Matematyka finansowa r.

Wielkość: px
Rozpocząć pokaz od strony:

Download "Matematyka finansowa 2.06.2001 r."

Transkrypt

1 Matematyka finansowa r. 3. Inwe 2!%3'(!!%3 $'!%4&!! &,'! * "! &,-' ryzyko inwestycji odchyleniem standardowym stopy zwrotu ze swojego portfela. Jak *!&! $!%3$! %4 A.,. B. spadnie o 5% C. spadnie o 10% D. spadnie o 7% E. wzro +. 3

2 Matematyka finansowa r. 6. )$ %$ 120 lub 80! 0 $ $1, ceny akcji wynosi 80%, natomiast spadku 20%. Wolne od ryzyka nat wynosi 8% 3,, $ 0ang. risk-neutral probability), wzrostu ceny akcji do 120. Odp"0$$ % 1# A. 20% B. 45% C. 55% D. 80% E. + 6

3 Matematyka finansowa r " %%$%7-$$ $ % 95 %5.20 (opcja kupna) oraz $ 1 natomiast 9- $ $ % $ % 100 $% 6.20 (opcja kupna) oraz 4.700$1!"0$$ % 1# A B C D E

4 Matematyka finansowa r. 2. Przyjmijmy nast puj ce oznaczenia: C - P - E - S - n - cena europejskiej opcji Call cena europejskiej opcji Put cena wykonania opcji obecna cena akcji okres do wykonania opcji - nat enie oprocentowania, 0 x - cena akcji w chwili wykonania Które z poni szych stwierdze s prawdziwe: (i) Dla opcji europejskiej je eli C > P to E S exp( ), (ii) (iii) Dla ameryka skiej opcji kupna je eli n ro nie to jej cena te ro nie, Cena opcji ameryka skiej jest zawsze wi ksza od ceny opcji europejskiej, 2 dla x 6 (iv) Wyp at W(x) dan wzorem W ( x ) x 4 dla 6 x 8 mo na otrzyma poprzez 4 dla x 8 nast puj c strategi inwestycyjn : Sprzeda opcji Call przy cenie wykonania 8, Zakup opcji Put przy cenie wykonania 6, Zakup opcji Call przy cenie wykonania 4, Sprzeda opcji Put przy cenie wykonania 4. Odpowied : A. tylko (i), (ii) B. tylko (i), (ii), (iii) C. wszystkie (i), (ii), (iii) oraz (iv) D. tylko (ii), (iii) oraz (iv) E. adna z odpowiedzi A, B, C, D nie jest prawid owa 2

5 Matematyka finansowa r. 8. Przyjmijmy nast puj ce oznaczenia dla opcji europejskich: E - cena wykonania opcji, C E - cena europejskiej opcji call przy cenie wykonania E, P E - cena europejskiej opcji put przy cenie wykonania E. Inwestor zamierza zrealizowa strategi inwestycyjn, która posiada nast puj ca funkcj wyp atyw (x) : W ( x ) x dla dla dla za pomoc zakupu lub sprzeda y odpowiednich opcji. x x 140 x 100 Wyznacz koszt realizacji tej strategii inwestycyjnej, je eli wiadomo, e: (i) dane s ceny odpowiednich opcji put i call wynosz : C 100 C 110 C 120 C ,221 34,436 31,937 27,651 P 100 P 110 P 120 P 140 X 40,979 47,710 X (ii) (iii) parytet kupna sprzeda y jest zachowany, na rynku nie wyst puj koszty transakcji. Odpowied (podaj najbli sz warto ): A. -9 B. -3 C. 3 D. 9 E. 15 Uwaga: Koszt dodatni oznacza, e inwestor sumarycznie p aci, natomiast ujemny oznacza, e inwestor otrzymuje kwot w chwili zakupu lub sprzeda y opcji 8

6 Matematyka finansowa Przyjmijmy nast puj ce oznaczenia dla opcji europejskich: S E - obecna cena akcji; - cena wykonania opcji; C E - cena europejskiej opcji call przy cenie wykonania E ; P E - cena europejskiej opcji put przy cenie wykonania E ; n - okres do wykonania opcji. Dla pewnej akcji wiadomo, e: (i) CE P E dla E S oraz ka dego n 0 ; (ii) dla n n oraz E S cena opcji call (równa cenie opcji put) wyznaczona ze wzoru 0 Blacka Sholesa wynosi X. Wyznacz, ile b dzie wynosi cena opcji wyznaczona ze wzoru Blacka Sholesa w przypadku gdy: (i) (ii) (iii) (iv) nat enie oprocentowania wzro nie dwukrotnie; wariancja nat enia oprocentowania zmaleje czterokrotnie; obecna cena akcji i cena wykonania wzrosn dwukrotnie; okres do wykonania opcji wzro nie czterokrotnie. Odpowied : A. X 2 B. X C. 2 X D. 2 X E. adna z odpowiedzi A, B, C oraz D nie jest prawid owa 2

7 Matematyka finansowa r. 10. Obecna cena akcji wynosi 100. Wiadomo, e: (i) akcja nie wyp aca dywidendy, (ii) odchylenie standardowe zmienno ci ceny akcji wynosi 20.00%, (iii) roczna stopa oprocentowania wolna od ryzyka wynosi r f 12.00% (ang. annual risk free interest rate). Korzystaj c ze wzoru Blacka- Scholesa wyznacz cen 3 - miesi cznej opcji europejskiej typu Put o cenie wykonania równej Do oblicze przyjmij przybli one warto ci ( x ) - dystrybuanty standardowego rozk adu normalnego: x 0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 ( x ) 0,5000 0,5199 0,5398 0,5596 0,5793 0,5987 0,6179 0,6368 x 0,4 0,45 0,5 0,55 0,6 0,65 0,7 0,75 ( x ) 0,6554 0,6736 0,6915 0,7088 0,7257 0,7422 0,7580 0,7734 x 0,8 0,85 0,9 0,95 1 1,05 1,1 1,15 ( x ) 0,7881 0,8023 0,8159 0,8289 0,8413 0,8531 0,8643 0,8749 x 1,2 1,25 1,3 1,35 1,4 1,45 1,5 1,55 ( x ) 0,8849 0,8944 0,9032 0,9115 0,9192 0,9265 0,9332 0,9394 Odpowied (podaj najbli sz warto ): A B C D E

8 Matematyka finansowa roku 9. Cena europejskiej opcji call akcji firmy X zostaje wyznaczona przy zastosowaniu modelu dwumianowego. Oblicz cen europejskiej opcji call firmy X, je li wiadomo, e termin wykonania wynosi 2 lata i e cena wykonania jest równa Wiadomo te, e: (i) obecna cena akcji wynosi 100, (ii) w ka dym z 2 lat cena akcji mo e zmieni si o 20% w odniesieniu do jej warto ci z pocz tku roku, a prawdopodobie stwa zmian s takie same w ka dym roku, (iii) cena europejskiej opcji call firmy X o rocznym terminie wykonania i cenie wykonania równej wyznaczona przy zastosowaniu modelu dwumianowego wynosi 9.09, (iv) efektywna roczna stopa procentowa (ang. annual effective interest rate) wynosi i 10.00%. Odpowied (podaj najbli sz warto ): A B C D E

9 Matematyka finansowa r. 2. Cena akcji spó ki X wynosi 50. Przyjmujemy za o enie, e cena akcji za rok ma rozk ad równomierny na przedziale (30;90). Rozwa my dwa portfele: portfel 1 : zawieraj cy w 100% akcje spó ki X, portfel 2 : zawieraj cy w 100% europejskie opcje call (pozycje d ugie) na akcje spó ki X z cen wykonania 50 Cena opcji wynosi 10. Ile wynosi stosunek wariancji rocznej stopy zwrotu z portfela 2 do wariancji rocznej stopy zwrotu z portfela 1 (podaj najbli sz warto )? A) 10,5 B) 11,5 C) 12,5 D) 13,5 E) 14,5 3

