst jednolity z dnia 05 stycznia 2016r. SPIS TREŚCI: Rozdział Wyszczególnienie Str. Rozdział

Bardziej szczegółowo

ANALIZA OBLIGACJI STRATEGIE

ANALIZA OBLIGACJI STRATEGIE KRZYSZTO JAJUGA STRATEGIE ZARZĄDZANIA PORTELEM INSTRUMENTÓW DŁUŻNYCH Proste strategie związane z koniecznością sfinansowania zobowiązań ANALIZA OBLIGACJI STRATEGIE - dopasowanie przepływów pieniężnych

Bardziej szczegółowo

Ćwiczenia ZPI. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym 1

Ćwiczenia ZPI. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym 1 Ćwiczenia ZPI 1 W banku A oprocentowanie lokat 4% przy kapitalizacji kwartalnej. W banku B oprocentowanie lokat 4,5% przy kapitalizacji miesięcznej. W banku A ulokowano kwotę 1000 zł. Jaki kapitał należy

Bardziej szczegółowo

Ogólna charakterystyka kontraktów terminowych

Ogólna charakterystyka kontraktów terminowych Jesteś tu: Bossa.pl Kurs giełdowy - Część 10 Ogólna charakterystyka kontraktów terminowych Kontrakt terminowy jest umową pomiędzy dwiema stronami, z których jedna zobowiązuje się do nabycia a druga do

Bardziej szczegółowo

FORMULARZ INFORMACYJNY DOTYCZĄCY KREDYTU KONSUMENCKIEGO

FORMULARZ INFORMACYJNY DOTYCZĄCY KREDYTU KONSUMENCKIEGO FORMULARZ INFORMACYJNY DOTYCZĄCY KREDYTU KONSUMENCKIEGO 1. Imię, nazwisko (nazwa) i adres (siedziba) kredytodawcy lub pośrednika kredytowego Kredytodawca Adres (siedziba) Numer telefonu Adres poczty elektronicznej

Bardziej szczegółowo

REGULAMIN UDZIELANIA PRZEZ BANK ZACHODNI WBK S.A. KREDYTÓW MŚP-ONLINE

REGULAMIN UDZIELANIA PRZEZ BANK ZACHODNI WBK S.A. KREDYTÓW MŚP-ONLINE 1 REGULAMIN UDZIELANIA PRZEZ BANK ZACHODNI WBK S.A. KREDYTÓW MŚP-ONLINE 1. PRZEPISY OGÓLNE 1. Bank Zachodni WBK SA, zwany dalej Bankiem, udziela kredyty MŚP-online, tj. z wykorzystaniem strony internetowej,

Bardziej szczegółowo

Zadanie 1. Liczba szkód w każdym z trzech kolejnych lat dla pewnego ubezpieczonego ma rozkład równomierny:

Zadanie 1. Liczba szkód w każdym z trzech kolejnych lat dla pewnego ubezpieczonego ma rozkład równomierny: Matematyka ubezpieczeń majątkowych 5.2.2008 r. Zadanie. Liczba szkód w każdym z trzech kolejnych lat dla pewnego ubezpieczonego ma rozkład równomierny: Pr ( N = k) = 0 dla k = 0,, K, 9. Liczby szkód w

Bardziej szczegółowo

8. Zarządzanie portfelem inwestycyjnym za pomocą instrumentów pochodnych Zabezpieczenie Spekulacja Arbitraż 9. Charakterystyka i teoria wyceny

8. Zarządzanie portfelem inwestycyjnym za pomocą instrumentów pochodnych Zabezpieczenie Spekulacja Arbitraż 9. Charakterystyka i teoria wyceny 8. Zarządzanie portfelem inwestycyjnym za pomocą instrumentów pochodnych Zabezpieczenie Spekulacja Arbitraż 9. Charakterystyka i teoria wyceny kontraktów terminowych Kontrakty forward FRA 1 Zadanie 1 Profil

Bardziej szczegółowo

Jak należy wypełnić i aktualizować harmonogram płatności będący załącznikiem do umowy o dofinansowanie projektu w ramach RPO WM 2014-2020?

Jak należy wypełnić i aktualizować harmonogram płatności będący załącznikiem do umowy o dofinansowanie projektu w ramach RPO WM 2014-2020? Jak należy wypełnić i aktualizować harmonogram płatności będący załącznikiem do umowy o dofinansowanie projektu w ramach RPO WM 2014-2020? SPORZĄDZANIE HARMONOGRAMU PŁATNOŚCI I. Umowa Standardowa 1. Do

Bardziej szczegółowo

ODPOWIEDZI NA PYTANIA DO SIWZ NR SIWZ Nr 280/2014/N/Zwoleń

ODPOWIEDZI NA PYTANIA DO SIWZ NR SIWZ Nr 280/2014/N/Zwoleń Strona 1 z 6 Wrocław, 03.12.2014 r. Do uczestników przetargu nieograniczonego na usługę kompleksowego ubezpieczenia Samodzielnego Publicznego Zespołu Zakładów Opieki Zdrowotnej w Zwoleniu ODPOWIEDZI NA

Bardziej szczegółowo

Wyjaśnienie nr 1 i Zmiana nr 2 treści specyfikacji istotnych warunków zamówienia

Wyjaśnienie nr 1 i Zmiana nr 2 treści specyfikacji istotnych warunków zamówienia Gdańsk, dnia 18.08.2015 r. Akademia Wychowania Fizycznego i Sportu im. Jędrzeja Śniadeckiego w Gdańsku 80-336 Gdańsk, ul. Kazimierza Górskiego 1, tel. 58-554-71-90, faks 58-554-72-27 Wykonawcy Wyjaśnienie

Bardziej szczegółowo

BANK SPÓŁDZIELCZY W LEŚNICY

BANK SPÓŁDZIELCZY W LEŚNICY BANK SPÓŁDZIELCZY W LEŚNICY Tabela oprocentowania produktów bankowych Banku Spółdzielczego w Leśnicy obowiązująca od 01 czerwca 2016r. Strzelce Opolskie 2016r. Spis treści: Część A - KLIENCI INDYWIDUALNI...