10 Matematyka finansowa r. 3. Inwestor przyjmuje nast puj ce za o enia co do kszta towania si kursu akcji spó ki X : obecna cena akcji wynosi 50, w ka dym z dwóch kolejnych okresów cena akcji mo e zmieni si o + 20% (z prawdopodobie stwem 60%) lub -10% w odniesieniu do jej warto ci z pocz tku okresu, a prawdopodobie stwa zmiany s jednakowe w ka dym okresie. Opcja ameryka ska call "po cenie minimalnej" wyp aca w momencie realizacji (realizacja opcji mo liwa jest na koniec zarówno pierwszego jak i drugiego okresu) ró nic pomi dzy cen akcji w chwili realizacji opcji a minimaln cen akcji w okresie do momentu realizacji opcji (z uwzgl dnieniem ceny pocz tkowej), o ile ta ró nica jest dodatnia. Jak maksymaln cen inwestor by by sk onny zap aci za opcj ameryka sk call po cenie minimalnej (podaj najbli sz warto ) na akcj spó ki X je eli wymaga, aby oczekiwana stopa zwrotu z inwestycji w opcj wynios a co najmniej i = 10% w skali jednego okresu (opcja jest wa na od chwili obecnej przez dwa okresy)? A) 8,30 B) 9,10 C) 9,90 D) 10,70 E) 11,50 4

11 Matematyka finansowa r. 7. Bie ce ceny rocznych europejskich opcji na akcje spó ki X s nast puj ce: cena wykonania cena call cena put Inwestor chce naby instrument wyp acaj cy za rok kwot : 0 o ile cena akcji < * cena akcji za rok, o ile cena akcji b dzie w przedziale [50,60) 4 * cena akcji za rok 240, o ile cena akcji b dzie w przedziale [60,70) 6 * cena akcji za rok 380, o ile cena akcji >= 70 Ile wynosi cena takiego instrumentu przy za o eniu braku kosztów transakcyjnych oraz braku mo liwo ci arbitra u? (podaj najbli sz warto ) A) 48 B) 52 C) 56 D) 60 E) 64 8

12 Matematyka finansowa r. 8. Rozk ad ceny spó ki A za pó roku jest równomierny na przedziale (10 ; 30). Rozk ad ceny tej spó ki za rok jest równomierny na przedziale (0.6 * X ; 1.6 * X), gdzie X oznacza cen akcji za pó roku. Ile wynosi bie ca warto pó rocznej europejskiej opcji call po 4 PLN na europejsk pó roczn opcj call po 20 PLN na 1 akcj spó ki A? Inwestor wymaga z inwestycji w tak opcj na opcj efektywnej rocznej stopy zwrotu i = 21%. A) 1.00 B) 1.15 C) 1.35 D) 1.55 E) 1.65 Uwaga: Europejska opcja na opcj uprawnia do zakupu w terminie jej zapadalno ci (tutaj po 1/2 roku) za 4 PLN europejskiej opcji (tutaj równie pó rocznej) na akcj spó ki A z cen wykonania 20 PLN 9

13 Matematyka finansowa r. 3. Bie ce ceny rocznych europejskich opcji na akcje spó ki X s nast puj ce: cena wykonania cena call cena put Inwestor chce naby instrument wyp acaj cy za rok kwot : * cena akcji za rok, o ile cena akcji < * cena akcji za rok, o ile cena akcji b dzie w przedziale [50,60) * cena akcji za rok, o ile cena akcji b dzie w przedziale [60,70) cena akcji za rok 110, o ile cena akcji >= 70 Ile wynosi cena takiego instrumentu przy za o eniu braku kosztów transakcyjnych oraz braku mo liwo ci arbitra u? (podaj najbli sz warto ) A) 19 B) 22 C) 25 D) 28 E) 31 4

14 Matematyka finansowa r. 2. Przyjmujemy za o enie, e cena akcji spó ki X za rok ma rozk ad równomierny na przedziale <30 ; 90>. Ceny rocznych opcji typu europejskiego wynosz : a) opcji kupna z cen wykonania 70-3 PLN b) opcji sprzeda y z cen wykonania PLN Inwestor buduje portfel zawieraj cy wy cznie d ugie pozycje na powy szych opcjach. Przy jakim udziale opcji kupna portfel ma najmniejsz wariancj rocznej stopy zwrotu. Podaj najbli sz warto. A) 18% B) 23% C) 28% D) 33% E) 38% 3

15 Matematyka finansowa r. 4. Roczna opcja typu europejskiego oferuje mo liwo zakupu po cenie 50 PLN jednej akcji spó ki A lub spó ki B (wybranej przez inwestora w momencie realizacji opcji). Inwestor przyjmuje nast puj ce za o enia: rozk ad ceny akcji spó ki A za rok jest równomierny < 40 ; 70 > rozk ad ceny akcji spó ki B za rok jest równomierny < X / 2 ; 1,5 * X >, gdzie X cena akcji spó ki A. Jak maksymaln kwot by by sk onny zap aci inwestor za opcj je eli oczekuje rocznej stopy zwrotu i = 15% z tej inwestycji? Podaj najbli sz warto. A) 9,05 B) 9,75 C) 10,45 D) 11,15 E) 11,85 5

16 Matematyka finansowa r. 8. Rozk ad ceny akcji spó ki X za ½ roku jest równomierny <40 ; 80>. Rozk ad ceny akcji za rok jest równomierny < 0,7 * Y; 1,5 * Y > gdzie Y cena akcji za pó roku. Jak maksymaln cen by by sk onny zap aci inwestor, oczekuj cy efektywnej rocznej stopy zwrotu z inwestycji i=21%, za pó roczn europejsk opcj kupna na d ug pozycj na pó rocznym kontrakcie terminowym opiewaj cym na 1 akcj spó ki X z cen rozliczenia kontraktu 60? Podaj najbli sz warto. Uwaga. Opcja uprawnia jej posiadacza do zaj cia za ½ roku d ugiej pozycji na pó rocznym kontrakcie terminowym. Ewentualne straty z tytu u posiadania kontraktu terminowego dyskontujemy równie stop i. A) 5,57 B) 6,48 C) 7,36 D) 8,29 E) 9,11 9

17

18

19 Matematyka finansowa r. 4. Inwestor działający na rynku opcji na akcje otrzymał w momencie t = 0 następujące kwotowania: obecna cena akcji A: 42 PLN, nominalna stopa wolna od ryzyka: 10% w skali roku, europejska opcja kupna na 1 akcje A z ceną wykonania 40 PLN, wygasająca za 3 miesiące kosztuje 3 PLN, europejska opcja sprzedaŝy na 1 akcję A z ceną wykonania 40 PLN, wygasająca za 3 miesiące kosztuje 2.25 PLN. Inwestor uwaŝa, Ŝe wykorzystując jedną akcję A istnieje moŝliwość zrealizowania zysku arbitraŝowego. Strategia arbitraŝowa ma opierać się na zajęciu odpowiednich pozycji na rynku opcji oraz na rynku akcji i instrumentów wolnych od ryzyka. Zysk arbitraŝowy na moment t=0 wynosi (do obliczeń przyjmij kapitalizację ciągłą, dopuszczamy moŝliwość krótkiej sprzedaŝy akcji bez kosztów transakcyjnych): A) 1.66 PLN B) 2.24 PLN C) 2.29 PLN D) 3.00 PLN E) Nie ma zysku arbitraŝowego, inwestor poniesie zawsze stratę 5

20

21

22 Matematyka finansowa r. 10. RozwaŜmy amerykańską opcję sprzedaŝy na akcję nie płacącą dywidendy. Termin wygaśnięcia dla tej opcji upływa za 3 lata. Obecna cena akcji wynosi 150 a jej cena wykonania 160. Wiadomo, Ŝe w ciągu kaŝdego roku cena akcji rośnie bądź maleje o 25%. Intensywność oprocentowania wynosi 0.07 (kapitalizacja ciągła). Ile wynosi obecna cena tej opcji przy załoŝeniu braku arbitraŝu? Podaj najbliŝszą wartość. A) 5 B) 10 C) 15 D) 20 E) 25 11

23 Matematyka finansowa r. 1. Na rynku dostępna jest europejska opcja kupna na akcję spółki A. Bieżąca cena akcji spółki A wynosi S 0 = 200 PLN. Przyjmujemy dwa scenariusze rozwoju rynku finansowego: scenariusz 1: po roku cena akcji spółki A wzrośnie o 10% scenariusz 2: po roku cena akcji spółki A spadnie o 15%. Inwestor zajmuje długą pozycję w europejskiej opcji kupna wystawionej na akcję spółki A o cenie wykonania równej S 0 i okresie do wykonania równym 1 rok. W celu osłony pozycji inwestor stosuje strategie zabezpieczającą delta hedging polegającą na stworzeniu w chwili t=0 portfela, który replikuje wypłatę z opcji w chwili wykonania. Portfel replikujący składa się z: akcji spółki A w ilości 0 (zakładamy idealną podzielność aktywów) instrumentu wolnego od ryzyka o wartości w chwili t=0 równej B 0. Instrument wolny od ryzyka zarabia w skali roku stopę 6%. Zakładamy, że akcja spółki A nie wypłaca dywidendy. Wartość B 0 instrumentu wolnego od ryzyka wynosi (podaj najbliższą wartość): A) PLN (krótka pozycja: inwestor pożycza instrument) B) PLN (krótka pozycja: inwestor pożycza instrument) C) PLN (długa pozycja: inwestor nabywa instrument) D) PLN (długa pozycja: inwestor nabywa instrument) E) PLN (długa pozycja: inwestor nabywa instrument) Wskazówka: Mówimy, że portfel replikuje wypłatę z opcji, jeśli jego wartość jest równa wypłacie z opcji w dowolnym momencie i dla dowolnego scenariusza rozwoju rynku finansowego. Przyjmujemy założenia rynku doskonałego i zupełnego. 2

24 Matematyka finansowa r. 2. Na rynku dostępne są europejskie opcje kupna i sprzedaży wystawione na ten sam instrument bazowy o cenach wykonania X 1, X 2, X 3 (gdzie X 1 < X 2 < X 3 ) z okresem do wykonania równym T. Poniższa tabela zawiera obecne (t = 0) koszty zajęcia pozycji w opcjach: Koszt opcji Cena wykonania X 1 X 2 X 3 Opcja kupna c 1 c 2 c 3 Opcja sprzedaży p 1 p 2 p 3 Inwestor zajmuje pozycje w opcjach w chwili t=0. Funkcja wypłaty inwestora (uwzględniająca początkowe koszty zajęcia pozycji) w zależności od ceny instrumentu bazowego w momencie wykonania opcji wyraża się wzorem: F S T = X 1 S T + (p 1 2c 2 + 4c 3 ) e 0.06 T gdy S T < X 1 (p 1 2c 2 + 4c 3 ) e 0.06 T gdy X 1 S T < X 2 2 S T X 2 + (p 1 2c 2 + 4c 3 ) e 0.06 T gdy X 2 S T < X 3 2S T 2X 2 + 4X 3 + (p 1 2c 2 + 4c 3 ) e 0.06 T gdy S T X 3 Gdzie S T jest ceną instrumentu bazowego w momencie wykonania opcji. Wolna od ryzyka stopa procentowa wynosi 6% (zakładamy kapitalizację ciągłą). Podaj strategie generującą funkcję wypłaty F: A) Dwie długie pozycje w opcji kupna o cenie wykonania X 1, cztery krótkie pozycje w opcji sprzedaży o cenie wykonania X 2, jedna krótka pozycja w opcji sprzedaży o cenie wykonania X 3. B) Długa pozycja w opcji sprzedaży o cenie wykonania X 1, dwie krótkie pozycje w opcji kupna o cenie wykonania X 2, cztery długie pozycje w opcji kupna o cenie wykonania X 3. C) Krótka pozycja w opcji sprzedaży o cenie wykonania X 1, dwie długie pozycje w opcji kupna o cenie wykonania X 2, cztery krótkie pozycje w opcji kupna o cenie wykonania X 3. D) Dwie długie pozycje w opcji kupna o cenie wykonania X 1, dwie krótkie pozycje w opcji sprzedaży o cenie wykonania X 2, dwie długie pozycje w opcji sprzedaży o cenie wykonania X 3. E) Cztery długie pozycje w opcji kupna o cenie wykonania X 1, dwie krótkie pozycje w opcji kupna o cenie wykonania X 2, jedna długa pozycja w opcji sprzedaży o cenie wykonania X 3. 3

Matematyka finansowa 15.12.2008 r. Komisja Egzaminacyjna dla Aktuariuszy. XLVIII Egzamin dla Aktuariuszy z 15 grudnia 2008 r.

Matematyka finansowa 15.12.2008 r. Komisja Egzaminacyjna dla Aktuariuszy. XLVIII Egzamin dla Aktuariuszy z 15 grudnia 2008 r. Komisja Egzaminacyjna dla Aktuariuszy XLVIII Egzamin dla Aktuariuszy z 15 grudnia 2008 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1

Bardziej szczegółowo

10. / 42! 1 A$!! )$$$% 0 " + 42 + 1 +! "!" 1!" ""!1!!!!42 % "" t "1%/4( " +. 7 4'8 A. 5.62 B. 5.67 C. 5.72 D. 5.77 E. 5.82

10. / 42! 1 A$!! )$$$% 0  + 42 + 1 +! ! 1! !1!!!!42 %  t 1%/4(  +. 7 4'8 A. 5.62 B. 5.67 C. 5.72 D. 5.77 E. 5.82 Matematyka finansowa 09.12.2000 r. 10. / 42! 1 A$!! )$$$% 0 " + 42 + 1 +! "!" 1!" ""!1!!!!42 % "" * t "1%/4( " + i 10%. 7 4'8 A. 5.62 B. 5.67 C. 5.72 D. 5.77 E. 5.82 10 Matematyka finansowa 24.03.2001

Bardziej szczegółowo

Matematyka finansowa 30.09.2013 r. Komisja Egzaminacyjna dla Aktuariuszy. LXV Egzamin dla Aktuariuszy z 30 września 2013 r.

Matematyka finansowa 30.09.2013 r. Komisja Egzaminacyjna dla Aktuariuszy. LXV Egzamin dla Aktuariuszy z 30 września 2013 r. Komisja Egzaminacyjna dla Aktuariuszy LXV Egzamin dla Aktuariuszy z 30 września 2013 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

Matematyka finansowa 13.12.2010 r. Komisja Egzaminacyjna dla Aktuariuszy. LV Egzamin dla Aktuariuszy z 13 grudnia 2010 r. Część I

Matematyka finansowa 13.12.2010 r. Komisja Egzaminacyjna dla Aktuariuszy. LV Egzamin dla Aktuariuszy z 13 grudnia 2010 r. Część I Komisja Egzaminacyjna dla Aktuariuszy LV Egzamin dla Aktuariuszy z 13 grudnia 2010 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Pan

Bardziej szczegółowo

Wycena papierów wartościowych - instrumenty pochodne

Wycena papierów wartościowych - instrumenty pochodne Matematyka finansowa - 8 Wycena papierów wartościowych - instrumenty pochodne W ujęciu probabilistycznym cena akcji w momencie t jest zmienną losową P t o pewnym (zwykle nieznanym) rozkładzie prawdopodobieństwa,

Bardziej szczegółowo

Matematyka finansowa 17.05.2003

Matematyka finansowa 17.05.2003 1. Na początku roku (w chwili t = 0 ) portfel pewnego funduszu inwestycyjnego składa się z 40% obligacji typu I oraz 60% obligacji typu II. O obligacjach typu I oraz typu II wiadomo, że: (i) obligacja

Bardziej szczegółowo

Matematyka finansowa 08.01.2007 r. Komisja Egzaminacyjna dla Aktuariuszy. XLI Egzamin dla Aktuariuszy z 8 stycznia 2007 r. Część I

Matematyka finansowa 08.01.2007 r. Komisja Egzaminacyjna dla Aktuariuszy. XLI Egzamin dla Aktuariuszy z 8 stycznia 2007 r. Część I Komisja Egzaminacyjna dla Aktuariuszy XLI Egzamin dla Aktuariuszy z 8 stycznia 2007 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 00 minut . Ile

Bardziej szczegółowo

Strategie inwestowania w opcje. Filip Duszczyk Dział Rynku Terminowego

Strategie inwestowania w opcje. Filip Duszczyk Dział Rynku Terminowego Strategie inwestowania w opcje Filip Duszczyk Dział Rynku Terminowego Agenda: Opcje giełdowe Zabezpieczenie portfela Spekulacja Strategie opcyjne 2 Opcje giełdowe 3 Co to jest opcja? OPCJA JAK POLISA Zabezpieczenie