Bardziej szczegółowo

Tabela oprocentowania produktów bankowych

Tabela oprocentowania produktów bankowych Załącznik do Uchwały Zarządu BS nr 4/2016 z dnia 05-02-2016 r. Tabela oprocentowania produktów bankowych w Banku Spółdzielczym w Międzyrzecu Podlaskim Tekst jednolity Zmiany: Uchwała nr 16/2016 z dnia

Bardziej szczegółowo

PLAN POŁĄCZENIA UZGODNIONY POMIĘDZY. Grupa Kapitałowa IMMOBILE S.A. z siedzibą w Bydgoszczy. Hotel 1 GKI Sp. z o.o. z siedzibą w Bydgoszczy

PLAN POŁĄCZENIA UZGODNIONY POMIĘDZY. Grupa Kapitałowa IMMOBILE S.A. z siedzibą w Bydgoszczy. Hotel 1 GKI Sp. z o.o. z siedzibą w Bydgoszczy PLAN POŁĄCZENIA UZGODNIONY POMIĘDZY Grupa Kapitałowa IMMOBILE S.A. z siedzibą w Bydgoszczy a Hotel 1 GKI Sp. z o.o. z siedzibą w Bydgoszczy Bydgoszcz, dnia 29 luty 2016r. 1 Plan Połączenia spółek Grupa

Bardziej szczegółowo

ROZPORZ DZENIE MINISTRA FINANSÓW. z dnia 26 czerwca 2006 r.

ROZPORZ DZENIE MINISTRA FINANSÓW. z dnia 26 czerwca 2006 r. ROZPORZ DZENIE MINISTRA FINANSÓW z dnia 26 czerwca 2006 r. w sprawie warunków emitowania obligacji skarbowych przeznaczonych na zamian zobowi za Skarbu Pa stwa Na podstawie art. 89 ust. 1 ustawy z dnia

Bardziej szczegółowo

TABELA OPROCENTOWANIA DEPOZYTÓW W BANKU SPÓŁDZIELCZYM W NOWYM DWORZE MAZOWIECKIM

TABELA OPROCENTOWANIA DEPOZYTÓW W BANKU SPÓŁDZIELCZYM W NOWYM DWORZE MAZOWIECKIM Załącznik nr 1 do Uchwały Nr 40/2016 Zarządu Banku Spółdzielczego w Nowym Dworze Maz. z dnia 06.04.2016 r. TABELA OPROCENTOWANIA DEPOZYTÓW W BANKU SPÓŁDZIELCZYM W NOWYM DWORZE MAZOWIECKIM Tabela 1. Rachunki

Bardziej szczegółowo

Ryzyko stopy procentowej

Ryzyko stopy procentowej Ryzyko stopy procentowej Inwestycje i teoria portfela Strona 1 z 37 1. Ryzyko inwestowania w obligacje inwestycja w obligacje jest obarczona ryzykiem trzy podstawowe rodzaje ryzyka związane z inwestowaniem

Bardziej szczegółowo

Forward Rate Agreement

Forward Rate Agreement Forward Rate Agreement Nowoczesne rynki finansowe oferują wiele instrumentów pochodnych. Należą do nich: opcje i warranty, kontrakty futures i forward, kontrakty FRA (Forward Rate Agreement) oraz swapy.

Bardziej szczegółowo

TABELA OPROCENTOWANIA PRODUKTÓW KREDYTOWYCH W BANKU SPÓŁDZIELCZYM RZEMIOSŁA W RADOMIU Tekst jednolity - obowiązuje od 11.04.2016 r.

TABELA OPROCENTOWANIA PRODUKTÓW KREDYTOWYCH W BANKU SPÓŁDZIELCZYM RZEMIOSŁA W RADOMIU Tekst jednolity - obowiązuje od 11.04.2016 r. Załącznik nr 1 do Uchwały Nr 44/2015 Zarządu Banku Spółdzielczego Rzemiosła w Radomiu z dnia 27.04.2015 r. Aneks nr 1 Uchwała Nr 71/2015 z dn. 29.05.2015 r. Aneks nr 2 Uchwała Nr 115/2015 z dn. 308.2015

Bardziej szczegółowo

TABELA OPROCENTOWANIA PRODUKTÓW BANKOWCH W KURPIOWSKIM BANKU SPÓŁDZIELCZYM W MYSZYŃCU

TABELA OPROCENTOWANIA PRODUKTÓW BANKOWCH W KURPIOWSKIM BANKU SPÓŁDZIELCZYM W MYSZYŃCU TABELA OPROCENTOWANIA PRODUKTÓW BANKOWCH W KURPIOWSKIM BANKU SPÓŁDZIELCZYM W MYSZYŃCU Stan na 16.06.2016r. Spis treści: PODMIOTY INSTYTUCJONALNE I. Tabela oprocentowania kredytów i pożyczek bankowych udzielanych

Bardziej szczegółowo

OPISY PRODUKTÓW. Rabobank Polska S.A.

OPISY PRODUKTÓW. Rabobank Polska S.A. OPISY PRODUKTÓW Rabobank Polska S.A. Warszawa, marzec 2010 Wymiana walut (Foreign Exchange) Wymiana walut jest umową pomiędzy bankiem a klientem, w której strony zobowiązują się wymienić w ustalonym dniu

Bardziej szczegółowo