Bardziej szczegółowo

Kontrakty terminowe na WIBOR

Kontrakty terminowe na WIBOR Kontrakty terminowe na WIBOR W Polsce podstawowym wskaźnikiem odzwierciedlającym koszt pieniądza na rynku międzybankowym jest WIBOR (ang. Warsaw Interbank Offered Rate). Jest to średnia stopa procentowa

Bardziej szczegółowo

ANALIZA OPCJI ANALIZA OPCJI - WYCENA. Krzysztof Jajuga Katedra Inwestycji Finansowych i Zarządzania Ryzykiem Uniwersytet Ekonomiczny we Wrocławiu

ANALIZA OPCJI ANALIZA OPCJI - WYCENA. Krzysztof Jajuga Katedra Inwestycji Finansowych i Zarządzania Ryzykiem Uniwersytet Ekonomiczny we Wrocławiu Krzysztof Jajuga Katedra Inwestycji Finansowych i Zarządzania Ryzykiem Uniwersytet Ekonomiczny we Wrocławiu Podstawowe pojęcia Opcja: in-the-money (ITM call: wartość instrumentu podstawowego > cena wykonania

Bardziej szczegółowo

R NKI K I F I F N N NSOW OPCJE

R NKI K I F I F N N NSOW OPCJE RYNKI FINANSOWE OPCJE Wymagania dotyczące opcji Standard opcji Interpretacja nazw Sposoby ustalania ostatecznej ceny rozliczeniowej dla opcji na GPW OPCJE - definicja Kontrakt finansowy, w którym kupujący

Bardziej szczegółowo

Zasady obliczania depozytów na opcje na GPW - MPKR

Zasady obliczania depozytów na opcje na GPW - MPKR Jesteś tu: Bossa.pl Zasady obliczania depozytów na opcje na GPW - MPKR Depozyt zabezpieczający dla pozycji w kontraktach opcyjnych wyznaczany jest za pomocą Modelu Portfelowej Kalkulacji Ryzyka. Czym jest

Bardziej szczegółowo

Ogólna charakterystyka kontraktów terminowych

Ogólna charakterystyka kontraktów terminowych Jesteś tu: Bossa.pl Kurs giełdowy - Część 10 Ogólna charakterystyka kontraktów terminowych Kontrakt terminowy jest umową pomiędzy dwiema stronami, z których jedna zobowiązuje się do nabycia a druga do

Bardziej szczegółowo

Warszawska Giełda Towarowa S.A.

Warszawska Giełda Towarowa S.A. KONTRAKT FUTURES Poprzez kontrakt futures rozumiemy umowę zawartą pomiędzy dwoma stronami transakcji. Jedna z nich zobowiązuje się do kupna, a przeciwna do sprzedaży, w ściśle określonym terminie w przyszłości

Bardziej szczegółowo

OPCJE. Slide 1. This presentation or any of its parts cannot be used without prior written permission of Dom Inwestycyjny BRE Banku S..A.

OPCJE. Slide 1. This presentation or any of its parts cannot be used without prior written permission of Dom Inwestycyjny BRE Banku S..A. OPCJE Slide 1 Informacje ogólne definicje opcji: kupna (call)/sprzedaŝy (put) terminologia typy opcji krzywe zysk/strata Slide 2 Czym jest opcja KUPNA (CALL)? Opcja KUPNA (CALL) jest PRAWEM - nie zobowiązaniem

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy XXXV Egzamin dla Aktuariuszy z 16 maja 2005 r. Część I Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy XXXV Egzamin dla Aktuariuszy z 16 maja 2005 r. Część I Matematyka finansowa Komisja Egzaminacyjna dla Aktuariuszy XXXV Egzamin dla Aktuariuszy z 6 maja 005 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... WERSJA TESTU A Czas egzaminu: 00 minut . Inwestorzy

Bardziej szczegółowo

Matematyka finansowa 03.10.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVIII Egzamin dla Aktuariuszy z 3 października 2011 r.

Matematyka finansowa 03.10.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVIII Egzamin dla Aktuariuszy z 3 października 2011 r. Komisja Egzaminacyjna dla Aktuariuszy LVIII Egzamin dla Aktuariuszy z 3 października 2011 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut

Bardziej szczegółowo

Zadanie 1. Liczba szkód w każdym z trzech kolejnych lat dla pewnego ubezpieczonego ma rozkład równomierny:

Zadanie 1. Liczba szkód w każdym z trzech kolejnych lat dla pewnego ubezpieczonego ma rozkład równomierny: Matematyka ubezpieczeń majątkowych 5.2.2008 r. Zadanie. Liczba szkód w każdym z trzech kolejnych lat dla pewnego ubezpieczonego ma rozkład równomierny: Pr ( N = k) = 0 dla k = 0,, K, 9. Liczby szkód w

Bardziej szczegółowo

Ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym Zadanie 1 Procent składany

Ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym Zadanie 1 Procent składany Zadanie 1 Procent składany W banku A oprocentowanie lokat 4% przy kapitalizacji kwartalnej. W banku B oprocentowanie lokat 4,5% przy kapitalizacji miesięcznej. W banku A ulokowano kwotę 1000 zł. Jaki kapitał

Bardziej szczegółowo

Ćwiczenia 1 Wprowadzenie do inwestycji

Ćwiczenia 1 Wprowadzenie do inwestycji Zadanie 1. Ćwiczenia 1 Wprowadzenie do inwestycji Poniższa tabela przedstawia notowania dwóch instrumentów, A i B. Okres 0 1 2 3 4 5 Instrument A 100 95,00 99,75 111,72 113,95 123,07 Instrument B 50 52,00

Bardziej szczegółowo

Matematyka finansowa 05.12.2005 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXVII Egzamin dla Aktuariuszy z 5 grudnia 2005 r.

Matematyka finansowa 05.12.2005 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXVII Egzamin dla Aktuariuszy z 5 grudnia 2005 r. Komisja Egzaminacyjna dla Aktuariuszy XXXVII Egzamin dla Aktuariuszy z 5 grudnia 2005 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... WERSJA TESTU A Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy LXX Egzamin dla Aktuariuszy z 23 marca 2015 r. Część I Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy LXX Egzamin dla Aktuariuszy z 23 marca 2015 r. Część I Matematyka finansowa Komisja Egzaminacyjna dla Aktuariuszy LXX Egzamin dla Aktuariuszy z 23 marca 2015 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Rozważmy

Bardziej szczegółowo

Wycena equity derivatives notowanych na GPW w obliczu wysokiego ryzyka dywidendy

Wycena equity derivatives notowanych na GPW w obliczu wysokiego ryzyka dywidendy Instrumenty pochodne 2014 Wycena equity derivatives notowanych na GPW w obliczu wysokiego ryzyka dywidendy Jerzy Dzieża, WMS, AGH Kraków 28 maja 2014 (Instrumenty pochodne 2014 ) Wycena equity derivatives

Bardziej szczegółowo

Matematyka finansowa w pakiecie Matlab

Matematyka finansowa w pakiecie Matlab Matematyka finansowa w pakiecie Matlab Wykład 5. Wycena opcji modele dyskretne Bartosz Ziemkiewicz Wydział Matematyki i Informatyki UMK Kurs letni dla studentów studiów zamawianych na kierunku Matematyka

Bardziej szczegółowo

Matematyka finansowa 11.10.2004 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r.

Matematyka finansowa 11.10.2004 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r. Komisja Egzaminacyjna dla Aktuariuszy XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... WERSJA TESTU Czas egzaminu: 100 minut

Bardziej szczegółowo

Matematyka finansowa 26.05.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część I

Matematyka finansowa 26.05.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część I Komisja Egzaminacyjna dla Aktuariuszy LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Przyjmijmy

Bardziej szczegółowo

Statystyka finansowa

Statystyka finansowa Statystyka finansowa Rynki finansowe Rynek finansowy rynek na którym zawierane są transakcje finansowe polegające na zakupie i sprzedaży instrumentów finansowych Instrument finansowy kontrakt pomiędzy

Bardziej szczegółowo

Matematyka finansowa 04.04.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część I

Matematyka finansowa 04.04.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część I Komisja Egzaminacyjna dla Aktuariuszy LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

Opcje giełdowe. Wprowadzenie teoretyczne oraz zasady obrotu

Opcje giełdowe. Wprowadzenie teoretyczne oraz zasady obrotu Opcje giełdowe Wprowadzenie teoretyczne oraz zasady obrotu NAJWAŻNIEJSZE CECHY OPCJI Instrument pochodny (kontrakt opcyjny), Asymetryczny profil wypłaty, Możliwość budowania portfeli o różnych profilach

Bardziej szczegółowo

OPCJE MIESIĘCZNE NA INDEKS WIG20

OPCJE MIESIĘCZNE NA INDEKS WIG20 OPCJE MIESIĘCZNE NA INDEKS WIG20 1 TROCHĘ HISTORII 1973 Fisher Black i Myron Scholes opracowują precyzyjną metodę obliczania wartości opcji słynny MODEL BLACK/SCHOLES 2 TROCHĘ HISTORII 26 kwietnia 1973

Bardziej szczegółowo

Ćwiczenia ZPI. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym 1

Ćwiczenia ZPI. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym 1 Ćwiczenia ZPI 1 Kupno opcji Profil wypłaty dla nabywcy opcji kupna. Z/S Premia (P) np. 100 Kurs wykonania opcji (X) np. 2500 Punkt opłacalności X + P 2500+100=2600 WIG20 2 Kupno opcji Profil wypłaty dla

Bardziej szczegółowo

Zadania ćwiczeniowe do przedmiotu Makroekonomia I

Zadania ćwiczeniowe do przedmiotu Makroekonomia I Dr. Michał Gradzewicz Zadania ćwiczeniowe do przedmiotu Makroekonomia I Ćwiczenia 3 i 4 Wzrost gospodarczy w długim okresie. Oszczędności, inwestycje i wybrane zagadnienia finansów. Wzrost gospodarczy

Bardziej szczegółowo

INFORMACJE O INSTRUMENTACH FINANSOWYCH WCHODZĄCYCH W SKŁAD ZARZADZANYCH PRZEZ BIURO MAKLERSKIE PORTFELI Z UWZGLĘDNIENIEM ZWIĄZANYCH Z NIMI RYZYK

INFORMACJE O INSTRUMENTACH FINANSOWYCH WCHODZĄCYCH W SKŁAD ZARZADZANYCH PRZEZ BIURO MAKLERSKIE PORTFELI Z UWZGLĘDNIENIEM ZWIĄZANYCH Z NIMI RYZYK INFORMACJE O INSTRUMENTACH FINANSOWYCH WCHODZĄCYCH W SKŁAD ZARZADZANYCH PRZEZ BIURO MAKLERSKIE PORTFELI Z UWZGLĘDNIENIEM ZWIĄZANYCH Z NIMI RYZYK Akcje Akcje są papierem wartościowym reprezentującym odpowiedni

Bardziej szczegółowo

Matematyka finansowa 10.12.2012 r. Komisja Egzaminacyjna dla Aktuariuszy. LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r.

Matematyka finansowa 10.12.2012 r. Komisja Egzaminacyjna dla Aktuariuszy. LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r. Komisja Egzaminacyjna dla Aktuariuszy LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

Być albo nie być produktów strukturyzowanych na polskim

Być albo nie być produktów strukturyzowanych na polskim Być albo nie być produktów strukturyzowanych na polskim rynku Wall Street 2009 Robert Raszczyk Główny Specjalista Dział Instrumentów Finansowych, GPW Zakopane, 06.06.2009 Program Czy wciąż potrzebna edukacja?

Bardziej szczegółowo

Matematyka finansowa 15.06.2015 r. Komisja Egzaminacyjna dla Aktuariuszy. LXXI Egzamin dla Aktuariuszy z 15 czerwca 2015 r.

Matematyka finansowa 15.06.2015 r. Komisja Egzaminacyjna dla Aktuariuszy. LXXI Egzamin dla Aktuariuszy z 15 czerwca 2015 r. Komisja Egzaminacyjna dla Aktuariuszy LXXI Egzamin dla Aktuariuszy z 1 czerwca 201 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Pracownik

Bardziej szczegółowo

INSTRUMENTY POCHODNE OPCJE EUROPEJSKIE OPCJE AMERYKAŃSKIE OPCJE EGZOTYCZNE

INSTRUMENTY POCHODNE OPCJE EUROPEJSKIE OPCJE AMERYKAŃSKIE OPCJE EGZOTYCZNE INSTRUMENTY POCHODNE OPCJE EUROPEJSKIE OPCJE AMERYKAŃSKIE OPCJE EGZOTYCZNE OPCJE / DEFINICJA Opcja jest prawem do zakupu lub sprzedaży określonej ilości wyspecyfikowanego przedmiotu (tzw. instrumentu bazowego)

Bardziej szczegółowo

istota transakcji opcyjnych, rodzaje opcji, czynniki wpływające na wartość opcji (premii). Mała powtórka: instrumenty liniowe

istota transakcji opcyjnych, rodzaje opcji, czynniki wpływające na wartość opcji (premii). Mała powtórka: instrumenty liniowe Opcje istota transakcji opcyjnych, rodzaje opcji, czynniki wpływające na wartość opcji (premii). Mała powtórka: instrumenty liniowe Punkt odniesienia dla rozliczania transakcji terminowej forward: ustalony

Bardziej szczegółowo

Wycena opcji. Dr inż. Bożena Mielczarek

Wycena opcji. Dr inż. Bożena Mielczarek Wycena opcji Dr inż. Bożena Mielczarek Stock Price Wahania ceny akcji Cena jednostki podlega niewielkim wahaniom dziennym (miesięcznym) wykazując jednak stały trend wznoszący. Cena może się doraźnie obniżać,

Bardziej szczegółowo

Analiza instrumentów pochodnych

Analiza instrumentów pochodnych Analiza instrumentów pochodnych Dr Wioletta Nowak Czwartek 13.00-15.00, p. 205C wioletta.nowak@uwr.edu.pl http://prawo.uni.wroc.pl/user/12141/students-resources Sylabus Zasady i metody wyceny kontraktów

Bardziej szczegółowo

Opcje giełdowe i zabezpieczenie inwestycji. Filip Duszczyk Dział Rynku Terminowego

Opcje giełdowe i zabezpieczenie inwestycji. Filip Duszczyk Dział Rynku Terminowego Opcje giełdowe i zabezpieczenie inwestycji Filip Duszczyk Dział Rynku Terminowego Agenda: Analiza Portfela współczynnik Beta (β) Opcje giełdowe wprowadzenie Podstawowe strategie opcyjne Strategia Protective

Bardziej szczegółowo

RYZYKO WALUTOWE - NARZĘDZIA MINIMALIZACJI. Wysoka konkurencyjność. Produkty dostosowywane do indywidualnych potrzeb Klienta

RYZYKO WALUTOWE - NARZĘDZIA MINIMALIZACJI. Wysoka konkurencyjność. Produkty dostosowywane do indywidualnych potrzeb Klienta RYZYKO WALUTOWE - NARZĘDZIA MINIMALIZACJI str. 1 Wysoka konkurencyjność Produkty dostosowywane do indywidualnych potrzeb Klienta Oferta cenowa negocjowana indywidualnie dla każdego Klienta Elektroniczne

Bardziej szczegółowo

Instrumenty pochodne - Zadania

Instrumenty pochodne - Zadania Jerzy A. Dzieża Instrumenty pochodne - Zadania 27 marca 2011 roku Rozdział 1 Wprowadzenie 1.1. Zadania 1. Spekulant zajął krótką pozycję w kontrakcie forward USD/PLN zapadającym za 2 miesiące o nominale

Bardziej szczegółowo

Objaśnienia do Wieloletniej Prognozy Finansowej na lata 2011-2017

Objaśnienia do Wieloletniej Prognozy Finansowej na lata 2011-2017 Załącznik Nr 2 do uchwały Nr V/33/11 Rady Gminy Wilczyn z dnia 21 lutego 2011 r. w sprawie uchwalenia Wieloletniej Prognozy Finansowej na lata 2011-2017 Objaśnienia do Wieloletniej Prognozy Finansowej

Bardziej szczegółowo

Eugeniusz Gostomski. Ryzyko stopy procentowej

Eugeniusz Gostomski. Ryzyko stopy procentowej Eugeniusz Gostomski Ryzyko stopy procentowej 1 Stopa procentowa Stopa procentowa jest ceną pieniądza i wyznacznikiem wartości pieniądza w czasie. Wpływa ona z jednej strony na koszt pozyskiwania przez

Bardziej szczegółowo

Matematyka finansowa 20.06.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVII Egzamin dla Aktuariuszy z 20 czerwca 2011 r.

Matematyka finansowa 20.06.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVII Egzamin dla Aktuariuszy z 20 czerwca 2011 r. Komisja Egzaminacyjna dla Aktuariuszy LVII Egzamin dla Aktuariuszy z 20 czerwca 2011 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

Opcje Giełdowe. Filip Duszczyk Dział Rynku Terminowego GPW

Opcje Giełdowe. Filip Duszczyk Dział Rynku Terminowego GPW Opcje Giełdowe Filip Duszczyk Dział Rynku Terminowego GPW Warszawa, 7 maja 2014 Czym są opcje indeksowe (1) Kupno opcji Koszt nabycia Zysk Strata Prawo, lecz nie obligacja, do kupna lub sprzedaży instrumentu

Bardziej szczegółowo

Smart Beta Święty Graal indeksów giełdowych?

Smart Beta Święty Graal indeksów giełdowych? Smart Beta Święty Graal indeksów giełdowych? Agenda Smart Beta w Polsce Strategie heurystyczne i optymalizacyjne Strategie fundamentalne Portfel losowy 2 Agenda Smart Beta w Polsce Strategie heurystyczne

Bardziej szczegółowo

OPCJE W to też możesz inwestować na giełdzie

OPCJE W to też możesz inwestować na giełdzie OPCJE NA WIG 20 W to też możesz inwestować na giełdzie GIEŁDAPAPIERÓW WARTOŚCIOWYCH WARSZAWIE OPCJE NA WIG 20 Opcje na WIG20 to popularny instrument, którego obrót systematycznie rośnie. Opcje dają ogromne

Bardziej szczegółowo

Wyniki finansowe funduszy inwestycyjnych i towarzystw funduszy inwestycyjnych w 2011 roku 1

Wyniki finansowe funduszy inwestycyjnych i towarzystw funduszy inwestycyjnych w 2011 roku 1 Warszawa, 26 czerwca 2012 r. Wyniki finansowe funduszy inwestycyjnych i towarzystw funduszy inwestycyjnych w 2011 roku 1 W końcu 2011 r. na polskim rynku finansowym funkcjonowały 484 fundusze inwestycyjne

Bardziej szczegółowo

Matematyka finansowa 8.12.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXIX Egzamin dla Aktuariuszy z 8 grudnia 2014 r. Część I

Matematyka finansowa 8.12.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXIX Egzamin dla Aktuariuszy z 8 grudnia 2014 r. Część I Komisja Egzaminacyjna dla Aktuariuszy LXIX Egzamin dla Aktuariuszy z 8 grudnia 2014 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

Zastosowania matematyki

Zastosowania matematyki Zastosowania matematyki Monika Bartkiewicz 1 / 143 Dyskonto-przypomnienie Obliczanie kapitaªu pocz tkowego P v na podstawie znanej warto±ci kapitaªu ko«cowego F v nazywa si dyskontowaniem kapitaªu F v.

Bardziej szczegółowo

JAK INWESTOWAĆ W ROPĘ?

JAK INWESTOWAĆ W ROPĘ? JAK INWESTOWAĆ W ROPĘ? Za pośrednictwem platformy inwestycyjnej DIF Freedom istnieje wiele sposobów inwestowania w ropę naftową. Zacznijmy od instrumentu, który jest związany z najmniejszym ryzykiem inwestycyjnym

Bardziej szczegółowo

Opcje. istota transakcji opcyjnych, rodzaje opcji, czynniki wpływające na wartość opcji (premii).

Opcje. istota transakcji opcyjnych, rodzaje opcji, czynniki wpływające na wartość opcji (premii). Opcje istota transakcji opcyjnych, rodzaje opcji, czynniki wpływające na wartość opcji (premii). 1 Mała powtórka: instrumenty liniowe Takie, w których funkcja wypłaty jest liniowa (np. forward, futures,

Bardziej szczegółowo

Spis treści. Przedmowa. O Autorach. Wstęp. Część I. Finanse i system finansowy

Spis treści. Przedmowa. O Autorach. Wstęp. Część I. Finanse i system finansowy Spis treści Przedmowa O Autorach Wstęp Część I. Finanse i system finansowy Rozdział 1. Co to są finanse? 1.1. Definicja pojęcia finanse 1.2. Dlaczego należy studiować finanse? 1.3. Decyzje finansowe gospodarstw

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych 12.10.2002 r.

Matematyka ubezpieczeń majątkowych 12.10.2002 r. Matematya ubezpieczeń majątowych.0.00 r. Zadanie. W pewnym portfelu ryzy ubezpieczycielowi udaje się reompensować sobie jedną trzecią wartości pierwotnie wypłaconych odszodowań w formie regresów. Oczywiście

Bardziej szczegółowo

Umowa kredytu. zawarta w dniu. zwanym dalej Kredytobiorcą, przy kontrasygnacie Skarbnika Powiatu.

Umowa kredytu. zawarta w dniu. zwanym dalej Kredytobiorcą, przy kontrasygnacie Skarbnika Powiatu. Umowa kredytu Załącznik nr 5 do siwz PROJEKT zawarta w dniu. między: reprezentowanym przez: 1. 2. a Powiatem Skarżyskim reprezentowanym przez: zwanym dalej Kredytobiorcą, przy kontrasygnacie Skarbnika

Bardziej szczegółowo

Inżynieria Finansowa: 5. Opcje

Inżynieria Finansowa: 5. Opcje Inżynieria Finansowa: 5. Opcje Piotr Bańbuła atedra Ekonomii Ilościowej, AE Listopad 2014 r. Warszawa, Szkoła Główna Handlowa Opcje - typy Opcja jest asymetrycznym instrumentem. Opcja (standardowa, prosta,

Bardziej szczegółowo

dr inż. Cezary Wiśniewski Płock, 2006

dr inż. Cezary Wiśniewski Płock, 2006 dr inż. Cezary Wiśniewski Płock, 26 Gra z naturą polega na tym, że przeciwnikiem jest osoba, zjawisko naturalne, obiekt itp. nie zainteresowany wynikiem gry. Strategia, którą podejmie przeciwnik ma charakter

Bardziej szczegółowo

Podatek przemysłowy (lokalny podatek od działalności usługowowytwórczej) 2015-12-17 16:02:07

Podatek przemysłowy (lokalny podatek od działalności usługowowytwórczej) 2015-12-17 16:02:07 Podatek przemysłowy (lokalny podatek od działalności usługowowytwórczej) 2015-12-17 16:02:07 2 Podatek przemysłowy (lokalny podatek od działalności usługowo-wytwórczej) Podatek przemysłowy (lokalny podatek

Bardziej szczegółowo

IV Krakowska Konferencja Matematyki Finansowej

IV Krakowska Konferencja Matematyki Finansowej IV Krakowska Konferencja Matematyki Finansowej dr inż. Bartosz Krysta Członek Zarządu ds. Zarządzania Portfelem Enea Trading Sp. z o.o. Kraków, 18.04.2015 r. Agenda Wycena ryzyka - istota Zniżkowy trend

Bardziej szczegółowo

Kontrakty terminowe. This presentation or any of its parts cannot be used without prior written permission of Dom Inwestycyjny BRE Banku S..A.

Kontrakty terminowe. This presentation or any of its parts cannot be used without prior written permission of Dom Inwestycyjny BRE Banku S..A. Kontrakty terminowe Slide 1 Podstawowe zagadnienia podstawowe informacje o kontraktach zasady notowania, depozyty zabezpieczające, przykłady wykorzystania kontraktów, ryzyko związane z inwestycjami w kontrakty,

Bardziej szczegółowo

newss.pl Expander: Bilans kredytów we frankach

newss.pl Expander: Bilans kredytów we frankach Listopadowi kredytobiorcy mogą już cieszyć się spadkiem raty, najwięcej tracą osoby, które zadłużyły się w sierpniu 2008 r. Rata kredytu we frankach na kwotę 300 tys. zł zaciągniętego w sierpniu 2008 r.

Bardziej szczegółowo

JAK INWESTOWAĆ W ZŁOTO?

JAK INWESTOWAĆ W ZŁOTO? JAK INWESTOWAĆ W ZŁOTO? W złoto można inwestować na wiele różnych sposobów. W złoto można inwestować po prostu w fizyczny sposób zakupując monety i sztabki. Największym problemem w tego typu inwestycji

Bardziej szczegółowo

ZP.271.1.71.2014 Obsługa bankowa budżetu Miasta Rzeszowa i jednostek organizacyjnych

ZP.271.1.71.2014 Obsługa bankowa budżetu Miasta Rzeszowa i jednostek organizacyjnych Załącznik nr 3 do SIWZ Istotne postanowienia, które zostaną wprowadzone do treści Umowy Prowadzenia obsługi bankowej budżetu miasta Rzeszowa i jednostek organizacyjnych miasta zawartej z Wykonawcą 1. Umowa

Bardziej szczegółowo

14.Rozwiązywanie zadań tekstowych wykorzystujących równania i nierówności kwadratowe.

14.Rozwiązywanie zadań tekstowych wykorzystujących równania i nierówności kwadratowe. Matematyka 4/ 4.Rozwiązywanie zadań tekstowych wykorzystujących równania i nierówności kwadratowe. I. Przypomnij sobie:. Wiadomości z poprzedniej lekcji... Że przy rozwiązywaniu zadań tekstowych wykorzystujących

Bardziej szczegółowo

ZAPYTANIE OFERTOWE. Zamawiający Przedsiębiorstwo Gospodarki Komunalnej Spółka z o. o. ul. Komunalna 5, 75-724 Koszalin

ZAPYTANIE OFERTOWE. Zamawiający Przedsiębiorstwo Gospodarki Komunalnej Spółka z o. o. ul. Komunalna 5, 75-724 Koszalin ZAPYTANIE OFERTOWE W związku z art. 4 ust. 8 ustawy z dnia 29 stycznia 2004 r. Prawo zamówień publicznych (DZ. U. Z 2010 R. NR 113, POZ. 759, NR 161, POZ. 1078 I NR 182, POZ. 1228 ORAZ Z 2011 R. NR 5,

Bardziej szczegółowo

OPCJE - PODSTAWY TEORETYCZNE cz.1

OPCJE - PODSTAWY TEORETYCZNE cz.1 OPCJE - PODSTAWY TEORETYCZNE cz.1 Opcja to prawo do kupna instrumentu bazowego po cenie, która jest z góry określona - głosi definicja opcji. Owa cena, które jest z góry określona to tzw. cena wykonania

Bardziej szczegółowo

Posiadane punkty lojalnościowe można również wykorzystać na opłacenie kosztów przesyłki.

Posiadane punkty lojalnościowe można również wykorzystać na opłacenie kosztów przesyłki. Program lojalnościowy Program lojalnościowy sklepu Gunfire pozwala Ci zyskać jeszcze więcej, nie dopłacając ani grosza. Zbieraj punkty i zamieniaj je na wysokiej jakości produkty dostępne w sklepie Gunfire.pl.

Bardziej szczegółowo

USŁUGA ZARZĄDZANIA. Indywidualnym Portfelem Instrumentów Finansowych. oferowana przez BZ WBK Asset Management S.A.

USŁUGA ZARZĄDZANIA. Indywidualnym Portfelem Instrumentów Finansowych. oferowana przez BZ WBK Asset Management S.A. USŁUGA ZARZĄDZANIA Indywidualnym Portfelem Instrumentów Finansowych oferowana przez BZ WBK Asset Management S.A. Poznań 2012 Na czym polega usługa Zarządzania Portfelem Usługa Zarządzania Portfelem (asset

Bardziej szczegółowo

Mikroekonomia Wykład 9

Mikroekonomia Wykład 9 Mikroekonomia Wykład 9 Efekty zewnętrzne Przez długie lata ekonomiści mieli problemy z jednoznacznym zdefiniowaniem efektów zewnętrznych, które oddziaływały na inne podmioty gospodarcze przez powodowanie

Bardziej szczegółowo

Forward kontrakt terminowy o charakterze rzeczywistym (z dostawą instrumentu bazowego).

Forward kontrakt terminowy o charakterze rzeczywistym (z dostawą instrumentu bazowego). Kontrakt terminowy (z ang. futures contract) to umowa pomiędzy dwiema stronami, z których jedna zobowiązuje się do kupna, a druga do sprzedaży, w określonym terminie w przyszłości (w tzw. dniu wygaśnięcia)

Bardziej szczegółowo

UMOWA O ŚWIADCZENIU USŁUG W PUNKCIE PRZEDSZKOLNYM TĘCZOWA KRAINA. Zawarta dnia..w Cieszynie pomiędzy

UMOWA O ŚWIADCZENIU USŁUG W PUNKCIE PRZEDSZKOLNYM TĘCZOWA KRAINA. Zawarta dnia..w Cieszynie pomiędzy UMOWA O ŚWIADCZENIU USŁUG W PUNKCIE PRZEDSZKOLNYM TĘCZOWA KRAINA Zawarta dnia..w Cieszynie pomiędzy.właścicielką Punktu Przedszkolnego Tęczowa Kraina w Cieszynie przy ulicy Hallera 145 A, a Panem/Panią......

Bardziej szczegółowo

Inwestycje finansowe. Wycena obligacji. Stopa zwrotu z akcji. Ryzyko.

Inwestycje finansowe. Wycena obligacji. Stopa zwrotu z akcji. Ryzyko. Inwestycje finansowe Wycena obligacji. Stopa zwrotu z akcji. yzyko. Inwestycje finansowe Instrumenty rynku pieniężnego (np. bony skarbowe). Instrumenty rynku walutowego. Obligacje. Akcje. Instrumenty pochodne.

Bardziej szczegółowo

Forward Rate Agreement

Forward Rate Agreement Forward Rate Agreement Nowoczesne rynki finansowe oferują wiele instrumentów pochodnych. Należą do nich: opcje i warranty, kontrakty futures i forward, kontrakty FRA (Forward Rate Agreement) oraz swapy.

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy. XXXIX Egzamin dla Aktuariuszy z 5 czerwca 2006 r. Część I. Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy. XXXIX Egzamin dla Aktuariuszy z 5 czerwca 2006 r. Część I. Matematyka finansowa Komisja Egzaminacyjna dla Aktuariuszy XXXIX Egzamin dla Aktuariuszy z 5 czerwca 006 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Inwestor dokonuje

Bardziej szczegółowo

Studenckie Koło Naukowe Drogowiec

Studenckie Koło Naukowe Drogowiec Pomiary natężenia ruchu drogowego na ulicy Warszawskiej w Białymstoku Członkowie Studenckiego Koła Naukowego Drogowiec przeprowadzili pomiary natężenia ruchu drogowego na ulicy Warszawskiej w Białymstoku,

Bardziej szczegółowo

Oprocentowanie konta 0,10%

Oprocentowanie konta 0,10% KONTA Konto osobiste konta 0,10% Brak kwoty minimalnej. zmienne obowiązuje od 18.05.2015 r. Miesięczna kapitalizacja odsetek. Odsetki za niedozwolone saldo debetowe - 4-krotność stopy kredytu lombardowego

Bardziej szczegółowo

Informacja o instrumentach finansowych oraz o ryzykach związanych z inwestowaniem w te instrumenty finansowe

Informacja o instrumentach finansowych oraz o ryzykach związanych z inwestowaniem w te instrumenty finansowe Informacja o instrumentach finansowych oraz o ryzykach związanych z inwestowaniem w te instrumenty finansowe Dom Inwestycyjny Xelion sp. z o.o. (dalej Xelion ) niniejszym przedstawia informacje o instrumentach

Bardziej szczegółowo

Polecenie 2.W spółce akcyjnej akcja na okaziciela oznacza ograniczoną zbywalność. Polecenie 5. Zadaniem controllingu jest pomiar wyniku finansowego

Polecenie 2.W spółce akcyjnej akcja na okaziciela oznacza ograniczoną zbywalność. Polecenie 5. Zadaniem controllingu jest pomiar wyniku finansowego Polecenie 1. Spółka z ograniczoną odpowiedzialnością jest podmiotem w pełni bezosobowym. Polecenie 2.W spółce akcyjnej akcja na okaziciela oznacza ograniczoną zbywalność Polecenie 3.W WZA osobą najważniejszą

Bardziej szczegółowo

OPCJE WALUTOWE. kurs realizacji > kurs terminowy OTM ATM kurs realizacji = kurs terminowy ITM ITM kurs realizacji < kurs terminowy ATM OTM

OPCJE WALUTOWE. kurs realizacji > kurs terminowy OTM ATM kurs realizacji = kurs terminowy ITM ITM kurs realizacji < kurs terminowy ATM OTM OPCJE WALUTOWE Opcja walutowa jako instrument finansowy zdobył ogromną popularność dzięki wielu możliwości jego wykorzystania. Minimalizacja ryzyka walutowego gdziekolwiek pojawiają się waluty to niewątpliwie

Bardziej szczegółowo

PRÓG RENTOWNOŚCI i PRÓG

PRÓG RENTOWNOŚCI i PRÓG PRÓG RENTOWNOŚCI i PRÓG WYPŁACALNOŚCI (MB) Próg rentowności (BP) i margines bezpieczeństwa Przychody Przychody Koszty Koszty całkowite Koszty stałe Koszty zmienne BP Q MB Produkcja gdzie: BP próg rentowności

Bardziej szczegółowo

DANE MAKROEKONOMICZNE (TraderTeam.pl: Rafa Jaworski, Marek Matuszek) Lekcja XXIII

DANE MAKROEKONOMICZNE (TraderTeam.pl: Rafa Jaworski, Marek Matuszek) Lekcja XXIII DANE MAKROEKONOMICZNE (TraderTeam.pl: Rafa Jaworski, Marek Matuszek) Lekcja XXIII Systemy transakcyjne cz.1 Wszelkie prawa zastrze one. Kopiowanie i rozpowszechnianie ca ci lub fragmentu niniejszej publikacji

Bardziej szczegółowo

DZIENNIK USTAW RZECZYPOSPOLITEJ POLSKIEJ

DZIENNIK USTAW RZECZYPOSPOLITEJ POLSKIEJ DZIENNIK USTAW RZECZYPOSPOLITEJ POLSKIEJ Warszawa, dnia 6 czerwca 2016 r. Poz. 789 ROZPORZĄDZENIE MINISTRA FINANSÓW 1) z dnia 25 maja 2016 r. w sprawie rocznych i półrocznych sprawozdań ubezpieczeniowego

Bardziej szczegółowo

OPCJE WARSZTATY INWESTYCYJNE TMS BROKERS

OPCJE WARSZTATY INWESTYCYJNE TMS BROKERS OPCJE WARSZTATY INWESTYCYJNE TMS BROKERS Możliwości inwestycyjne akcje, kontrakty, opcje Akcje zysk: tylko wzrosty lub tylko spadki (krótka sprzedaż), brak dźwigni finansowej strata: w zależności od spadku

Bardziej szczegółowo

Formularz informacyjny dotyczący kredytu konsumenckiego w rachunku oszczędnościowo-rozliczeniowym sporządzony na podstawie reprezentatywnego przykładu

Formularz informacyjny dotyczący kredytu konsumenckiego w rachunku oszczędnościowo-rozliczeniowym sporządzony na podstawie reprezentatywnego przykładu Formularz informacyjny dotyczący kredytu konsumenckiego w rachunku oszczędnościowo-rozliczeniowym sporządzony na podstawie reprezentatywnego przykładu Imię, nazwisko (nazwa) i adres (siedziba) kredytodawcy

Bardziej szczegółowo

UMOWA NA USŁUGI PRZEWOZOWE TRASA NR

UMOWA NA USŁUGI PRZEWOZOWE TRASA NR Załącznik Nr 2A UMOWA NA USŁUGI PRZEWOZOWE TRASA NR zawarta w dniu... r. w Morawicy pomiędzy Gminą Morawica reprezentowaną przez: zwaną dalej w treści umowy Organizatorem przewozu, a Firmą - reprezentowaną

Bardziej szczegółowo

Załącznik nr 1 do specyfikacji Umowa Nr. zawarta w dniu...2014r. pomiędzy. zwanym dalej Zamawiającym a...

Załącznik nr 1 do specyfikacji Umowa Nr. zawarta w dniu...2014r. pomiędzy. zwanym dalej Zamawiającym a... Załącznik nr 1 do specyfikacji Umowa Nr. zawarta w dniu...2014r. pomiędzy MIEJSKIM OŚRODKIEM POMOCY SPOŁECZNEJ W KATOWICACH, z siedzibą w Katowicach przy ul. Jagiellońskiej 17, reprezentowanym przez: DYREKTORA

Bardziej szczegółowo

Zadania. SiOD Cwiczenie 1 ;

Zadania. SiOD Cwiczenie 1 ; 1. Niech A będzie zbiorem liczb naturalnych podzielnych przez 6 B zbiorem liczb naturalnych podzielnych przez 2 C będzie zbiorem liczb naturalnych podzielnych przez 5 Wyznaczyć zbiory A B, A C, C B, A

Bardziej szczegółowo

Informacja dotycząca instrumentów finansowych oraz ryzyka związanego. z inwestowaniem w instrumenty finansowe. w PGE Domu Maklerskim S.A.

Informacja dotycząca instrumentów finansowych oraz ryzyka związanego. z inwestowaniem w instrumenty finansowe. w PGE Domu Maklerskim S.A. PGE Dom Maklerski S.A. Informacja dotycząca instrumentów finansowych oraz ryzyka związanego z inwestowaniem w instrumenty finansowe w PGE Domu Maklerskim S.A. I. Informacje ogólne Inwestycje w instrumenty

Bardziej szczegółowo

KOMISJA NADZORU FINANSOWEGO

KOMISJA NADZORU FINANSOWEGO KOMISJA NADZORU FINANSOWEGO PLAC POWSTAŃ CÓW WARSZAWY 1, 00-950 WARSZAWA WNIOSEK O ZATWIERDZENIE ANEKSU DO PROSPEKTU EMISYJNEGO zatwierdzonego w dniu 6 marca 2008 r. decyzją nr DEM/410/4/26/08 (Na podstawie

Bardziej szczegółowo

II Etap egzaminu na Doradcę Inwestycyjnego Maj 2014. Zadanie 2

II Etap egzaminu na Doradcę Inwestycyjnego Maj 2014. Zadanie 2 II Etap egzaminu na Doradcę Inwestycyjnego Maj 2014 Zadanie 2 1/ Analizowane są dwie spółki Alfa i Gamma. Spółka Alfa finansuje swoją działalność nie korzystając z długu, natomiast spółka Gamma finansuje

Bardziej szczegółowo

ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 9 Analiza pewnego problemu i krótkie przypomnienie, czyli Powtarzanie jest matka nauki.

ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 9 Analiza pewnego problemu i krótkie przypomnienie, czyli Powtarzanie jest matka nauki. Wst ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 9 Analiza pewnego problemu i krótkie przypomnienie, czyli Powtarzanie jest matka nauki. 1 Zadanie (29) zawar l umowe kredytu w momencie ukończenia

Bardziej szczegółowo

ZAPYTANIE OFERTOWE. Zamawiający Przedsiębiorstwo Gospodarki Komunalnej Spółka z o. o. ul. Komunalna 5, 75-724 Koszalin

ZAPYTANIE OFERTOWE. Zamawiający Przedsiębiorstwo Gospodarki Komunalnej Spółka z o. o. ul. Komunalna 5, 75-724 Koszalin ZAPYTANIE OFERTOWE W związku z art. 4 ust. 8 ustawy z dnia 29 stycznia 2004 r. Prawo zamówień publicznych (DZ. U. Z 2010 R. NR 113, POZ. 759, NR 161, POZ. 1078 I NR 182, POZ. 1228 ORAZ Z 2011 R. NR 5,

Bardziej szczegółowo

NAJWAŻNIEJSZE ZALETY LAMP DIODOWYCH

NAJWAŻNIEJSZE ZALETY LAMP DIODOWYCH NAJWAŻNIEJSZE ZALETY LAMP DIODOWYCH Pozwalają zaoszczędzić do 80% energii elektrycznej i więcej! Strumień światła zachowuje 100% jakości w okresie eksploatacji nawet do 50.000 do 70.000 h tj. w okresie

Bardziej szczegółowo